Impacts of Compound Hot–Dry Events on Vegetation Productivity over Northern East Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model
2.3. Experimental Design
2.4. Observational Data
3. Results
3.1. CHD Events and the Eco-Hydrological Processes
3.2. Performance of CLM5 in Simulating the Eco-Hydrological Processes
3.3. Individual and Compound Effects of Hot and Dry Events
4. Discussion
4.1. The Roles of Drought and Heat in GPP Changes during CHD Events
4.2. Uncertainties and Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I. (Eds.) IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; in press. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing Trends in Regional Heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Fischer, E.M.; Sippel, S.; Knutti, R. Increasing Probability of Record-Shattering Climate Extremes. Nat. Clim. Chang. 2021, 11, 689–695. [Google Scholar] [CrossRef]
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; van der Velde, M.; Vicca, S.; Babst, F.; et al. Effects of Climate Extremes on the Terrestrial Carbon Cycle: Concepts, Processes and Potential Future Impacts. Glob. Chang. Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef]
- Tschumi, E.; Zscheischler, J. Countrywide Climate Features during Recorded Climate-Related Disasters. Clim. Chang. 2020, 158, 593–609. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, A. Would the Obtainable Gross Primary Productivity (GPP) Products Stand up? A Critical Assessment of 45 Global GPP Products. Sci. Total Environ. 2021, 783, 146965. [Google Scholar] [CrossRef]
- Liao, Z.; Zhou, B.; Zhu, J.; Jia, H.; Fei, X. A Critical Review of Methods, Principles and Progress for Estimating the Gross Primary Productivity of Terrestrial Ecosystems. Front. Environ. Sci. 2023, 11, 1093095. [Google Scholar] [CrossRef]
- Das, R.; Chaturvedi, R.K.; Roy, A.; Karmakar, S.; Ghosh, S. Warming Inhibits Increases in Vegetation Net Primary Productivity despite Greening in India. Sci. Rep. 2023, 13, 21309. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-Wide Reduction in Primary Productivity Caused by the Heat and Drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Jin, C.; Luo, X.; Xiao, X.; Dong, J.; Li, X.; Yang, J.; Zhao, D. The 2012 Flash Drought Threatened US Midwest Agroecosystems. Chin. Geogr. Sci. 2019, 29, 768–783. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, Z.; Fu, Y.; Feng, S.; Zhang, X.; Wu, X.; Hao, F. Probabilistic Assessments of the Impacts of Compound Dry and Hot Events on Global Vegetation during Growing Seasons. Environ. Res. Lett. 2021, 16, 074055. [Google Scholar] [CrossRef]
- Zscheischler, J.; Seneviratne, S.I. Dependence of Drivers Affects Risks Associated with Compound Events. Sci. Adv. 2017, 3, e1700263. [Google Scholar] [CrossRef]
- von Buttlar, J.; Zscheischler, J.; Rammig, A.; Sippel, S.; Reichstein, M.; Knohl, A.; Jung, M.; Menzer, O.; Arain, M.A.; Buchmann, N.; et al. Impacts of Droughts and Extreme-Temperature Events on Gross Primary Production and Ecosystem Respiration: A Systematic Assessment across Ecosystems and Climate Zones. Biogeosciences 2018, 15, 1293–1318. [Google Scholar] [CrossRef]
- Tabari, H.; Willems, P. Global Risk Assessment of Compound Hot-Dry Events in the Context of Future Climate Change and Socioeconomic Factors. NPJ Clim. Atmos. Sci. 2023, 6, 74. [Google Scholar] [CrossRef]
- Zhang, Q.; She, D.; Zhang, L.; Wang, G.; Chen, J.; Hao, Z. High Sensitivity of Compound Drought and Heatwave Events to Global Warming in the Future. Earths Future 2022, 10, e2022EF002833. [Google Scholar] [CrossRef]
- De Luca, P.; Donat, M.G. Projected Changes in Hot, Dry, and Compound Hot-Dry Extremes Over Global Land Regions. Geophys. Res. Lett. 2023, 50, e2022GL102493. [Google Scholar] [CrossRef]
- Xu, C.; McDowell, N.G.; Fisher, R.A.; Wei, L.; Sevanto, S.; Christoffersen, B.O.; Weng, E.; Middleton, R.S. Increasing Impacts of Extreme Droughts on Vegetation Productivity under Climate Change. Nat. Clim. Chang. 2019, 9, 948–953. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, D. Probabilistic Impacts of Compound Dry and Hot Events on Global Gross Primary Production. Environ. Res. Lett. 2022, 17, 034049. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Y.; Park Williams, A.; Gentine, P. Projected Increases in Intensity, Frequency, and Terrestrial Carbon Costs of Compound Drought and Aridity Events. Sci. Adv. 2019, 5, eaau5740. [Google Scholar] [CrossRef]
- Tschumi, E.; Lienert, S.; van der Wiel, K.; Joos, F.; Zscheischler, J. The Effects of Varying Drought-Heat Signatures on Terrestrial Carbon Dynamics and Vegetation Composition. Biogeosciences 2022, 19, 1979–1993. [Google Scholar] [CrossRef]
- Wehrli, K.; Guillod, B.P.; Hauser, M.; Leclair, M.; Seneviratne, S.I. Identifying Key Driving Processes of Major Recent Heat Waves. J. Geophys. Res. Atmos. 2019, 124, 11746–11765. [Google Scholar] [CrossRef]
- Sun, S.; Liu, Y.; Chen, H.; Ju, W.; Xu, C.-Y.; Liu, Y.; Zhou, B.; Zhou, Y.; Zhou, Y.; Yu, M. Causes for the Increases in Both Evapotranspiration and Water Yield over Vegetated Mainland China during the Last Two Decades. Agric. For. Meteorol. 2022, 324, 109118. [Google Scholar] [CrossRef]
- Sun, C.; Zhu, L.; Liu, Y.; Hao, Z.; Zhang, J. Changes in the Drought Condition over Northern East Asia and the Connections with Extreme Temperature and Precipitation Indices. Glob. Planet. Chang. 2021, 207, 103645. [Google Scholar] [CrossRef]
- Zhang, P.; Jeong, J.-H.; Yoon, J.-H.; Kim, H.; Wang, S.-Y.S.; Linderholm, H.W.; Fang, K.; Wu, X.; Chen, D. Abrupt Shift to Hotter and Drier Climate over Inner East Asia beyond the Tipping Point. Science 2020, 370, 1095–1099. [Google Scholar] [CrossRef]
- Seo, Y.-W.; Ha, K.-J. Changes in Land-Atmosphere Coupling Increase Compound Drought and Heatwaves over Northern East Asia. NPJ Clim. Atmos. Sci. 2022, 5, 100. [Google Scholar] [CrossRef]
- Hu, L.; Fan, W.; Yuan, W.; Ren, H.; Cui, Y. Spatiotemporal Variation of Vegetation Productivity and Its Feedback to Climate Change in Northeast China over the Last 30 Years. Remote Sens. 2021, 13, 951. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Department of Atmospheric Science Colorado State University: Fort Collins, CO, USA, 1993; Volume 17, pp. 179–184. [Google Scholar]
- Adams, J. Climate_Indices, an Open Source Python Library Providing Reference Implementations of Commonly Used Climate Indices. Available online: https://github.com/monocongo/climate_indices (accessed on 24 April 2023).
- Zhang, Y.; Hao, Z.; Zhang, Y. Agricultural Risk Assessment of Compound Dry and Hot Events in China. Agric. Water Manag. 2023, 277, 108128. [Google Scholar] [CrossRef]
- Li, W.; Jiang, Z.; Li, L.Z.X.; Luo, J.-J.; Zhai, P. Detection and Attribution of Changes in Summer Compound Hot and Dry Events over Northeastern China with CMIP6 Models. J. Meteor. Res. 2022, 36, 37–48. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Huang, G.; Piao, J.; Chotamonsak, C. Temporal and Spatial Variation of the Transitional Climate Zone in Summer during 1961–2018. Int. J. Climatol. 2021, 41, 1633–1648. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Fu, Q.; Huang, G.; Wang, Q.; Chotamonsak, C.; Limsakul, A. Super Droughts over East Asia since 1960 under the Impacts of Global Warming and Decadal Variability. Int. J. Climatol. 2022, 42, 4508–4521. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Fisher, R.A.; Koven, C.D.; Oleson, K.W.; Swenson, S.C.; Bonan, G.; Collier, N.; Ghimire, B.; van Kampenhout, L.; Kennedy, D.; et al. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. J. Adv. Model. Earth Syst. 2019, 11, 4245–4287. [Google Scholar] [CrossRef]
- Lawrence, D.; Fisher, R.; Koven, C.; Oleson, K.; Swenson, S.; Vertenstein, M. Technical Description of Version 5.0 of the Community Land Model (CLM). 2018. Available online: https://www.cesm.ucar.edu/models/clm/docs (accessed on 8 August 2022).
- Cucchi, M.; Weedon, G.P.; Amici, A.; Bellouin, N.; Lange, S.; Müller Schmied, H.; Hersbach, H.; Buontempo, C. WFDE5: Bias-Adjusted ERA5 Reanalysis Data for Impact Studies. Earth Syst. Sci. Data 2020, 12, 2097–2120. [Google Scholar] [CrossRef]
- Hilton, T.W.; Loik, M.E.; Campbell, J.E. Simulating International Drought Experiment Field Observations Using the Community Land Model. Agric. For. Meteorol. 2019, 266–267, 173–183. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Zhang, Y.; Duveiller, G.; Jung, M.; Lyapustin, A.; Wang, Y.; Tucker, C.J. Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data. Remote Sens. 2018, 10, 1346. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-Based Land Evaporation and Root-Zone Soil Moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global Land-Surface Evaporation Estimated from Satellite-Based Observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- Martens, B.; Waegeman, W.; Dorigo, W.A.; Verhoest, N.E.C.; Miralles, D.G. Terrestrial Evaporation Response to Modes of Climate Variability. NPJ Clim. Atmos. Sci. 2018, 1, 43. [Google Scholar] [CrossRef]
- Good, S.P.; Moore, G.W.; Miralles, D.G. A Mesic Maximum in Biological Water Use Demarcates Biome Sensitivity to Aridity Shifts. Nat. Ecol. Evol. 2017, 1, 1883–1888. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, D.L.; Keune, J.; Van Heerwaarden, C.C.; Vilà-Guerau De Arellano, J.; Teuling, A.J.; Miralles, D.G. Amplification of Mega-Heatwaves through Heat Torrents Fuelled by Upwind Drought. Nat. Geosci. 2019, 12, 712–717. [Google Scholar] [CrossRef]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate Extremes and the Carbon Cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Chen, A.; Gao, M.; Slette, I.J.; Piao, S. The Impact of the 2009/2010 Drought on Vegetation Growth and Terrestrial Carbon Balance in Southwest China. Agric. For. Meteorol. 2019, 269–270, 239–248. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, X.; Wang, K.; Ciais, P.; Tang, S.; Jin, L.; Li, L.; Piao, S. Responses of Vegetation Greenness and Carbon Cycle to Extreme Droughts in China. Agric. For. Meteorol. 2021, 298–299, 108307. [Google Scholar] [CrossRef]
- Teuling, A.J.; Seneviratne, S.I.; Stöckli, R.; Reichstein, M.; Moors, E.; Ciais, P.; Luyssaert, S.; Van Den Hurk, B.; Ammann, C.; Bernhofer, C.; et al. Contrasting Response of European Forest and Grassland Energy Exchange to Heatwaves. Nat. Geosci. 2010, 3, 722–727. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Zhao, C.; Yang, X. Diverse Responses of Vegetation Growth to Meteorological Drought across Climate Zones and Land Biomes in Northern China from 1981 to 2014. Agric. For. Meteorol. 2018, 262, 1–13. [Google Scholar] [CrossRef]
- Giardina, F.; Konings, A.G.; Kennedy, D.; Alemohammad, S.H.; Oliveira, R.S.; Uriarte, M.; Gentine, P. Tall Amazonian Forests Are Less Sensitive to Precipitation Variability. Nat. Geosci. 2018, 11, 405–409. [Google Scholar] [CrossRef]
- Xu, W.; Yuan, W.; Wu, D.; Zhang, Y.; Shen, R.; Xia, X.; Ciais, P.; Liu, J. Impacts of Record-Breaking Compound Heatwave and Drought Events in 2022 China on Vegetation Growth. Agric. For. Meteorol. 2024, 344, 109799. [Google Scholar] [CrossRef]
- Boeck, H.J.D.; Dreesen, F.E.; Janssens, I.A.; Nijs, I. Whole-system Responses of Experimental Plant Communities to Climate Extremes Imposed in Different Seasons. New Phytol. 2010, 189, 806–817. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, J.; Zhang, Z. Heatwave Effects on Gross Primary Production of Northern Mid-Latitude Ecosystems. Environ. Res. Lett. 2020, 15, 074027. [Google Scholar] [CrossRef]
- Flach, M.; Sippel, S.; Gans, F.; Bastos, A.; Brenning, A.; Reichstein, M.; Mahecha, M.D. Contrasting Biosphere Responses to Hydrometeorological Extremes: Revisiting the 2010 Western Russian Heatwave. Biogeosciences 2018, 15, 6067–6085. [Google Scholar] [CrossRef]
- Ristic, Z.; Momčilović, I.; Bukovnik, U.; Prasad, P.V.V.; Fu, J.; DeRidder, B.P.; Elthon, T.E.; Mladenov, N. Rubisco Activase and Wheat Productivity under Heat-Stress Conditions. J. Exp. Bot. 2009, 60, 4003–4014. [Google Scholar] [CrossRef]
- Meinzer, F.C.; Johnson, D.M.; Lachenbruch, B.; McCulloh, K.A.; Woodruff, D.R. Xylem Hydraulic Safety Margins in Woody Plants: Coordination of Stomatal Control of Xylem Tension with Hydraulic Capacitance. Funct. Ecol. 2009, 23, 922–930. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, M.; Gao, S.; Chen, W.; Hari, V.; Khouakhi, A. Compound Hydrometeorological Extremes: Drivers, Mechanisms and Methods. Front. Earth Sci. 2021, 9, 673495. [Google Scholar] [CrossRef]
- López, R.; Ramírez-Valiente, J.A.; Pita, P. How Plants Cope with Heatwaves in a Drier Environment. Flora 2022, 295, 152148. [Google Scholar] [CrossRef]
- Rousi, E.; Kornhuber, K.; Beobide-Arsuaga, G.; Luo, F.; Coumou, D. Accelerated Western European Heatwave Trends Linked to More-Persistent Double Jets over Eurasia. Nat. Commun. 2022, 13, 3851. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.I.; Lüthi, D.; Litschi, M.; Schär, C. Land–Atmosphere Coupling and Climate Change in Europe. Nature 2006, 443, 205–209. [Google Scholar] [CrossRef]
Experiment No. | Experiment Name | Forcings of the Experiment |
---|---|---|
Control | Observed forcings in hourly frequency and 0.5° spatial resolution from 2003 to 2019. | |
1 | SE_Clim | Climatological means in 2 m temperature, precipitation, radiation, and 2 m specific humidity during the compound hot–dry (CHD) events. |
2 | SE_PRQ | Similar to SE_Clim, but with observed precipitation, radiation, and 2 m specific humidity. |
3 | SE_RQ | Similar to SE_Clim, but with observed radiation and 2 m specific humidity. |
4 | SE_TR | Similar to SE_Clim, but with observed 2 m temperature and radiation. |
5 | SE_R | Similar to SE_Clim, but with observed radiation. |
6 | SE_P | Similar to SE_Clim, but with observed precipitation. |
7 | SE_T | Similar to SE_Clim, but with observed 2 m temperature. |
8 | SE_Q | Similar to SE_Clim, but with observed 2 m specific humidity. |
Case ID | Start and End Dates | Duration (Days) |
---|---|---|
Case2017 | 22 June 2017–8 July 2017 | 17 |
Case2015 | 4 July 2015–20 July 2015 | 17 |
Case2010 | 22 June 2010–29 June 2010 | 8 |
Case2007 | 23 July 2007–30 July 2007 | 8 |
Season | Region | Bias | RB (%) | RMSE | PCC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ET | SM | GPP | ET | SM | GPP | ET | SM | GPP | ET | SM | GPP | ||
Annual | All | −0.235 | −0.011 | 0.315 | −18.13 | −2.62 | 22.25 | 0.321 | 0.113 | 0.783 | 0.81 | 0.59 | 0.68 |
Grasslands | −0.152 | −0.033 | −0.007 | −14.95 | −10.46 | 1.47 | 0.234 | 0.073 | 0.621 | 0.76 | 0.59 | 0.66 | |
Woodlands | −0.287 | −0.002 | 0.476 | −21.17 | −0.05 | 30.70 | 0.360 | 0.124 | 0.812 | 0.87 | 0.58 | 0.75 | |
MAM | All | −0.456 | 0.040 | 0.126 | −37.96 | 12.52 | 12.95 | 0.520 | 0.136 | 0.672 | 0.80 | 0.58 | 0.69 |
Grasslands | −0.430 | −0.001 | −0.155 | −44.39 | 2.42 | −28.96 | 0.483 | 0.070 | 0.436 | 0.69 | 0.58 | 0.52 | |
Woodlands | −0.485 | 0.060 | 0.195 | −37.51 | 16.52 | 20.73 | 0.545 | 0.154 | 0.746 | 0.84 | 0.52 | 0.71 | |
JJA | All | −0.253 | −0.094 | 0.268 | −7.85 | −24.58 | 12.53 | 0.553 | 0.141 | 2.475 | 0.61 | 0.47 | 0.46 |
Grasslands | −0.010 | −0.030 | −0.395 | 0.53 | −9.02 | −4.06 | 0.388 | 0.069 | 1.804 | 0.72 | 0.59 | 0.63 | |
Woodlands | −0.389 | −0.133 | 0.748 | −12.74 | −34.62 | 21.03 | 0.617 | 0.169 | 2.675 | 0.65 | 0.54 | 0.19 | |
SON | All | −0.128 | −0.026 | 0.913 | −14.54 | −6.94 | 113.32 | 0.212 | 0.113 | 1.046 | 0.89 | 0.57 | 0.79 |
Grasslands | −0.065 | −0.043 | 0.597 | −9.91 | −14.42 | 87.66 | 0.160 | 0.076 | 0.866 | 0.83 | 0.61 | 0.68 | |
Woodlands | −0.183 | −0.018 | 0.991 | −19.97 | −4.50 | 122.98 | 0.236 | 0.124 | 1.045 | 0.93 | 0.58 | 0.87 | |
DJF | All | −0.097 | 0.036 | −0.051 | −87.93 | 8.16 | −51.64 | 0.130 | 0.182 | 0.085 | 0.77 | 0.54 | 0.32 |
Grasslands | −0.100 | −0.056 | −0.069 | −90.33 | −19.49 | −82.66 | 0.115 | 0.094 | 0.089 | 0.86 | 0.56 | 0.17 | |
Woodlands | −0.086 | 0.084 | −0.036 | −88.40 | 21.19 | −39.48 | 0.124 | 0.212 | 0.065 | 0.76 | 0.54 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Yu, M.; Xia, Y.; Sun, S.; Zhou, B. Impacts of Compound Hot–Dry Events on Vegetation Productivity over Northern East Asia. Forests 2024, 15, 549. https://doi.org/10.3390/f15030549
Kang J, Yu M, Xia Y, Sun S, Zhou B. Impacts of Compound Hot–Dry Events on Vegetation Productivity over Northern East Asia. Forests. 2024; 15(3):549. https://doi.org/10.3390/f15030549
Chicago/Turabian StyleKang, Jing, Miao Yu, Ye Xia, Shanlei Sun, and Botao Zhou. 2024. "Impacts of Compound Hot–Dry Events on Vegetation Productivity over Northern East Asia" Forests 15, no. 3: 549. https://doi.org/10.3390/f15030549
APA StyleKang, J., Yu, M., Xia, Y., Sun, S., & Zhou, B. (2024). Impacts of Compound Hot–Dry Events on Vegetation Productivity over Northern East Asia. Forests, 15(3), 549. https://doi.org/10.3390/f15030549