Analysis of Basidiomycete Fungal Communities in Soil and Wood from Contrasting Zones of the AWPA Biodeterioration Hazard Map across the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Amplicon Based Sequencing
2.3. Downstream Data Analyses
2.3.1. Community Analysis
2.3.2. Diversity Indices
2.3.3. Indicator Species Analysis
2.3.4. Additional Climate Metadata
3. Results
3.1. Assessment of Field Stakes Prior to Extraction
3.2. DNA Extraction
3.3. Sequencing Data
3.4. Community Analysis
4. Discussion
4.1. Soil and Wood Have Distinctly Different Basidiomycete Communities
4.2. Greater Decay Hazard Zone Designation Does Not Equate to Greater Fungal Basidiomycete Diversity Based on Our Sampling
4.3. A 3-Zone Hazard Map Adequately Explains Fungal Decay Hazard with Respect to Basidiomycete Community Composition in the Continental US
4.4. Effects of Forest Overstory Were Inconclusive, but Still Found to Be Less than Site Effects
4.5. Indicator Species Analysis (ISA)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jakes, J.E.; Arzola, X.; Bergman, R.; Ciesielski, P.; Hunt, C.G.; Rahbar, N.; Tshabalala, M.; Wiedenhoeft, A.C.; Zelinka, S.L. Not Just Lumber—Using Wood in the Sustainable Future of Materials, Chemicals, and Fuels. JOM 2016, 68, 2395–2404. [Google Scholar] [CrossRef]
- Zabel, R.A.; Morrell, J.J. Wood Microbiology: Decay and Its Prevention; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Riley, R.; Salamov, A.A.; Brown, D.W.; Nagy, L.G.; Floudas, D.; Held, B.W.; Levasseur, A.; Lombard, V.; Morin, E.; Otillar, R. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc. Natl. Acad. Sci. USA 2014, 111, 9923–9928. [Google Scholar] [CrossRef]
- American Wood Protection Association. Use Category System: User Specification for Treated Wood; Book of Standards; American Wood Protection Association: Birmingham, AL, USA, 2019. [Google Scholar]
- Woodward, B.; Kirker, G.; Lebow, P.; Lebow, S. Long-term durability of pressure-treated wood in a severe test site. Adv. Civ. Eng. Mater. 2013, 2, 178–188. [Google Scholar]
- Lebow, S.; Woodward, B.; Lebow, P. Documenting the Durability and Service Life of Pressure-treated Wood. In Proceedings of the 108th Annual Meeting of the American Wood Protection Association, Nashville, TN, USA, 29 April–2 May 2012; Volume 108, pp. 166–170. [Google Scholar]
- Woodward, B.M.; Hatfield, C.A.; Lebow, S.T. Comparison of Wood Preservatives in Stake Tests: 2011 Progress Report; Research Note FPL-RN-02; US Dept. of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2011; 120p.
- Kutnik, M.; Suttie, E.; Brischke, C. 10—Durability, efficacy and performance of bio-based construction materials: Standardisation background and systems of evaluation and authorisation for the European market. In Performance of Bio-Based Building Materials; Woodhead Publishing: Sawston, UK, 2017; pp. 593–610. [Google Scholar]
- Association, R.E. Pole Inspection and Maintenance; 1973; pp. 161–164. [Google Scholar]
- Kirker, G.T.; Bishell, A.B.; Hickey, W.J. AWPA biodeterioration hazard map revisited. In Proceedings of the One Hundred Thirteenth Annual Meeting of the American Wood Protection Association, Las Vegas, NV, USA, 9–11 April 2017; McCowan, C., Gothard, T., Staula, B., Eds.; American Wood Protection Association: Birmingham, AL, USA, 2017; pp. 90–96. [Google Scholar]
- Pope, T. Wood pole survivor rates by decay hazard zone initial inspection vs. recycle inspection. Proc. Am. Wood Prot. Assoc. 2004, 100, 255–262. [Google Scholar]
- Scheffer, T.C. A climate index for estimating potential for decay in wood structures above ground. For. Prod. J. 1971, 21, 25–31. [Google Scholar]
- Carll, C.G. Decay Hazard (Scheffer) Index Values Calculated from 1971–2000 Climate Normal Data; General Technical Report FPL-GTR-179; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2009; p. 179.
- Morris, P.I.; Laks, P.; Larkin, G.; Ingram, J.K.; Stirling, R. Above-Ground Decay Resistance of Selected Canadian Softwoods at Four Test Sites after Ten Years of Exposure. For. Prod. J. 2016, 66, 268–273. [Google Scholar]
- Carll, C.G.; Highley, T.L. Decay of wood and wood-based products above ground in buildings. J. Test. Eval. 1999, 27, 150–158. [Google Scholar]
- Larkin, G.; Laks, P. To Decay or Not to Decay: An Accelerated Field Test of the Validity of the Scheffer Index; Document IRG/WP; International Research Group on Wood Protection: Stockholm, Sweden, 2008; p. 08-20392. [Google Scholar]
- Lebow, S.T.; Highley, T. Regional Biodeterioration Hazards in the United States; ACS Publications: Washington, DC, USA, 2008. [Google Scholar]
- Daniel, R. The metagenomics of soil. Nat. Rev. Microbiol. 2005, 3, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Invited review: Microbial ecology in the age of genomics and metagenomics: Concepts, tools, and recent advances. Mol. Ecol. 2006, 15, 1713–1731. [Google Scholar] [CrossRef] [PubMed]
- Purahong, W.; Wubet, T.; Lentendu, G.; Schloter, M.; Pecyna, M.J.; Kapturska, D.; Hofrichter, M.; Kruger, D.; Buscot, F. Life in leaf litter: Novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol. Ecol. 2016, 25, 4059–4074. [Google Scholar] [CrossRef]
- Kirker, G.T.; Bishell, A.B.; Jusino, M.A.; Palmer, J.M.; Hickey, W.J.; Lindner, D.L. Amplicon-based sequencing of soil fungi from wood preservative test sites. Front. Microbiol. 2017, 8, 1997. [Google Scholar] [CrossRef]
- Kirker, G.T.; Bishell, A.; Cappellazzi, J.; Palmer, J.; Bechle, N.; Lebow, P.; Lebow, S. Role of Leaf Litter in Above-Ground Wood Decay. Microorganisms 2020, 8, 696. [Google Scholar] [CrossRef]
- American Wood Protection Association. Standard Field Test for Evaluation of Wood Preservatives to be Used in Ground Contact (UC4A, UC4B, UC4C); stake test. E7-13. 2013 AWPA Book of Standards; American Wood Protection Association: Birmingham, AL, USA, 2013; pp. 431–439. [Google Scholar]
- Buee, M.; Reich, M.; Murat, C.; Morin, E.; Nilsson, R.H.; Uroz, S.; Martin, F. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 2009, 184, 449–456. [Google Scholar] [CrossRef]
- Palmer, J.M.; Jusino, M.A.; Banik, M.T.; Lindner, D.L. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. Peerj 2018, 6, e4925. [Google Scholar] [CrossRef]
- Edgar, R.C.; Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 2015, 31, 3476–3482. [Google Scholar] [CrossRef]
- Schloss, P.D. Application of a database-independent approach to assess the quality of operational taxonomic unit picking methods. Msystems 2016, 1, e00027-16. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Abarenkov, K.; Henrik Nilsson, R.; Larsson, K.H.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Høiland, K.; Kjøller, R.; Larsson, E.; Pennanen, T. The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytol. 2010, 186, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Krunic, M.; Venhuizen, P.; Mullauer, L.; Kaserer, B.; von Haeseler, A. VARIFI-Web-Based Automatic Variant Identification, Filtering and Annotation of Amplicon Sequencing Data. J. Pers. Med. 2019, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Forster, D.; Lentendu, G.; Filker, S.; Dubois, E.; Wilding, T.A.; Stoeck, T. Improving eDNA-based protist diversity assessments using networks of amplicon sequence variants. Environ. Microbiol. 2019, 21, 4109–4124. [Google Scholar] [CrossRef] [PubMed]
- Tipton, L.; Zahn, G.L.; Darcy, J.L.; Amend, A.S.; Hynson, N.A. Hawaiian fungal amplicon sequence variants reveal otherwise hidden biogeography. Microb. Ecol. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kruskal, J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964, 29, 1–27. [Google Scholar] [CrossRef]
- Mather, P.M. Computational Methods of Multivariate Analysis in Physical Geography; John Wiley & Sons: Hoboken, NJ, USA, 1976. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- McCune, B.; Grace, J.B.; Urban, D.L. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002; Volume 28. [Google Scholar]
- McCune, B.; Mefford, M. Multivariate Analysis of Ecological Data, Version 3.0; MjM Software: Gleneden Beach, OR, USA, 1997.
- Mielke, P.W., Jr.; Berry, K.J.; Johnson, E.S. Multi-response permutation procedures for a priori classifications. Commun. Stat. Theory Methods 1976, 5, 1409–1424. [Google Scholar] [CrossRef]
- Neyman, J.; Pearson, E.S. The testing of statistical hypotheses in relation to probabilities a priori. In Proceedings of the Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge, UK, 30 October 1933; pp. 492–510. [Google Scholar]
- Parchami, A.; Mashinchi, M.; Partovi Nia, V. A consistent confidence interval for fuzzy capability index. Appl. Comput. Math. 2008, 7, 119–125. [Google Scholar]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Boddy, L. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol. Ecol. 2000, 31, 185–194. [Google Scholar] [CrossRef]
- Brischke, C.; Rapp, A.O. Influence of wood moisture content and wood temperature on fungal decay in the field: Observations in different micro-climates. Wood Sci. Technol. 2008, 42, 663–677. [Google Scholar] [CrossRef]
- Pouska, V.; Macek, P.; Zíbarová, L. The relation of fungal communities to wood microclimate in a mountain spruce forest. Fungal Ecol. 2016, 21, 1–9. [Google Scholar] [CrossRef]
- Boddy, L. Microclimate and moisture dynamics of wood decomposing in terrestrial ecosystems. Soil Biol. Biochem. 1983, 15, 149–157. [Google Scholar] [CrossRef]
- Rayner, A.; Boddy, L. Fungal communities in the decay of wood. In Advances in Microbial Ecology; Springer: Berlin/Heidelberg, Germany, 1988; pp. 115–166. [Google Scholar]
- Frankland, J.C. Mechanisms in fungal succession. Fungal Community Its Organ. Role Ecosyst. 1992, 2, 383–401. [Google Scholar]
- Hiscox, J.; Clarkson, G.; Savoury, M.; Powell, G.; Savva, I.; Lloyd, M.; Shipcott, J.; Choimes, A.; Cumbriu, X.A.; Boddy, L. Effects of pre-colonisation and temperature on interspecific fungal interactions in wood. Fungal Ecol. 2016, 21, 32–42. [Google Scholar] [CrossRef]
- Boddy, L. Latent decay fungi: The hidden foe? Arboric. J. 1994, 18, 113–135. [Google Scholar] [CrossRef]
- Fukasawa, Y.; Matsukura, K. Decay stages of wood and associated fungal communities characterise diversity–decomposition relationships. Sci. Rep. 2021, 11, 8972. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, D.; Hunt, J.; Dockrell, D.; Rogers, H.J.; Boddy, L. Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol. 2010, 3, 338–346. [Google Scholar] [CrossRef]
- Cappellazzi, J.; Maguire, K.; Nelson, R.; Morrell, J.J. Incidence of decay in creosote-treated Scots pine poles in Ireland. Holzforschung 2018, 72, 1079–1086. [Google Scholar] [CrossRef]
- Větrovský, T.; Kohout, P.; Kopecký, M.; Machac, A.; Man, M.; Bahnmann, B.D.; Brabcová, V.; Choi, J.; Meszárošová, L.; Human, Z.R. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 2019, 10, 5142. [Google Scholar] [CrossRef]
- Unterseher, M.; Schnittler, M.; Dormann, C.; Sickert, A. Application of species richness estimators for the assessment of fungal diversity. FEMS Microbiol. Lett. 2008, 282, 205–213. [Google Scholar] [CrossRef]
- Pianka, E.R. Latitudinal gradients in species diversity: A review of concepts. Am. Nat. 1966, 100, 33–46. [Google Scholar] [CrossRef]
- Unterseher, M.; Tal, O. Influence of small scale conditions on the diversity of wood decay fungi in a temperate, mixed deciduous forest canopy. Mycol. Res. 2006, 110, 169–178. [Google Scholar] [CrossRef]
- Unterseher, M.; Jumpponen, A.; Opik, M.; Tedersoo, L.; Moora, M.; Dormann, C.F.; Schnittler, M. Species abundance distributions and richness estimations in fungal metagenomics—Lessons learned from community ecology. Mol. Ecol. 2011, 20, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef]
- Tedersoo, L.; Nara, K. General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol. 2010, 185, 351–354. [Google Scholar] [CrossRef]
- Pouska, V.; Macek, P.; Zíbarová, L.; Ostrow, H. How does the richness of wood-decaying fungi relate to wood microclimate? Fungal Ecol. 2017, 27, 178–181. [Google Scholar] [CrossRef]
- Veen, G.; Snoek, B.L.; Bakx-Schotman, T.; Wardle, D.A.; van der Putten, W.H. Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects. Funct. Ecol. 2019, 33, 1524–1535. [Google Scholar] [CrossRef]
- Palozzi, J.E.; Lindo, Z. Are leaf litter and microbes team players? Interpreting home-field advantage decomposition dynamics. Soil Biol. Biochem. 2018, 124, 189–198. [Google Scholar] [CrossRef]
- Purahong, W.; Pietsch, K.A.; Bruelheide, H.; Wirth, C.; Buscot, F.; Wubet, T. Potential links between wood-inhabiting and soil fungal communities: Evidence from high-throughput sequencing. MicrobiologyOpen 2019, 8, e00856. [Google Scholar] [CrossRef] [PubMed]
- Purahong, W.; Kahl, T.; Krüger, D.; Buscot, F.; Hoppe, B. Home-field advantage in wood decomposition is mainly mediated by fungal community shifts at “home” versus “away”. Microb. Ecol. 2019, 78, 725–736. [Google Scholar] [CrossRef]
- Purahong, W.; Arnstadt, T.; Kahl, T.; Bauhus, J.; Kellner, H.; Hofrichter, M.; Krüger, D.; Buscot, F.; Hoppe, B. Are correlations between deadwood fungal community structure, wood physico-chemical properties and lignin-modifying enzymes stable across different geographical regions? Fungal Ecol. 2016, 22, 98–105. [Google Scholar] [CrossRef]
- Cannon, P.F.; Kirk, P.M. (Eds.) Fungal Families of the World; Cabi: Oxon, UK, 2007. [Google Scholar]
- Lawrey, J.D.; Diederich, P. Lichenicolous Fungi–Worldwide Checklist, Including Isolated Cultures and Sequences. 2016. Available online: http://www.lichenicolous.net (accessed on 9 May 2017).
- Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Ainsworth & Bisby’s Dictionary of the Fungi; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Rinaldi, A.C.; Comandini, O.; Kuyper, T.W. Ectomycorrhizal fungal diversity: Seperating the wheat from the chaff. Fungal Divers. 2008, 33, 1–45. [Google Scholar]
- Kurtzman, C.; Fell, J.W.; Boekhout, T. (Eds.) The Yeasts: A Taxonomic Study; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Tedersoo, L.; May, T.W.; Smith, M.E. Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 2010, 20, 217–263. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.H.; Berbee, F.M.; Nordheim, E.V. Microbial antagonism to the imperfect stage of the apple scab pathogen, Venturia inaequalis. Phytopathology 1983, 73, 228–234. [Google Scholar] [CrossRef]
- Jones, E.B.; Slooff, W.C. Candida aquatica sp. n. isolated from water scums. Antonie Van Leeuwenhoek 1966, 32, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Gilbertson, R.L.; Ryvarden, L. North American Polypores; Fungiflora: Oslo, Norway, 1987; ISBN 978-0945345060. [Google Scholar]
- List Compiled by John Plischke III. Available online: http://home.comcast.net/~grifola/fungionfungi.pdf (accessed on 8 February 2024).
- Xin, M.-X.; Zhou, P.-J. Mrakia psychrophila sp. nov., a new species isolated from Antarctic soil. J. Zhejiang Univ. Sci. B 2007, 8, 260–265. [Google Scholar] [CrossRef]
NF | AWPA3 | Sheffer | North | West | O/S | % Fails | Decay Susp. | Termite |
---|---|---|---|---|---|---|---|---|
WR | 1 | 38.36 | 39.23 | −106.87056 | P | 13 | BR | N |
WR | 1 | 38.36 | 39.23 | −106.87056 | H | 0 | WR | N |
NE | 1 | 34 | 42.8374 | −103.0981 | P | 7 | SR | N |
NE | 1 | 34 | 42.8374 | −103.0981 | H | 14 | SR,BR,WR | N |
CW | 1 | 26.5 | 47.5 | −94.93333 | P | 8 | WR | N |
CW | 1 | 26.5 | 47.5 | −94.93333 | H | 0 | WR | N |
CQ | 2 | 41.6 | 45.9621590 | −90.021314 | P | 8 | SR,WR | N |
CQ | 2 | 41.6 | 45.7585560 | −90.115027 | H | 0 | None | N |
M | 2 | 68.6 | 43.0369440 | −89.435556 | P | 0 | SR,WR | N |
M | 2 | 68.6 | 43.0383330 | −89.439167 | H | 7 | WR | N |
A | 2 | 69.2 | 41.8771100 | −78.834626 | P | 7 | WR | N |
A | 2 | 69.2 | 41.8802330 | −78.834202 | H | 0 | SR | N |
SH | 1 | 23.9 | 41.2522300 | −121.992510 | P | 0 | None | N |
SH | 1 | 23.9 | 41.2695700 | −122.291910 | H | 7 | None | N |
GP | 1 | 65.4 | 46.4469610 | −121.782485 | P | 8 | WR | Y |
GP | 1 | 65.4 | 46.4331970 | −121.919837 | H | 7 | SR,WR | N |
OZ | 3 | 63.9 | 35.7163944 | −93.549575 | P | 13 | WR | Y |
OZ | 3 | 63.9 | 35.7081222 | −93.530697 | H | 0 | BR | N |
D | 3 | 106.7 | 30.3792200 | −89.029180 | P | 13 | WR | Y |
D | 3 | 106.7 | 30.3778300 | −89.027850 | H | 7 | WR | Y |
OC | 3 | 95.7 | 29.4411100 | −81.905556 | P | 23 | BR,WR | Y |
OC | 3 | 95.7 | 29.4325000 | −81.910278 | H | 7 | BR,WR | Y |
PR | 3 | 278 | 18.2550000 | −65.640830 | P | 0 | WR | Y |
PR | 3 | 278 | 18.2550000 | −65.640830 | H | 20 | WR | Y |
NF | Stand | AWPA Zone | Ave. Scheffer 1991–2020 | Study-Year Scheffer | S | E | H | D |
---|---|---|---|---|---|---|---|---|
SH | HW | 1 | 14.4 | 23.9 | 290.33 | 0.6 | 3.42 | 0.92 |
SH | Pine | 1 | 14.4 | 23.9 | 274 | 0.41 | 2.28 | 0.75 |
CW | HW | 1 | 44 | 26.5 | 148.67 | 0.28 | 1.38 | 0.55 |
CW | Pine | 1 | 44 | 26.5 | 123 | 0.16 | 0.77 | 0.33 |
NE | HW | 1 | 30.3 | 34 | 238.33 | 0.21 | 1.16 | 0.42 |
NE | Pine | 1 | 30.3 | 34 | 294.33 | 0.39 | 2.23 | 0.72 |
WR | HW | 1 | 30.8 | 38.6 | 218.33 | 0.38 | 2.1 | 0.7 |
WR | Pine | 1 | 30.8 | 38.6 | 167 | 0.4 | 2.12 | 0.61 |
GP | HW | 1 | 41.4 | 65.4 | 150.67 | 0.26 | 1.32 | 0.49 |
GP | Pine | 1 | 41.4 | 65.4 | 141.33 | 0.16 | 0.81 | 0.31 |
CQ | HW | 2 | 36.2 | 41.6 | 95.67 | 0.15 | 0.68 | 0.36 |
CQ | Pine | 2 | 36.2 | 41.6 | 138 | 0.22 | 1.11 | 0.47 |
M | HW | 2 | 46.3 | 68.6 | 146 | 0.24 | 1.26 | 0.33 |
M | Pine | 2 | 46.3 | 68.6 | 122.67 | 0.12 | 0.6 | 0.21 |
A | HW | 2 | 53.3 | 69.2 | 161.33 | 0.14 | 0.7 | 0.26 |
A | Pine | 2 | 53.3 | 69.2 | 150.33 | 0.09 | 0.44 | 0.22 |
OZ | HW | 3 | 59.1 | 63.9 | 209 | 0.2 | 1.07 | 0.43 |
OZ | Pine | 3 | 59.1 | 63.9 | 146 | 0.21 | 1.07 | 0.52 |
OC | HW | 3 | 99.9 | 95.7 | 118.67 | 0.3 | 1.43 | 0.56 |
OC | Pine | 3 | 99.9 | 95.7 | 130.67 | 0.48 | 2.28 | 0.78 |
D | HW | 3 | 92.1 | 106.7 | 75.67 | 0.35 | 1.55 | 0.58 |
D | Pine | 3 | 92.1 | 106.7 | 113.33 | 0.27 | 1.26 | 0.57 |
PR | HW | 3 | 254 | 278 | 91.33 | 0.26 | 1.2 | 0.43 |
PR | Pine | 3 | 254 | 278 | 70.67 | 0.26 | 1.11 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirker, G.T.; Bishell, A.B.; Cappellazzi, J.; Glass, S.V.; Palmer, J.A.; Bechle, N.J.; Hickey, W.J. Analysis of Basidiomycete Fungal Communities in Soil and Wood from Contrasting Zones of the AWPA Biodeterioration Hazard Map across the United States. Forests 2024, 15, 383. https://doi.org/10.3390/f15020383
Kirker GT, Bishell AB, Cappellazzi J, Glass SV, Palmer JA, Bechle NJ, Hickey WJ. Analysis of Basidiomycete Fungal Communities in Soil and Wood from Contrasting Zones of the AWPA Biodeterioration Hazard Map across the United States. Forests. 2024; 15(2):383. https://doi.org/10.3390/f15020383
Chicago/Turabian StyleKirker, Grant T., Amy B. Bishell, Jed Cappellazzi, Samuel V. Glass, Jonathan A. Palmer, Nathan J. Bechle, and William J. Hickey. 2024. "Analysis of Basidiomycete Fungal Communities in Soil and Wood from Contrasting Zones of the AWPA Biodeterioration Hazard Map across the United States" Forests 15, no. 2: 383. https://doi.org/10.3390/f15020383
APA StyleKirker, G. T., Bishell, A. B., Cappellazzi, J., Glass, S. V., Palmer, J. A., Bechle, N. J., & Hickey, W. J. (2024). Analysis of Basidiomycete Fungal Communities in Soil and Wood from Contrasting Zones of the AWPA Biodeterioration Hazard Map across the United States. Forests, 15(2), 383. https://doi.org/10.3390/f15020383