Variety and Site Drive Salix Mixture Effects on Soil Organic Matter Chemistry and Soil Carbon Accumulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Plant Material
2.2. Soil Sampling, Analyses and Measurements
2.3. Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS)
2.4. Statistical Analyses
3. Results
3.1. Site Characteristics
3.2. Effects of Willow Variety
3.3. Effects of Variety Mixing
4. Discussion
4.1. Effects of Site-Specific Environmental Conditions
4.2. Effects of Willow Variety
4.3. Effects of Variety Mixing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Saatchi, S.; Santoro, M.; Thurner, M.; Weber, U. Global Covariation of Carbon Turnover Times with Climate in Terrestrial Ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Bloom, A.A.; Exbrayat, J.-F.; van der Velde, I.R.; Feng, L.; Williams, M. The Decadal State of the Terrestrial Carbon Cycle: Global Retrievals of Terrestrial Carbon Allocation, Pools, and Residence Times. Proc. Natl. Acad. Sci. USA 2016, 113, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, P.H.; Loveland, P.J.; Bradley, R.I.; Lark, R.M.; Kirk, G.J. Carbon Losses from All Soils across England and Wales 1978–2003. Nature 2005, 437, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Hansel, C.M.; Kaiser, C.; Kleber, M.; Maher, K.; Manzoni, S.; Nunan, N.; Reichstein, M.; Schimel, J.P.; Torn, M.S.; et al. Persistence of Soil Organic Carbon Caused by Functional Complexity. Nat. Geosci. 2020, 13, 529–534. [Google Scholar] [CrossRef]
- Huguenin-Elie, O.; Delaby, L.; Klumpp, K.; Lemauviel-Lavenant, S. The Role of Grasslands in Biogeochemical Cycles and Biodiversity Conservation. In Improving Grassland and Pasture Management in Temperate Agriculture; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 23–50. ISBN 1-351-11456-5. [Google Scholar]
- Lal, R. Soil Carbon Sequestration to Mitigate Climate Change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Lehman, R.M.; Cambardella, C.A.; Stott, D.E.; Acosta-Martinez, V.; Manter, D.K.; Buyer, J.S.; Maul, J.E.; Smith, J.L.; Collins, H.P.; Halvorson, J.J.; et al. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation. Sustainability 2015, 7, 988–1027. [Google Scholar] [CrossRef]
- Ramesh, T.; Bolan, N.S.; Kirkham, M.B.; Wijesekara, H.; Kanchikerimath, M.; Srinivasa Rao, C.; Sandeep, S.; Rinklebe, J.; Ok, Y.S.; Choudhury, B.U.; et al. Chapter One—Soil Organic Carbon Dynamics: Impact of Land Use Changes and Management Practices: A Review. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 156, pp. 1–107. [Google Scholar]
- Lehmann, J.; Kleber, M. The Contentious Nature of Soil Organic Matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M. Thermal Adaptation of Decomposer Communities in Warming Soils. Front. Microbiol. 2013, 4, 333. [Google Scholar] [CrossRef] [PubMed]
- Leinweber, P.; Jandl, G.; Baum, C.; Eckhardt, K.-U.; Kandeler, E. Stability and Composition of Soil Organic Matter Control Respiration and Soil Enzyme Activities. Soil Biol. Biochem. 2008, 40, 1496–1505. [Google Scholar] [CrossRef]
- Gleixner, G. Soil Organic Matter Dynamics: A Biological Perspective Derived from the Use of Compound-Specific Isotopes Studies. Ecol. Res. 2013, 28, 683–695. [Google Scholar] [CrossRef]
- von Lützow, M.; Kögel-Knabner, I.; Ludwig, B.; Matzner, E.; Flessa, H.; Ekschmitt, K.; Guggenberger, G.; Marschner, B.; Kalbitz, K. Stabilization Mechanisms of Organic Matter in Four Temperate Soils: Development and Application of a Conceptual Model. J. Plant Nutr. Soil Sci. 2008, 171, 111–124. [Google Scholar] [CrossRef]
- Jandl, G.; Leinweber, P.; Schulten, H.-R.; Ekschmitt, K. Contribution of Primary Organic Matter to the Fatty Acid Pool in Agricultural Soils. Soil Biol. Biochem. 2005, 37, 1033–1041. [Google Scholar] [CrossRef]
- Schulten, H.-R.; Leinweber, P. Thermal Stability and Composition of Mineral-Bound Organic Matter in Density Fractions of Soil. Eur. J. Soil Sci. 1999, 50, 237–248. [Google Scholar] [CrossRef]
- Hensgens, G.; Lechtenfeld, O.J.; Guillemette, F.; Laudon, H.; Berggren, M. Impacts of Litter Decay on Organic Leachate Composition and Reactivity. Biogeochemistry 2021, 154, 99–117. [Google Scholar] [CrossRef]
- Gabarrón-Galeote, M.A.; Trigalet, S.; van Wesemael, B. Soil Organic Carbon Evolution after Land Abandonment along a Precipitation Gradient in Southern Spain. Agric. Ecosyst. Environ. 2015, 199, 114–123. [Google Scholar] [CrossRef]
- González-Domínguez, B.; Niklaus, P.A.; Studer, M.S.; Hagedorn, F.; Wacker, L.; Haghipour, N.; Zimmermann, S.; Walthert, L.; McIntyre, C.; Abiven, S. Temperature and Moisture Are Minor Drivers of Regional-Scale Soil Organic Carbon Dynamics. Sci. Rep. 2019, 9, 6422. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, X.; Schmid, B.; Poly, F.; Barnard, R.L.; Niklaus, P.A.; Guillaumaud, N.; Habekost, M.; Oelmann, Y.; Philippot, L.; Salles, J.F. Soil Environmental Conditions and Microbial Build-up Mediate the Effect of Plant Diversity on Soil Nitrifying and Denitrifying Enzyme Activities in Temperate Grasslands. PLoS ONE 2013, 8, e61069. [Google Scholar] [CrossRef] [PubMed]
- Frimmel, F.H.; Abbt-Braun, G.; Heumann, K.G.; Hock, B.; Lüdemann, H.-D.; Spiteller, M. Refractory Organic Substances in the Environment; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 978-3-527-61444-8. [Google Scholar]
- Leinweber, P.; Jandl, G.; Eckhardt, K.-U.; Schulten, H.-R.; Schlichting, A.; HofMann, D. Analytical Pyrolysis and Soft-Ionization Mass Spectrometry. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems; Senesi, N., Xing, B., Huang, P.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 539–588. [Google Scholar]
- Schmidt, L.; Warnstorff, K.; Dörfel, H.; Leinweber, P.; Lange, H.; Merbach, W. The Influence of Fertilization and Rotation on Soil Organic Matter and Plant Yields in the Long-Term Eternal Rye Trial in Halle (Saale), Germany. J. Plant Nutr. Soil Sci. 2000, 163, 639–648. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration; Springer Nature: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-030-59631-6. [Google Scholar]
- Warembourg, F.R.; Roumet, C.; Lafont, F. Differences in Rhizosphere Carbon-Partitioning among Plant Species of Different Families. Plant Soil 2003, 256, 347–357. [Google Scholar] [CrossRef]
- Augusto, L.; Boča, A. Tree Functional Traits, Forest Biomass, and Tree Species Diversity Interact with Site Properties to Drive Forest Soil Carbon. Nat. Commun. 2022, 13, 1097. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, G.; Xie, Z.; et al. Plant Diversity Enhances Productivity and Soil Carbon Storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef]
- Dawud, S.M.; Raulund-Rasmussen, K.; Domisch, T.; Finér, L.; Jaroszewicz, B.; Vesterdal, L. Is Tree Species Diversity or Species Identity the More Important Driver of Soil Carbon Stocks, C/N Ratio, and pH? Ecosystems 2016, 19, 645–660. [Google Scholar] [CrossRef]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive Biodiversity-Productivity Relationship Predominant in Global Forests. Science 2016, 354, 8957. [Google Scholar] [CrossRef]
- Scherer-Lorenzen, M.; Schulze, E.-D.; Don, A.; Schumacher, J.; Weller, E. Exploring the Functional Significance of Forest Diversity: A New Long-Term Experiment with Temperate Tree Species (BIOTREE). Perspect. Plant Ecol. Evol. Syst. 2007, 9, 53–70. [Google Scholar] [CrossRef]
- Jucker, T.; Avăcăriței, D.; Bărnoaiea, I.; Duduman, G.; Bouriaud, O.; Coomes, D.A. Climate Modulates the Effects of Tree Diversity on Forest Productivity. J. Ecol. 2016, 104, 388–398. [Google Scholar] [CrossRef]
- Ratcliffe, S.; Wirth, C.; Jucker, T.; van der Plas, F.; Scherer-Lorenzen, M.; Verheyen, K.; Allan, E.; Benavides, R.; Bruelheide, H.; Ohse, B.; et al. Biodiversity and Ecosystem Functioning Relations in European Forests Depend on Environmental Context. Ecol. Lett. 2017, 20, 1414–1426. [Google Scholar] [CrossRef] [PubMed]
- Jastrow, J.D.; Amonette, J.E.; Bailey, V.L. Mechanisms Controlling Soil Carbon Turnover and Their Potential Application for Enhancing Carbon Sequestration. Clim. Chang. 2007, 80, 5–23. [Google Scholar] [CrossRef]
- Moujahid, L.E.; Roux, X.L.; Michalet, S.; Bellvert, F.; Weigelt, A.; Poly, F. Effect of Plant Diversity on the Diversity of Soil Organic Compounds. PLoS ONE 2017, 12, e0170494. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ding, Y.; Zhang, Y.; Wang, J.; Freedman, Z.B.; Liu, P.; Cong, W.; Wang, J.; Zang, R.; Liu, S. Evenness of Soil Organic Carbon Chemical Components Changes with Tree Species Richness, Composition and Functional Diversity across Forests in China. Glob. Chang. Biol. 2023, 29, 2852–2864. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Song, Z.; Yang, Y.; Wang, J.; You, Y.; Zhang, X.; Shi, Z.; Nong, Y.; Ming, A.; et al. Introducing Nitrogen-Fixing Tree Species and Mixing with Pinus massoniana Alters and Evenly Distributes Various Chemical Compositions of Soil Organic Carbon in a Planted Forest in Southern China. For. Ecol. Manag. 2019, 449, 117477. [Google Scholar] [CrossRef]
- Beugnon, R.; Eisenhauer, N.; Bruelheide, H.; Davrinche, A.; Du, J.; Haider, S.; Hähn, G.; Saadani, M.; Singavarapu, B.; Sünnemann, M. Tree Diversity Effects on Litter Decomposition Are Mediated by Litterfall and Microbial Processes. Oikos 2023, 2023, e09751. [Google Scholar] [CrossRef]
- Wardle, D.A.; Nicholson, K.S. Synergistic Effects of Grassland Plant Spcies on Soil Microbial Biomass and Activity: Implications for Ecosystem-Level Effects of Enriched Plant Diversity. Funct. Ecol. 1996, 10, 410–416. [Google Scholar] [CrossRef]
- Gubsch, M.; Roscher, C.; Gleixner, G.; Habekost, M.; Lipowsky, A.; Schmid, B.; Schulze, E.; Steinbeiss, S.; Buchmann, N. Foliar and Soil δ15N Values Reveal Increased Nitrogen Partitioning among Species in Diverse Grassland Communities. Plant Cell Environ. 2011, 34, 895–908. [Google Scholar] [CrossRef] [PubMed]
- Niklaus, P.A.; Le Roux, X.; Poly, F.; Buchmann, N.; Scherer-Lorenzen, M.; Weigelt, A.; Barnard, R.L. Plant Species Diversity Affects Soil–Atmosphere Fluxes of Methane and Nitrous Oxide. Oecologia 2016, 181, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Amelung, W.; Lehmann, J.; Kästner, M. Quantitative Assessment of Microbial Necromass Contribution to Soil Organic Matter. Glob. Chang. Biol. 2019, 25, 3578–3590. [Google Scholar] [CrossRef]
- Banerjee, S.; van der Heijden, M.G.A. Soil Microbiomes and One Health. Nat. Rev. Microbiol. 2023, 21, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Isbell, F.; Calcagno, V.; Hector, A.; Connolly, J.; Harpole, W.S.; Reich, P.B.; Scherer-Lorenzen, M.; Schmid, B.; Tilman, D.; van Ruijven, J.; et al. High Plant Diversity Is Needed to Maintain Ecosystem Services. Nature 2011, 477, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Souto, X.C.; Chiapusio, G.; Pellissier, F. Relationships Between Phenolics and Soil Microorganisms in Spruce Forests: Significance for Natural Regeneration. J. Chem. Ecol. 2000, 26, 2025–2034. [Google Scholar] [CrossRef]
- Karp, A.; Shield, I. Bioenergy from Plants and the Sustainable Yield Challenge. New Phytol. 2008, 179, 15–32. [Google Scholar] [CrossRef]
- Weih, M.; Hansson, P.-A.; Ohlsson, J.; Sandgren, M.; Schnürer, A.; Rönnberg-Wästljung, A.-C. Sustainable Production of Willow for Biofuel Use. In Achieving Carbon Negative Bioenergy Systems from Plant Materials; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 305–340. [Google Scholar]
- Weih, M. 19 Willow. In Biofuel Crops: Production, Physiology and Genetics; Singh, B.P., Ed.; CABI: Wallingford, UK, 2013; pp. 415–426. [Google Scholar] [CrossRef]
- Weih, M.; Glynn, C.; Baum, C. Willow Short-Rotation Coppice as Model System for Exploring Ecological Theory on Biodiversity–Ecosystem Function. Diversity 2019, 11, 125. [Google Scholar] [CrossRef]
- Lindh, M.; Hoeber, S.; Weih, M.; Manzoni, S. Interactions of Nutrient and Water Availability Control Growth and Diversity Effects in a Salix Two-Species Mixture. Ecohydrology 2022, 15, e2401. [Google Scholar] [CrossRef]
- Weih, M.; Nordh, N.-E.; Manzoni, S.; Hoeber, S. Functional Traits of Individual Varieties as Determinants of Growth and Nitrogen Use Patterns in Mixed Stands of Willow (Salix spp.). For. Ecol. Manag. 2021, 479, 118605. [Google Scholar] [CrossRef]
- Baum, C.; Amm, T.; Kahle, P.; Weih, M. Fertilization Effects on Soil Ecology Strongly Depend on the Genotype in a Willow (Salix spp.) Plantation. For. Ecol. Manag. 2020, 466, 118126. [Google Scholar] [CrossRef]
- Baum, C.; Leinweber, P.; Weih, M.; Lamersdorf, N.; Dimitriou, I. Effects of Short Rotation Coppice with Willows and Poplar on Soil Ecology. Agric. For. Res. 2009, 3, 183–196. [Google Scholar]
- Kalita, S.; Potter, H.K.; Weih, M.; Baum, C.; Nordberg, Å.; Hansson, P.-A. Soil Carbon Modelling in Salix Biomass Plantations: Variety Determines Carbon Sequestration and Climate Impacts. Forests 2021, 12, 1529. [Google Scholar] [CrossRef]
- Hoeber, S.; Fransson, P.; Prieto-Ruiz, I.; Manzoni, S.; Weih, M. Two Salix Genotypes Differ in Productivity and Nitrogen Economy When Grown in Monoculture and Mixture. Front. Plant Sci. 2017, 8, 231. [Google Scholar] [CrossRef]
- Verheyen, K.; Vanhellemont, M.; Auge, H.; Baeten, L.; Baraloto, C.; Barsoum, N.; Bilodeau-Gauthier, S.; Bruelheide, H.; Castagneyrol, B.; Godbold, D.; et al. Contributions of a Global Network of Tree Diversity Experiments to Sustainable Forest Plantations. Ambio 2016, 45, 29–41. [Google Scholar] [CrossRef] [PubMed]
- ISRIC. World Reference Base for Soil Resources. World Soil. Resour. Rep. 1998, 84, 10006121624. [Google Scholar]
- Baum, C.; Hrynkiewicz, K.; Szymańska, S.; Vitow, N.; Hoeber, S.; Fransson, P.M.A.; Weih, M. Mixture of Salix Genotypes Promotes Root Colonization with Dark Septate Endophytes and Changes P Cycling in the Mycorrhizosphere. Front. Microbiol. 2018, 9, 1012. [Google Scholar] [CrossRef]
- Weih, M.; Nordh, N.-E. Characterising Willows for Biomass and Phytoremediation: Growth, Nitrogen and Water Use of 14 Willow Clones under Different Irrigation and Fertilisation Regimes. Biomass Bioenergy 2002, 23, 397–413. [Google Scholar] [CrossRef]
- Ågren, G.I.; Weih, M. Plant Stoichiometry at Different Scales: Element Concentration Patterns Reflect Environment More than Genotype. New Phytol. 2012, 194, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Hoeber, S.; Fransson, P.; Weih, M.; Manzoni, S. Leaf Litter Quality Coupled to Salix Variety Drives Litter Decomposition More than Stand Diversity or Climate. Plant Soil 2020, 453, 313–328. [Google Scholar] [CrossRef]
- An, H.; Liu, Y.; Zhao, X.; Huang, Q.; Yuan, S.; Yang, X.; Dong, J. Characterization of Cadmium-Resistant Endophytic Fungi from Salix variegata Franch. in Three Gorges Reservoir Region, China. Microbiol. Res. 2015, 176, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Hrynkiewicz, K.; Ciesielska, A.; Haug, I.; Baum, C. Ectomycorrhiza Formation and Willow Growth Promotion as Affected by Associated Bacteria: Role of Microbial Metabolites and Use of C Sources. Biol. Fertil. Soils 2010, 46, 139–150. [Google Scholar] [CrossRef]
- Püttsepp, Ü.; Rosling, A.; Taylor, A.F.S. Ectomycorrhizal Fungal Communities Associated with Salix viminalis L. and S. Dasyclados Wimm. Clones in a Short-Rotation Forestry Plantation. For. Ecol. Manag. 2004, 196, 413–424. [Google Scholar] [CrossRef]
- Hoeber, S.; Arranz, C.; Nordh, N.E.; Baum, C.; Low, M.; Nock, C.; Scherer-Lorenzen, M.; Weih, M. Genotype Identity Has a More Important Influence than Genotype Diversity on Shoot Biomass Productivity in Willow Short-Rotation Coppices. Gcb Bioenergy 2018, 10, 534–547. [Google Scholar] [CrossRef]
- Cunniff, J.; Purdy, S.J.; Barraclough, T.J.P.; Castle, M.; Maddison, A.L.; Jones, L.E.; Shield, I.F.; Gregory, A.S.; Karp, A. High Yielding Biomass Genotypes of Willow (Salix spp.) Show Differences in below Ground Biomass Allocation. Biomass Bioenergy 2015, 80, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Rytter, R.-M.; Hansson, A.-C. Seasonal Amount, Growth and Depth Distribution of Fine Roots in an Irrigated and Fertilized Salix viminalis L. Plantation. Biomass Bioenergy 1996, 11, 129–137. [Google Scholar] [CrossRef]
- Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (Ed.) VDLUFA Methode A 6.2.1.2—Bestimmung von Phosphor und Kalium im Doppellactat (DL)-Auszug. In VDLUFA-Methodenbuch, Band I, Die Untersuchung von Boden; VDLUFA-Verlag: Darmstadt, Germany, 2002. [Google Scholar]
- Hylander, L.D.; Svensson, H.; Simán, G. Different Methods for Determination of Plant Available Soil Phosphorus. Commun. Soil Sci. Plant Anal. 1996, 27, 1501–1512. [Google Scholar] [CrossRef]
- Parker, T.C.; Clemmensen, K.E.; Friggens, N.L.; Hartley, I.P.; Johnson, D.; Lindahl, B.D.; Olofsson, J.; Siewert, M.B.; Street, L.E.; Subke, J.-A.; et al. Rhizosphere Allocation by Canopy-Forming Species Dominates Soil CO2 Efflux in a Subarctic Landscape. New Phytol. 2020, 227, 1818–1830. [Google Scholar] [CrossRef] [PubMed]
- Oades, J.M. Soil Organic Matter and Structural Stability: Mechanisms and Implications for Management. Plant Soil 1984, 76, 319–337. [Google Scholar] [CrossRef]
- Hempfling, R.; Zech, W.; Schulten, H.-R. Chemical Composition of the Organic Matter in Forest Soils: 2. Moder Profile. Soil Sci. 1988, 146, 262–276. [Google Scholar] [CrossRef]
- Leinweber, P.; Kruse, J.; Baum, C.; Arcand, M.; Knight, J.D.; Farrell, R.; Eckhardt, K.-U.; Kiersch, K.; Jandl, G. Chapter Two—Advances in Understanding Organic Nitrogen Chemistry in Soils Using State-of-the-Art Analytical Techniques. In Advances in Agronomy; Sparks, D.L., Ed.; Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2013; Volume 119, pp. 83–151. [Google Scholar]
- Leinweber, P.; Blumenstein, O.; Schulten, H.-R. Organic Matter Composition in Sewage Farm Soils: Investigations by 13C-NMR and Pyrolysis-Field Ionization Mass Spectrometry. Eur. J. Soil Sci. 1996, 47, 71–80. [Google Scholar] [CrossRef]
- Schnitzer, M.; Schulten, H.R. The Analysis of Soil Organic Matter by Pyrolysis-Field Ionization Mass Spectrometry. Soil Sci. Soc. Am. J. 1992, 56, 1811–1817. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.r-project.org (accessed on 1 January 2024).
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Package ‘Vegan’. Community Ecol. Package Version 2013, 2, 1–295. [Google Scholar]
- Keithley, R.B.; Mark Wightman, R.; Heien, M.L. Multivariate Concentration Determination Using Principal Component Regression with Residual Analysis. TrAC Trends Anal. Chem. 2009, 28, 1127–1136. [Google Scholar] [CrossRef]
- Baumann, K.; Eckhardt, K.-U.; Schöning, I.; Schrumpf, M.; Leinweber, P. Clay Fraction Properties and Grassland Management Imprint on Soil Organic Matter Composition and Stability at Molecular Level. Soil. Use Manag. 2022, 38, 1578–1596. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. Nonlinear Mixed-Effects Models. R Package Version 2012, 3, 1–89. [Google Scholar]
- Lenth, R.; Singmann, H.; Love, J.; Buerkner, P.; Herve, M. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 2018, 1, 3. [Google Scholar]
- Castellano, M.J.; Mueller, K.E.; Olk, D.C.; Sawyer, J.E.; Six, J. Integrating Plant Litter Quality, Soil Organic Matter Stabilization, and the Carbon Saturation Concept. Glob. Chang. Biol. 2015, 21, 3200–3209. [Google Scholar] [CrossRef] [PubMed]
- Baumann, K.; Dignac, M.-F.; Rumpel, C.; Bardoux, G.; Sarr, A.; Steffens, M.; Maron, P.-A. Soil Microbial Diversity Affects Soil Organic Matter Decomposition in a Silty Grassland Soil. Biogeochemistry 2013, 114, 201–212. [Google Scholar] [CrossRef]
- Carney, K.M.; Matson, P.A. The Influence of Tropical Plant Diversity and Composition on Soil Microbial Communities. Microb. Ecol. 2006, 52, 226–238. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; de Courcelles, V.d.R.; Singh, K.; et al. The Knowns, Known Unknowns and Unknowns of Sequestration of Soil Organic Carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Cheshire, M.V.; Christensen, B.T.; Sørensen, L.H. Labelled and Native Sugars in Particle-Size Fractions from Soils Incubated with 14C Straw for 6 to 18 Years. J. Soil Sci. 1990, 41, 29–39. [Google Scholar] [CrossRef]
- Jandl, G.; Acksel, A.; Baum, C.; Leinweber, P. Indicators for Soil Organic Matter Quality in No-till Soils under Perennial Crops in Central Sweden. Soil Tillage Res. 2015, 148, 74–84. [Google Scholar] [CrossRef]
- Hall, S.J.; Huang, W.; Timokhin, V.I.; Hammel, K.E. Lignin Lags, Leads, or Limits the Decomposition of Litter and Soil Organic Carbon. Ecology 2020, 101, e03113. [Google Scholar] [CrossRef]
- Angst, G.; Heinrich, L.; Kögel-Knabner, I.; Mueller, C.W. The Fate of Cutin and Suberin of Decaying Leaves, Needles and Roots—Inferences from the Initial Decomposition of Bound Fatty Acids. Org. Geochem. 2016, 95, 81–92. [Google Scholar] [CrossRef]
- Dufour, L.J.P.; Wetterlind, J.; Nunan, N.; Quenea, K.; Shi, A.; Weih, M.; Herrmann, A.M. Salix Species and Varieties Affect the Molecular Composition and Diversity of Soil Organic Matter. Plant Soil 2024. [Google Scholar] [CrossRef]
- Yang, S.; Jansen, B.; Absalah, S.; Kalbitz, K.; Chunga Castro, F.O.; Cammeraat, E.L.H. Soil Organic Carbon Content and Mineralization Controlled by the Composition, Origin and Molecular Diversity of Organic Matter: A Study in Tropical Alpine Grasslands. Soil Tillage Res. 2022, 215, 105203. [Google Scholar] [CrossRef]
- Gadgil, R.L.; Gadgil, P. Mycorrhiza and Litter Decomposition. Nature 1971, 233, 133. [Google Scholar] [CrossRef] [PubMed]
- Cremer, M.; Kern, N.V.; Prietzel, J. Soil Organic Carbon and Nitrogen Stocks under Pure and Mixed Stands of European Beech, Douglas Fir and Norway Spruce. For. Ecol. Manag. 2016, 367, 30–40. [Google Scholar] [CrossRef]
- Waring, B.G.; Smith, K.R.; Belluau, M.; Khlifa, R.; Messier, C.; Munson, A.; Paquette, A. Soil Carbon Pools Are Affected by Species Identity and Productivity in a Tree Common Garden Experiment. Front. For. Glob. Chang. 2022, 5, 1032321. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Prietzel, J.; Barthold, F.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; von Lützow, M.; Kögel-Knabner, I. Storage and Drivers of Organic Carbon in Forest Soils of Southeast Germany (Bavaria)—Implications for Carbon Sequestration. For. Ecol. Manag. 2013, 295, 162–172. [Google Scholar] [CrossRef]
- Koczorski, P.; Furtado, B.U.; Gołębiewski, M.; Hulisz, P.; Baum, C.; Weih, M.; Hrynkiewicz, K. The Effects of Host Plant Genotype and Environmental Conditions on Fungal Community Composition and Phosphorus Solubilization in Willow Short Rotation Coppice. Front. Plant Sci. 2021, 12, 647709. [Google Scholar] [CrossRef]
- Barry, K.E.; Weigelt, A.; van Ruijven, J.; de Kroon, H.; Ebeling, A.; Eisenhauer, N.; Gessler, A.; Ravenek, J.M.; Scherer-Lorenzen, M.; Oram, N.J.; et al. Chapter Two—Above- and Belowground Overyielding Are Related at the Community and Species Level in a Grassland Biodiversity Experiment. In Mechanisms Underlying the Relationship between Biodiversity and Ecosystem; Eisenhauer, N., Bohan, D.A., Dumbrell, A.J., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 61, pp. 55–89. [Google Scholar]
Site | Soil Group | pH | Bulk Density [g cm−3] | Clay Content [%] | MAT [°C] | MAP [mg g−1] |
---|---|---|---|---|---|---|
Uppsala | Vertic Cambisol | 5.2 | 1.4 | 52 | 7.53 | 500 |
Rostock | Stagnic Cambisol | 6.2 | 1.3 | 5 | 10.35 | 730 |
Py-FIMS Parameters | Explanations |
---|---|
Hexoses/pentoses | Ratio of microbial- to plant-derived sugars |
TII | Total ion intensity (106 counts mg−1) |
VM | Volatile matter in % (weightbefore pyrolysis/weightafter pyrolysis) |
CHYDR | Carbohydrates with pentose and hexose subunits |
PHLM | Phenols and lignin monomers |
LDIM | Lignin dimers |
LIPID | Lipids, alkanes, alkenes, bound fatty acids, and alkylmonoesters |
ALKYL | Alkylaromatics |
NCOMP | Mainly heterocyclic N-containing compounds |
PEPTI | Peptides (amino acids, peptides and aminosugars) |
SUBER | Suberin |
FATTY | Free fatty acids C16–C34 |
Site | Variety Composition | C:N | C [%] | N [%] | Kdl [mg g−1] | Mgdl [mg g−1] | Pdl [mg g−1] | CO2 [g C m−2 h−1] |
---|---|---|---|---|---|---|---|---|
Rostock | ‘Loden’ | 10.80 xa | 1.26 ya | 0.12 ya | 9.99 ya | 20.42 ya | 4.40 xa | - |
‘Loden’:‘Tora’ | 10.63 xa | 1.22 ya | 0.11 ya | 10.22 ya | 21.06 ya | 4.40 xa | - | |
‘Tora’ | 10.22 xa | 1.01 ya | 0.10 ya | 10.71 ya | 21.96 ya | 4.02 xa | - | |
Uppsala | ‘Loden’ | 10.69 xa | 1.89 xa | 0.18 xa | 22.23 xa | 32.10 xa | 4.27 xa | 0.493 a |
‘Loden’‘Tora’ | 10.58 xa | 1.58 xa | 0.16 xa | 23.62 xa | 27.94 xa | 5.04 xa | 0.453 a | |
‘Tora’ | 10.85 xa | 1.90 xa | 0.17 xa | 19.89 xa | 28.76 xa | 3.60 xa | 0.461 a |
Site | Variety Composition | TII [106 Counts mg−1] | Total Thermal Stability | Chemical Diversity [H′] | Hexoses: Pentoses | Volatile Matter |
---|---|---|---|---|---|---|
Rostock | ‘Loden’ | 53.3 xa | 0.68 xa | 6.71 ya | 5.79 xa | 2.83 xa |
‘Loden’:‘Tora’ | 39.1 xa | 0.72 xa | 6.30 ya | 5.73 xab | 2.92 xa | |
‘Tora’ | 34.8 xa | 0.77 xa | 5.82 ya | 5.67 xb | 2.75 xa | |
Uppsala | ‘Loden’ | 14.8 ya | 0.84 xa | 14.66 xa | 5.47 ya | 1.89 yb |
‘Loden’:‘Tora’ | 14.2 ya | 0.82 xb | 9.69 xb | 5.45 ya | 1.91 yb | |
‘Tora’ | 24.7 ya | 0.83 xab | 13.36 xa | 5.53 ya | 2.28 ya |
Compound Classes | Rostock | Uppsala | ||
---|---|---|---|---|
‘Loden’ | ‘Tora’ | ‘Loden’ | ‘Tora’ | |
CHYDR | 4.0 (0.19) Bb | 5.0 (0. 19) Ab | 9.5 (0.82) Aa | 8.8 (0.82) Aa |
PHLM | 9.9 (0.36) Bb | 11.7 (0.36) Ab | 17.2 (0.82) Aa | 16.2 (0.82) Aa |
LDIM | 6.8 (0.64) Aa | 7.1 (0.64) Aa | 4.2 (0.59) Bb | 5.9 (0.59) Aa |
LIPID | 10.3 (0.29) Aa | 9.9 (0.29) Aa | 8.4 (0.24) Ab | 8.8 (0.24) Ab |
ALKYL | 13.3 (0.49) Ab | 14.9 (0.49) Ab | 17.8 (0.38) Aa | 17.9 (0.38) Aa |
NCOMP | 1.6 (0. 10) Bb | 2.1 (0.10) Ab | 4.1 (0.36) Aa | 3.6 (0. 36) Aa |
PEPTI | 3.6 (0.24) Bb | 4.1 (0.24) Ab | 6.4 (0.21) Aa | 5.5 (0.21) Ba |
SUBER | 0.33 (0.03) Aa | 0.16 (0.03) Ba | 0.02 (0.01) Ab | 0.05 (0.01) Ab |
FATTY | 0.87 (0.13) Aa | 0.31 (0.13) Ba | 0.17 (0.07) Ab | 0.04 (0.07) Ba |
Compound Classes | Rostock | Uppsala | ||
---|---|---|---|---|
‘Loden’ | ‘Tora’ | ‘Loden’ | ‘Tora’ | |
CHYDR | 0.32 (0.08) Aa | 0.36 (0.08) Aa | 0.60 (0.08) Aa | 0.51 (0.08) Ba |
PHLM | 0.58 (0.06) Ab | 0.67 (0.06) Aa | 0.82 (0.05) Aa | 0.77 (0.05) Ba |
LDIM | 0.88 (0.02) Ba | 0.93 (0.02) Aa | 0.95 (0.02) Aa | 0.97 (0.02) Aa |
LIPID | 0.67 (0.04) Bb | 0.80 (0.04) Aa | 0.90 (0.03) Aa | 0.90 (0.03) Aa |
ALKYL | 0.70 (0.04) Bb | 0.80 (0.04) Aa | 0.88 (0.04) Aa | 0.87 (0.04) Ba |
NCOMP | 0.46 (0.07) Ab | 0.53 (0.07) Aa | 0.80 (0.06) Aa | 0.68 (0.06) Ba |
PEPTI | 0.48 (0.07) Aa | 0.54 (0.07) Aa | 0.72 (0.06) Aa | 0.64 (0.06) Ba |
SUBER | 0.76 (0.06) Ba | 0.90 (0.06) Aa | 0.88 (0.05) Ba | 0.97 (0.05) Aa |
FATTY | 0.02 (0.01) Ba | 0.07 (0.01) Aa | 0.10 (0.07) Aa | 0.12 (0.07) Aa |
Compound Classes | Rostock | Uppsala | ||||
---|---|---|---|---|---|---|
Expected | Observed | NDE | Expected | Observed | NDE | |
CHYDR | 4.6 (0.14) | 5.0 (0.19) | 9.2% n.s. | 9.0 (0.62) | 10.6 (0.82) | 17.1% n.s. |
PHLM | 11.0 (0.26) | 11.6 (0.36) | 5.8% n.s. | 16.5 (0.63) | 17.4 (0.82) | 5.7% n.s. |
LDIM | 7.0 (0.62) | 6.6 (0.64) | −5.6% n.s. | 5.4 (0.59) | 4.4 (0.59) | −18.3% *** |
LIPID | 10.1 (0.23) | 9.9 (0.29) | −1.9% n.s. | 8.6 (0.20) | 8.0 (0.24) | −7.2% n.s. |
ALKYL | 14.2 (0.35) | 14.6 (0.49) | 2.8% n.s. | 17.8 (0.29) | 17.6 (0.38) | −1.0% n.s. |
NCOMP | 1.9 (0.07) | 2.1 (0.25) | 10.2% n.s. | 3.8 (0.27) | 4.5 (0.23) | 20.1% n.s. |
PEPTI | 3.9 (0.22) | 4.1 (0.24) | 4.0% n.s. | 5.8 (0.20) | 6.8 (0.21) | 18.2% *** |
SUBER | 0.23 (0.03) | 0.20 (0.03) | −14.8% n.s. | 0.04 (0.01) | 0.03 (0.01) | −18.0% n.s. |
FATTY | 0.55 (0.10) | 0.52 (0.13) | −6.5% n.s. | 0.08 (0.07) | 0.13 (0.07) | 59.4% n.s. |
Compound Classes | Rostock | Uppsala | ||||
---|---|---|---|---|---|---|
Expected | Observed | NDE | Expected | Observed | NDE | |
CHYDR | 0.34 (0.08) | 0.36 (0.08) | 3.3% n.s. | 0.54 (0.08) | 0.53 (0.08) | −1.0% n.s. |
PHLM | 0.63 (0.05) | 0.63 (0.06) | −1.0% n.s. | 0.78 (0.05) | 0.78 (0.05) | 0.3% n.s. |
LDIM | 0.91 (0.02) | 0.91 (0.02) | −0.6% n.s. | 0.96 (0.02) | 0.95 (0.02) | −1.5% n.s. |
LIPID | 0.74 (0.04) | 0.74 (0.04) | −0.7% n.s. | 0.90 (0.03) | 0.90 (0.03) | 0.4% n.s. |
ALKYL | 0.76 (0.04) | 0.74 (0.04) | −2.0% n.s. | 0.87 (0.04) | 0.86 (0.04) | −0.9% * |
NCOMP | 0.48 (0.06) | 0.50 (0.07) | −0.2% n.s. | 0.71 (0.06) | 0.74 (0.06) | 3.55% n.s. |
PEPTI | 0.52 (0.07) | 0.50 (0.07) | −2.5% n.s. | 0.67 (0.07) | 0.67 (0.06) | 0.4% n.s. |
SUBER | 0.84 (0.05) | 0.83 (0.06) | −1.8% n.s. | 0.99 (0.05) | 0.76 (0.05) | −22.7% *** |
FATTY | 0.05 (0.01) | 0.04 (0.01) | −19.8% n.s. | 0.12 (0.05) | 0.15 (0.07) | 30.8% n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, J.; Fransson, P.; Baum, C.; Leinweber, P.; Eckhardt, K.-U.; Weih, M. Variety and Site Drive Salix Mixture Effects on Soil Organic Matter Chemistry and Soil Carbon Accumulation. Forests 2024, 15, 1339. https://doi.org/10.3390/f15081339
Jensen J, Fransson P, Baum C, Leinweber P, Eckhardt K-U, Weih M. Variety and Site Drive Salix Mixture Effects on Soil Organic Matter Chemistry and Soil Carbon Accumulation. Forests. 2024; 15(8):1339. https://doi.org/10.3390/f15081339
Chicago/Turabian StyleJensen, Joel, Petra Fransson, Christel Baum, Peter Leinweber, Kai-Uwe Eckhardt, and Martin Weih. 2024. "Variety and Site Drive Salix Mixture Effects on Soil Organic Matter Chemistry and Soil Carbon Accumulation" Forests 15, no. 8: 1339. https://doi.org/10.3390/f15081339
APA StyleJensen, J., Fransson, P., Baum, C., Leinweber, P., Eckhardt, K.-U., & Weih, M. (2024). Variety and Site Drive Salix Mixture Effects on Soil Organic Matter Chemistry and Soil Carbon Accumulation. Forests, 15(8), 1339. https://doi.org/10.3390/f15081339