The Impact of Magnetic Field and Gibberellin Treatment on the Release of Dormancy and Internal Nutrient Transformation in Tilia miqueliana Maxim. Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.1.1. Seed Materials
2.1.2. Magnetic Field Equipment
2.2. Experimental Design and Treatments
2.2.1. Comprehensive Treatment Method for Tilia miqueliana Seeds
2.2.2. Selection of Seeds under Different Treatments to Determinate Nutrient Contents
2.2.3. Soluble Sugar Contents of Tilia Seeds
2.2.4. Starch Contents of Tilia Seeds
2.2.5. Soluble Protein Contents of Tilia Seeds
2.2.6. Crude Fat Contents of Tilia Seeds
2.3. Data Analysis
3. Results
3.1. Effects of Magnetic Field and GA3 Comprehensive Treatment on Dormancy Release and Germination of Tilia miqueliana Seeds
3.2. Determination of Endosperm Storage Substance Content during Seed Dormancy Release in Tilia miqueliana
3.2.1. Changes in Soluble Sugar Contents of Tilia miqueliana Seeds
3.2.2. Changes in Soluble Protein Contents of Tilia miqueliana Seeds
3.2.3. Changes in Crude Fat Contents of Tilia miqueliana Seeds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.H.; Ni, Y.; Li, M.W. Evaluation of the growth, adaption, and ecosystem services of two potentially-introduced urban tree species in Guangzhou under drought stress. Sci. Rep. 2023, 13, 3563. [Google Scholar] [CrossRef]
- Wang, H.L.; Yan, L.J.; Huang, X.; Wang, Z.W.; Yue, Y.H.; Tang, S.J. Identification of suitable reference genes for qRT-PCR normalization in Tilia miqueliana Maxim. Phyton Int. J. Exp. Bot. 2022, 91, 2191–2210. [Google Scholar] [CrossRef]
- Yan, L.J.; Wang, H.L.; Huang, X.; Li, Y.C.; Yue, Y.H.; Wang, Z.W.; Tang, S.J. Chloroplast genomes of genus Tilia: Comparative genomics and molecular evolution. Front. Genet. 2022, 13, 925726. [Google Scholar] [CrossRef]
- Yang, G.D.; Zhang, K.W.; Chen, S.F.; Yi, X.G. A preliminary survey of the key wild plant resources protection of Nanjing city of Jiangsu province. J. Nanjing For. Univ. Nat. Sci. Ed. 2014, 38, 62–64. [Google Scholar]
- Yan, L.J.; Huang, X.; Yue, Y.H.; Tang, S.J.; Wang, L.H. Analyses on diversity and variation of phenotypic traits of natural populations of Tilia miqueliana. J. Plant Resour. Environ. 2021, 30, 29–37. [Google Scholar]
- Zhu, S.Y.; Xu, F.Y.; Miao, Y.H.; Zhu, Y.; Li, J.C.; Tan, J.Z. Simple green branches cutting propagation of Tilia miqueliana. J. Jiangsu For. Sci. Technol. 2021, 48, 25–28. [Google Scholar]
- Shu, X.C.; Tang, S.J.; Li, N.W.; Qin, Y.L.; Wang, L.H.; Wang, Z.W. Optimization of tissue culture and rapid propagation system of Tilia miqueliana. Mol. Plant Breed. 2019, 17, 1605–1610. [Google Scholar]
- Lin, S.J.; Wang, Z.M.; Zhu, H.B.; He, H.J.; Gou, T.B.; Han, J. Research progress of vegetative propagation technology for Tilia L. plants. J. Jilin For. Sci. Technol. 2022, 51, 14–19. [Google Scholar]
- Baskin, J.M.; Baskin, C.C. A classification system for seed dormancy. Seed Sci. Res. 2004, 14, 1–16. [Google Scholar] [CrossRef]
- Hao, X.R.; Liu, L.; Liu, P.; Wang, M.L.; Song, Y.P. Genome-wide identification of miRNAs and its downstream transcriptional regulatory network during seed maturation in Tilia tuan. Forests 2022, 13, 1750. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, W.H.; Peng, C.Y.; Shen, Y.B.; Visscher, A.M.; Pritchard, H.W.; Gao, Q.; Sun, X.R.; Wang, M.Z.; Deng, Z.Y. Effects of H2SO4, GA3, and cold stratification on the water content, coat composition, and dormancy release of Tilia miqueliana seeds. Front. Plant Sci. 2023, 14, 1240028. [Google Scholar] [CrossRef]
- Kozaki, A.; Aoyanagi, T. Molecular aspects of seed development controlled by gibberellins and abscisic acids. Int. J. Mol. Sci. 2022, 23, 1876. [Google Scholar] [CrossRef]
- Cao, H.; Han, Y.; Li, J.Y.; Ding, M.; Li, Y.; Li, X.Y.; Chen, F.Y.; Soppe, W.J.J.; Liu, Y.X. Arabidopsis thaliana seed dormancy 4-like regulates dormancy and germination by mediating the gibberellin pathway. J. Exp. Bot. 2020, 71, 919–933. [Google Scholar] [CrossRef]
- Vieira, B.C.; Bicalho, E.M.; Munne-Bosch, S.; Garcia, Q.S. Abscisic acid regulates seed germination of Vellozia species in response to temperature. Plant Biol. 2017, 19, 211–216. [Google Scholar] [CrossRef]
- Liu, L.; Xia, W.L.; Li, H.X.; Zeng, H.L.; Wei, B.H.; Han, S.Y.; Yin, C.X. Salinity inhibits rice seed germination by reducing α-Amylase activity via decreased bioactive gibberellin content. Front. Plant Sci. 2018, 9, 275. [Google Scholar] [CrossRef]
- Wang, N.; Xu, S.S. Effects of exogenous GA3 and warm water on dormancy breaking germination characteristics of Eucommia ulmoides. Not. Bot. Horti Agrobo. 2023, 51, 13198. [Google Scholar] [CrossRef]
- Kim, D.H. Practical methods for rapid seed germination from seed coat-imposed dormancy of Prunus yedoensis. Sci. Hortic 2019, 243, 451–456. [Google Scholar] [CrossRef]
- Barden, C.J.; Boyer, C.R.; Morales, B.M.; Fisher, L. Promoting red elm (Ulmus rubra Muhl.) germination with gibberellic acid. J. Forest. 2017, 115, 393–396. [Google Scholar] [CrossRef]
- Asghar, T.; Jamil, Y.; Iqbal, M.; Zia-ul-Haq; Abbas, M. Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages. J. Photochem. Photobiol. B 2016, 165, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Vashisth, A.; Meena, N.; Krishnan, P. Magnetic field affects growth and yield of sunflower under different moisture stress conditions. Bioelectromagnetics 2021, 42, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Kuzugudenli, E. Effect of microwave radiation on growth and germination of stone pine (Pinus pinea L.) seedlings. Appl. Ecol. Environ. Res. 2018, 16, 2837–2844. [Google Scholar] [CrossRef]
- Sudsiri, C.J.; Jumpa, N.; Kongchana, P.; Ritchie, R.J. Stimulation of oil palm (Elaeis guineensis) seed germination by exposure to electromagnetic fields. Sci. Hortic 2017, 220, 66–77. [Google Scholar] [CrossRef]
- Turfan, N.; Yer, E.N.; Ayan, S. The effect of magnetic field applications to chemical content of stratified seeds of oriental beech (Fagus orientalis Lipsky.). Fresen. Environ. Bull. 2017, 26, 4606–4615. [Google Scholar]
- Ureta-Leones, D.; Garcia-Quintana, Y.; Vega-Rosete, S.; Perez-Morell, L.; Bravo-Medina, C.A.; Arteaga-Crespo, Y. Effect of pre-germination treatment with direct magnetic field exposure: A systematic review and meta-analysis. Eur. J. For. Res. 2021, 140, 1029–1038. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Zhou, S.Y.; Zhu, Y.; Li, J.C.; Tan, J.Z. Study on rapid determination of seed viability of Tilia miqueliana based on TTC method. Seed 2020, 39, 154–156. [Google Scholar]
- Wang, Y.H.; Kong, Y.G.; Li, Q.H.; Wu, D.J.; Yan, L.P.; Xu, T.; Lu, Y.Z.; Qu, G.F. Study on germination characteristics and dormancy breaking methods of Tilia amurensis seeds. Chin. Agric. Sci. Bull. 2022, 38, 80–85. [Google Scholar]
- Wang, M.; Yuan, X.L.; Xu, L.P. Preliminary study on bioassay of Capparis spinosa L. seed extract and seed germination. PeerJ 2023, 11, e15082. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Shen, Y.B.; Shi, F.H.; Guo, C.C. Changes of endosperm inclusions during the development of Ginkgo biloba seeds. J. Cent. South Univ. For. Technol. 2019, 39, 30–39. [Google Scholar]
- Dai, X.G. Studies on the Relationship of Substance Metabolism and Dormancy Releasing of Sinojackia xylocarpa Seeds. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2009. [Google Scholar]
- Wang, J.Y.; Ao, H. Experimental Techniques and Guidance for Plant Physiology and Biochemistry, 1st ed.; Northeast Forestry University Press: Harbin, China, 2003; pp. 20–24. [Google Scholar]
- Li, H.S.; Sun, Q. Principles and Techniques of Plant Physiological Biochemical Experiment, 1st ed.; Higer Education Press: Beijing, China, 2004; pp. 225–227. [Google Scholar]
- Guo, W.; Fang, Z.C.; Huang, J.R. Progress of magnetobiological study on the model plant Arabidopsis thaliana. Chem. Life 2019, 39, 897–902. [Google Scholar]
- Zhang, R.B.; Yuan, X.J.; Zou, H.F.; Gao, Y.B.; Qin, H.Y. Effects of magnetic field on seed germination and seedling stress resistance of Bupleurum chinense. Chin. Agric. Sci. Bull. 2020, 36, 50–54. [Google Scholar]
- Calic, D.; Ristic-Djurovic, J.L.; Cirkovic, S.; Milojevic, J.; Belic, M.; Stanisic, M.; Zdravkovic-Korac, S. Overcoming low germination and low quality of flax seeds (Linum usitatissimum L.) in unfavorable storage using static magnetic fields. Agriculture 2023, 13, 2120. [Google Scholar] [CrossRef]
- Zeng, F.; Zheng, C.M.; Ge, W.X.; Gao, Y.; Pan, X.; Ye, X.L.; Wu, X.Y.; Sun, Y.X. Regulatory function of the endogenous hormone in the germination process of quinoa seeds. Front. Plant Sci. 2024, 14, 1322986. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, K.; Hussain, S.; Arfan, M.; Hussain, S.; Waraich, E.A.; Zamir, S.; Saddique, M.; Rauf, A.; Kamal, K.Y.; Hano, C.; et al. Exogenously applied gibberellic acid enhances growth and salinity stress tolerance of maize through modulating the morpho-physiological, biochemical and molecular attributes. Biomolecules 2021, 11, 1005. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, X.H.; Zhang, M.Y.; Xia, G.W.; Xiong, C. Effect of cold stratification on the temperature range for germination of Pinus koraiensis. J. For. Res. 2023, 34, 221–231. [Google Scholar] [CrossRef]
- Dong, A.X.; Kong, Y.G.; Wang, Y.H.; Shen, Y.B. Study on dormancy and germination characteristic Tilia miqueliana. J. Shandong For. Sci. Technol. 2023, 53, 59–63. [Google Scholar]
- Pipinis, E.; Stampoulidis, A.; Milios, E.; Kitikidou, K.; Radoglou, K. Effects of cold stratification and GA3 on germination of Arbutus unedo seeds of three provenances. Afr. J. Trad. Complement. Altern. Med. 2017, 14, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Long, Y.Y. Effect of magnetic field on the germination and growth of Glycine max var. Cult. Plant. 2021, 41, 43–46. [Google Scholar]
- Mildaziene, V.; Pauzaite, G.; Nauciene, Z.; Malakauskiene, A.; Zukiene, R.; Januskaitiene, I.; Jakstas, V.; Ivanauskas, L.; Filatova, I.; Lyushkevich, V. Pre-sowing seed treatment with cold plasma and electromagnetic field increases secondary metabolite content in purple coneflower (Echinacea purpurea) leaves. Plasma Process. Polym. 2018, 15, 1700059. [Google Scholar] [CrossRef]
- Li, P.S.; Fan, J.R.; Song, C.L.; Dong, X.H.; Kang, D.M. Seed vigour and morphological and physiological characteristics of Epimedium brevicornu Maxim: In different stages of seed development. Plants 2022, 11, 2399. [Google Scholar] [CrossRef]
- Duarte-da-Silva, M.; Alves-de-Oliveira, D.F.; Felix, F.C.; Ferrari, C.D.; Cunha, E.E.; Voigt, E.L.; Pacheco, M.V. An integrative analysis of physiological and biochemical changes during pod and seed development in the tree legume Acacia mangium. New For. 2023, 1–13. [Google Scholar] [CrossRef]
- Hu, Q.P.; Gou, J.; Liu, J.J. Wheat seed germination based on α-Amylase activity to study promoting mechanism of Bacillus subtilis QM3. J. Seed Sci. 2022, 44. [Google Scholar] [CrossRef]
- Nie, L.X.; Song, S.K.; Yin, Q.; Zhao, T.C.; Liu, H.Y.; He, A.B.; Wang, W.Q. Enhancement in seed priming-induced starch degradation of rice seed under chilling stress via GA-Mediated α-Amylase expression. Rice 2022, 15, 19. [Google Scholar] [CrossRef]
- Li, Z.; Peng, Y.; Zhang, X.Q.; Ma, X.; Huang, L.K.; Yan, Y.H. Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression. Molecules 2014, 19, 18003–18024. [Google Scholar] [CrossRef]
- Farooq, M.A.; Ma, W.; Shen, S.X.; Gu, A.X. Underlying biochemical and molecular mechanisms for seed germination. Int. J. Mol. Sci. 2022, 23, 8502. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.H.; Liu, F.J.; Bi, C.X.; Song, Y.Y.; Hu, X. Purification of proteases from germinated seeds of Lathyrus sativus and its enzymatic properties study. Acta Agrestia Sin. 2018, 26, 1497–1502. [Google Scholar]
Groups | Treatments | Magnetic Field Intensity/MT | Magnetic Field Treatment Time/min | GA3 Concentration /μmol·L−1 | Seed Number /Piece |
---|---|---|---|---|---|
Blank control group | CK1 | 0 | 0 | 0 | 1980 |
CK2 | 0 | 0 | 1443 | 1980 | |
Magnetic field intensity of 150 MT group | M150T25G0 | 150 | 25 | 0 | 1800 |
M150T25G1443 | 150 | 25 | 1443 | 1800 | |
M150T45G0 | 150 | 45 | 0 | 1800 | |
M150T45G1443 | 150 | 45 | 1443 | 1800 | |
M150T65G0 | 150 | 65 | 0 | 1980 | |
M150T65G1443 | 150 | 65 | 1443 | 1800 | |
M150T85G0 | 150 | 85 | 0 | 1800 | |
M150T85G1443 | 150 | 85 | 1443 | 1980 | |
Magnetic field intensity of 250 MT group | M250T25G0 | 250 | 25 | 0 | 1800 |
M250T25G1443 | 250 | 25 | 1443 | 1800 | |
M250T45G0 | 250 | 45 | 0 | 1800 | |
M250T45G1443 | 250 | 45 | 1443 | 1800 | |
M250T65G0 | 250 | 65 | 0 | 1800 | |
M250T65G1443 | 250 | 65 | 1443 | 1800 | |
M250T85G0 | 250 | 85 | 0 | 1800 | |
M250T85G1443 | 250 | 85 | 1443 | 1800 |
Cold Stratification Treatment Time/d | Germination Rates/% | ||||||
---|---|---|---|---|---|---|---|
Treatments | 0 | 15 | 30 | 45 | 60 | 75 | |
CK1 | 0 ± 0 d | 0 ± 0 d | 1 ± 1 d | 4 ± 3 c | 24 ± 2 b | 56 ± 2 a | |
CK2 | 9 ± 2 c | 17 ± 3 c | 59 ± 2 b | 75 ± 3 a | 83 ± 3 a | 85 ± 2 a | |
M150T25G0 | 0 ± 0 e | 1 ± 1 e | 9 ± 4 d | 32 ± 4 c | 51 ± 4 b | 64 ± 4 a | |
M150T25G1443 | 10 ± 2 c | 11 ± 2 c | 67 ± 2 b | 76 ± 3 a | 78 ± 2 a | 82 ± 2 a | |
M150T45G0 | 0 ± 0 d | 0 ± 0 d | 0 ± 0 d | 29 ± 4 c | 41 ± 2 b | 65 ± 4 a | |
M150T45G1443 | 8 ± 2 e | 14 ± 2 d | 53 ± 1 c | 75 ± 3 b | 77 ± 2 ab | 82 ± 1 a | |
M150T65G0 | 0 ± 0 d | 0 ± 0 d | 5 ± 4 d | 38 ± 2 c | 57 ± 1 b | 75 ± 2 a | |
M150T65G1443 | 12 ± 1 c | 17 ± 1 c | 55 ± 3 b | 82 ± 3 a | 83 ± 4 a | 80 ± 3 a | |
M150T85G0 | 0 ± 0 d | 1 ± 1 d | 1 ± 1 d | 27 ± 1 c | 44 ± 3 b | 64 ± 4 a | |
M150T85G1443 | 16 ± 2 d | 23 ± 1 c | 63 ± 3 b | 85 ± 4 a | 86 ± 2 a | 89 ± 4 a | |
M250T25G0 | 0 ± 0 d | 2 ± 1 d | 5 ± 2 d | 25 ± 3 c | 48 ± 4 b | 69 ± 4 a | |
M250T25G1443 | 8 ± 2 c | 11 ± 2 c | 56 ± 2 b | 81 ± 4 a | 83 ± 3 a | 84 ± 1 a | |
M250T45G0 | 0 ± 0 d | 0 ± 0 d | 1 ± 1 d | 21 ± 2 c | 42 ± 1 b | 62 ± 2 a | |
M250T45G1443 | 13 ± 2 e | 20 ± 1 d | 56 ± 1 d | 80 ± 4 a | 82 ± 4 a | 86 ± 2 a | |
M250T65G0 | 0 ± 0 d | 0 ± 0 d | 1 ± 1 d | 20 ± 3 c | 42 ± 3 b | 66 ± 3 a | |
M250T65G1443 | 10 ± 2 c | 12 ± 2 c | 63 ± 1 b | 82 ± 3 a | 85 ± 4 a | 87 ± 0 a | |
M250T85G0 | 0 ± 0 d | 0 ± 0 d | 2 ± 1 d | 16 ± 2 c | 31 ± 3 b | 59 ± 1 a | |
M250T85G1443 | 11 ± 1 e | 18 ± 3 d | 58 ± 3 c | 76 ± 1 b | 84 ± 4 ab | 87 ± 1 a |
Sources of Variation | Degree of Freedom | Cold Stratification Treatment Time/d | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 75 | ||||||||
F | P | F | P | F | P | F | P | F | P | F | P | ||
M | 2 | 5.972 | 0.005 | 0.993 | 0.378 | 2.875 | 0.066 | 180.128 | 0.000 | 107.446 | 0.000 | 32.913 | 0.000 |
T | 4 | 4.591 | 0.007 | 13.106 | 0.000 | 5.279 | 0.003 | 4.660 | 0.006 | 9.395 | 0.000 | 2.659 | 0.059 |
G | 1 | 1333.736 | 0.000 | 2202.980 | 0.000 | 4564.762 | 0.000 | 7165.165 | 0.000 | 5230.916 | 0.000 | 1730.446 | 0.000 |
M × T | 6 | 5.355 | 0.000 | 9.173 | 0.000 | 3.263 | 0.009 | 3.162 | 0.011 | 7.443 | 0.000 | 2.659 | 0.026 |
M × G | 2 | 5.160 | 0.009 | 3.980 | 0.025 | 1.733 | 0.188 | 85.872 | 0.000 | 152.988 | 0.000 | 44.641 | 0.000 |
T × G | 4 | 5.157 | 0.004 | 21.160 | 0.000 | 0.963 | 0.418 | 5.954 | 0.002 | 14.471 | 0.000 | 13.960 | 0.000 |
M × T × G | 6 | 5.450 | 0.000 | 10.214 | 0.000 | 3.219 | 0.010 | 2.699 | 0.024 | 5.258 | 0.000 | 7.721 | 0.000 |
Cold Stratification Treatment Time/d | Soluble Sugar Content/% | F | P | |||
---|---|---|---|---|---|---|
CK1 | CK2 | M150T65G0 | M150T85G1443 | |||
0 | 3.70 ± 0.37 a | 3.03 ± 0.09 b | 3.41 ± 0.24 ab | 3.63 ± 0.26 a | 3.88 | 0.056 |
15 | 3.86 ± 0.05 a | 3.33 ± 0.45 b | 3.89 ± 0.09 a | 3.54 ± 0.08 ab | 3.90 | 0.055 |
30 | 3.62 ± 0.14 a | 3.20 ± 0.32 b | 3.72 ± 0.21 a | 3.76 ± 0.17 a | 4.07 * | 0.050 |
45 | 3.40 ± 0.36 a | 3.49 ± 0.07 a | 3.34 ± 0.05 a | 3.09 ± 0.21 a | 1.91 | 0.207 |
60 | 3.62 ± 0.45 a | 3.13 ± 0.20 ab | 3.39 ± 0.26 ab | 2.95 ± 0.24 b | 2.88 | 0.103 |
75 | 3.39 ± 0.31 a | 2.49 ± 0.23 b | 3.10 ± 0.16 a | 2.31 ± 0.38 b | 9.62 ** | 0.005 |
Cold Stratification Treatment Time/d | Starch Content/% | F | P | |||
---|---|---|---|---|---|---|
CK1 | CK2 | M150T65G0 | M150T85G1443 | |||
0 | 22.64 ± 1.63 a | 24.64 ± 0.89 a | 24.34 ± 2.00 a | 23.77 ± 2.05 a | 0.80 | 0.528 |
15 | 23.15 ± 0.87 a | 21.65 ± 1.00 a | 22.72 ± 2.33 a | 23.14 ± 1.25 a | 0.68 | 0.587 |
30 | 21.75 ± 2.00 a | 22.90 ± 1.39 a | 22.06 ± 1.61 a | 21.52 ± 0.37 a | 0.50 | 0.691 |
45 | 22.57 ± 1.24 a | 18.64 ± 0.32 b | 20.92 ± 1.23 a | 16.90 ± 0.26 c | 23.24 ** | 0.000 |
60 | 20.83 ± 0.58 a | 17.01 ± 1.06 b | 19.79 ± 2.09 a | 14.80 ± 0.12 b | 15.30 ** | 0.001 |
75 | 19.01 ± 1.60 a | 14.59 ± 0.67 b | 17.46 ± 1.98 a | 13.28 ± 0.98 b | 10.42 ** | 0.004 |
Cold Stratification Treatment Time/d | Soluble Protein Content/mg∙g−1 | F | P | |||
---|---|---|---|---|---|---|
CK1 | CK2 | M150T65G0 | M150T85G1443 | |||
0 | 36.62 ± 2.05 a | 37.38 ± 1.06 a | 35.24 ± 0.22 a | 35.69 ± 2.68 a | 0.88 | 0.492 |
15 | 38.57 ± 2.70 a | 38.52 ± 0.63 a | 37.22 ± 1.75 a | 37.79 ± 1.60 a | 0.37 | 0.774 |
30 | 34.67 ± 1.53 a | 32.61 ± 1.81 a | 34.66 ± 2.87 a | 32.04 ± 1.74 a | 1.33 | 0.331 |
45 | 32.03 ± 1.95 a | 25.53 ± 1.62 b | 30.78 ± 1.19 a | 22.08 ± 0.88 c | 30.01 ** | 0.000 |
60 | 30.91 ± 2.06 a | 21.08 ± 1.84 c | 27.12 ± 0.52 b | 17.08 ± 0.82 d | 53.00 ** | 0.000 |
75 | 28.38 ± 0.14 a | 15.74 ± 0.62 c | 22.22 ± 2.33 b | 15.76 ± 1.06 c | 63.34 ** | 0.000 |
Cold Stratification Treatment Time/d | Crude Fat Content/% | F | P | |||
---|---|---|---|---|---|---|
CK1 | CK2 | M150T65G0 | M150T85G1443 | |||
0 | 37.14 ± 1.00 a | 34.33 ± 1.17 b | 37.30 ± 1.76 a | 36.32 ± 0.69 ab | 3.76 | 0.060 |
15 | 37.55 ± 1.40 a | 38.81 ± 1.38 a | 38.23 ± 0.87 a | 38.38 ± 0.73 a | 0.64 | 0.610 |
30 | 37.35 ± 1.30 a | 35.25 ± 1.06 a | 37.12 ± 1.38 | 35.73 ± 0.90 a | 2.30 | 0.154 |
45 | 35.89 ± 0.51 a | 27.19 ± 0.33 c | 34.50 ± 1.03 b | 24.01 ± 0.44 d | 240.98 ** | 0.000 |
60 | 33.85 ± 0.56 a | 27.26 ± 1.24 c | 31.23 ± 1.37 b | 23.12 ± 1.16 d | 51.84 ** | 0.000 |
75 | 29.33 ± 1.28 a | 22.03 ± 1.89 b | 25.68 ± 1.10 a | 20.30 ± 1.58 b | 21.70 ** | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, F.; Cao, Y.; Gao, Y.; Qiu, Y.; Lu, Y.; Han, B.; Shen, Y. The Impact of Magnetic Field and Gibberellin Treatment on the Release of Dormancy and Internal Nutrient Transformation in Tilia miqueliana Maxim. Seeds. Forests 2024, 15, 311. https://doi.org/10.3390/f15020311
Shi F, Cao Y, Gao Y, Qiu Y, Lu Y, Han B, Shen Y. The Impact of Magnetic Field and Gibberellin Treatment on the Release of Dormancy and Internal Nutrient Transformation in Tilia miqueliana Maxim. Seeds. Forests. 2024; 15(2):311. https://doi.org/10.3390/f15020311
Chicago/Turabian StyleShi, Fenghou, Yunxiang Cao, Yajun Gao, Yuhou Qiu, Yizeng Lu, Biao Han, and Yongbao Shen. 2024. "The Impact of Magnetic Field and Gibberellin Treatment on the Release of Dormancy and Internal Nutrient Transformation in Tilia miqueliana Maxim. Seeds" Forests 15, no. 2: 311. https://doi.org/10.3390/f15020311
APA StyleShi, F., Cao, Y., Gao, Y., Qiu, Y., Lu, Y., Han, B., & Shen, Y. (2024). The Impact of Magnetic Field and Gibberellin Treatment on the Release of Dormancy and Internal Nutrient Transformation in Tilia miqueliana Maxim. Seeds. Forests, 15(2), 311. https://doi.org/10.3390/f15020311