Afforestation, Natural Secondary Forest or Dehesas? Looking for the Best Post-Abandonment Forest Management for Soil Organic Carbon Accumulation in Mediterranean Mountains
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Forest Site Selections
2.2. Soil Sampling and Soil Characterization
2.3. Data Analysis and Statistical Analysis
3. Results
3.1. Physico-Chemical Soil Properties
3.2. SOC and N Stocks
3.3. SOC Density Fractionation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2020—Key Findings; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Mäkipää, R.; Abramoff, R.; Adamczyk, B.; Baldy, V.; Biryol, C.; Bosela, M.; Casals, P.; Curiel Yuste, J.; Dondini, M.; Filipek, S.; et al. How does management affect soil C sequestration and greenhouse gas fluxes in boreal and temperate forest? A review. For. Ecol. Manag. 2023, 529, 120637. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Forests 2016; FAO: Rome, Italy, 2016. [Google Scholar]
- Zubizarreta, M.; Arana-Laudín, G.; Cuadrado, J. Forest certification in Spain: Analysis of certification drivers. J. Clean. Prod. 2021, 294, 126267. [Google Scholar] [CrossRef]
- Keenleyside, C.; Tucker, G.M. Farmland Abandonment in the EU: An Assessment of Trends and Prospects; Report Prepared for WWF; Institute for European Environmental Policy: London, UK, 2010. [Google Scholar]
- García-Ruiz, J.M.; Lana-Renault, N. Hydrological and erosive consequences of farmland abandonment in Europe, with special references to the Mediterranean region—A review. Agric. Ecosyst. Environ. 2011, 140, 317–338. [Google Scholar] [CrossRef]
- Fayet, C.M.J.; Verburg, P.H. Modelling opportunities of potential European abandoned farmland to contribute to environmental policy targets. Catena 2023, 232, 107460. [Google Scholar] [CrossRef]
- Reyna-Bowen, L.; Fernández-Rebollo, P.; Fernández-Habas, J.; Gómez, J.A. The influence of tree and soil management on soil organic carbon stock and pools in dehesa systems. Catena 2020, 190, 104511. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Plieninger, T.; Hui, C.; Gaertner, M.; Huntsinger, L. The impact of land abandonment of species abundance in the Mediterranean Basin: A Meta-analysis. PLoS ONE 2014, 9, e98355. [Google Scholar] [CrossRef] [PubMed]
- Alados, C.L.; Errea, P.; Gartzia, M.; Saiz, H.; Escós, J. Positive and negative feedbacks and free-scale pattern distribution in rural-population dynamics. PLoS ONE 2014, 9, e114561. [Google Scholar] [CrossRef]
- Garmendia, E.; Aldezábal, A.; Galan, E.; Andonegi, A.; del Prado, A.; Gamboa, G.; García, O.; Pardo, G.; Aldai, N.; Barron, L.J.R. Mountain sheep grazing systems provide multiple ecological, socio-economic, and food quality benefits. Agron. Sustain. Dev. 2022, 42, 47. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water tower. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Bell, S.; Terrer, C.; Barriocanal, C.; Jackson, R.B.; Rosell-Melé, A. Soil organic carbon accumulation rates on Mediterranean abandoned agricultural lands. Sci. Total Environ. 2021, 759, 143535. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal-Romero, E.; Khorchani, M.; Romero-Díaz, A. Una revisión sobre las tierras abandonadas en España: De los paisajes locales a las estrategias globales de gestión. Geogr. Res. Lett. 2021, 47, 477–521. [Google Scholar] [CrossRef]
- Chiti, T.; Díaz-Pinés, E.; Rubio, A. Soil organic carbon stocks of conifers, broadleaf and evergreen broadleaf forests of Spain. Biol. Fertil. Soils 2012, 48, 817–826. [Google Scholar] [CrossRef]
- Vázquez, E.; Benito, M.; Espejo, R.; Teutscherova, N. Response of soil properties and microbial indicators to land use change in an acid soil under Mediterranean conditions. Catena 2020, 189, 104486. [Google Scholar] [CrossRef]
- Abhiram, G.; Eeswaran, R. Legumes for efficient utilization of summer fallow. In Advances in Legumes for Sustainable Intensification; Academic Press: Cambridge, MA, USA, 2022; pp. 51–70. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Cammeraat, E.; Pérez-Cardiel, E.; Lasanta, T. Effects of secondary succession and Afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas. Agric. Ecosyst. Environ. 2016, 228, 91–100. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 7367. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 7580. [Google Scholar] [CrossRef]
- Keiluweit, M.; Bougoure, J.J.; Nico, P.S.; Pett-Ridge, J.; Weber, P.K.; Kleber, M. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 2015, 5, 6. [Google Scholar] [CrossRef]
- Dwivedi, D.; Tang, J.; Bouskill, N.; Georgiou, K.; Chacon, S.S.; Riley, W.J. Abiotic and Biotic Controls on Soil Organo–Mineral Interactions: Developing Model Structures to Analyze Why Soil Organic Matter Persists. Rev. Mineral. Geochem. 2019, 85, 329–348. [Google Scholar] [CrossRef]
- Doetterl, S.; Stevens, A.; Six, J.; Merckx, R.; Van Oost, K.; Casanova Pinto, M.; Casanova-Katny, A.; Muñoz, C.; Boudin, M.; Zagal Venegas, E.; et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 2015, 8, 10. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Verrecchia, É.P. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef]
- Cerli, C.; Celi, L.; Kalbitz, K.; Guggenberger, G.; Kaiser, K. Separation of light and heavy organic matter fractions in soil-testing for proper density cut-off and dispersion level. Geoderma 2012, 170, 403–416. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal-Romero, E.; García-Ruiz, J.M. Clearing shrubland as a strategy to encourage extensive livestock farming in the Mediterranean mountains. Geogr. Res. Lett. 2019, 45, 487–513. [Google Scholar] [CrossRef]
- Cuadrat, J.M.; Vicente-Serrano, S. Características espaciales del clima en La Rioja modelizadas a partir de Sistemas de Información Geográfica y técnicas de regresión espacial. Zubía 2008, 20, 119–142. [Google Scholar]
- Machin, J. The soils. In Geography of La Rioja; Garcia-Ruiz, J.M., Arnaez, J., Eds.; Rioja Box: Logroño, Spain, 1994; Volume 1, pp. 223–249. [Google Scholar]
- Arnáez, J.; Ortigosa, L.; Oserin, M.; Lasanta, T. Evolution of the vegetation cover in Cameros between 1956 and 2001. In Management, Land Use and Landscape in Cameros: Iberian System, La Rioja; Lasanta, T., Arnáez, J., Eds.; University of La Rioja and Institute of Rioja Studies: La Rioja, Spain, 2009; pp. 127–144. [Google Scholar]
- Lasanta-Martínez, T.; Vicente-Serrano, S.M.; Cuadrat-Prats, J.M. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: A study of the Spanish Central Pyrenees. Appl. Geogr. 2005, 25, 47–65. [Google Scholar] [CrossRef]
- Rodeghiero, M.; Rubio, A.; Díaz-Pinés, E.; Romany, J.; Marañón-Jiménez, S.; Levy, G.J.; Fernández-Getino, A.P.; Sebastià, M.T.; Karyotis, T.; Chiti, T.; et al. Soil Carbon in Mediterranean ecosystems and related management problems. In Soil Carbon in Sensitive European Ecosystems: From Science to Land Management; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 175–218. [Google Scholar]
- Ortigosa, L.; García-Ruiz, J.M.; Gil, E. Land reclamation by reforestation in the Central Pyrenees. Mt. Res. Dev. 1990, 10, 281–288. [Google Scholar] [CrossRef]
- De La Rioja, G.; Descarga de Cartografía. Cartografía Temática: Geología. 2023. Available online: https://www.iderioja.larioja.org/cartografia/index.php?map=RIOJA_C04&&&lang=es (accessed on 10 October 2023).
- Golchin, A.; Oades, J.M.; Skjemstad, J.O.; Clarke, P. Study of free and occluded organic matter in soils by 13C CP/MAS NMR spectroscopy and scanning electron microscopy. Aust. J. Soil Res. 1994, 32, 285–309. [Google Scholar] [CrossRef]
- Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J. Changes in soil microbial community structure following the abandonment of agricultural terraces in mountainous areas of Eastern Spain. Appl. Soil Ecol. 2009, 42, 315–323. [Google Scholar] [CrossRef]
- Vázquez, E.; Benito, M.; Espejo, R.; Teutscherova, N. Effects of no-tillage and liming amendment combination on soil carbon and nitrogen mineralization. Eur. J. Soil Biol. 2019, 93, 103–109. [Google Scholar] [CrossRef]
- Díaz-Pines, E.; Rubio, A.; Van Miegroet, H.; Montes, F.; Benito, M. Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? For. Ecol. Manag. 2011, 262, 1895–1904. [Google Scholar] [CrossRef]
- Kooch, Y.; Kazem Parsapout, M.; Nouraei, A.; Mohmedi Kartalaei, Z.; Wu, D.; Gómez-Brandón, M.; Lucas-Borja, M.E. The effect of silvicultural systems on soil function depends on bedrock and altitude. J. Environ. Manag. 2023, 345, 118657. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Lizaga, I.; Quijano, L.; Gaspar, L.; Ramos, M.C.; Navas, A. Linking land use changes to variation in soil properties in a Mediterranean mountain agroecosystem. Catena 2019, 172, 516–527. [Google Scholar] [CrossRef]
- Romanyà, J.; Rovira, P. An appraisal of soil organic C content in Mediterranean agricultural soils. Soil Use Manag. 2011, 27, 321–332. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Díaz-Jaimes, L.; Lozano-García, B.; Fernández Rebollo, P.; Moreno Elcure, F.; Carbonero Muñoz, M.D. Organic farming has Little effect on carbon stock in a Mediterranean dehesa (southern Spain). Catena 2014, 113, 9–17. [Google Scholar] [CrossRef]
- Ganatsas, P.; Tsakaldimi, M.; Petaloudi, L.M. Factors affecting long-term soil organic carbon storage in Greek Forest. Forests 2023, 14, 1518. [Google Scholar] [CrossRef]
- Sokolowska, J.; Józefowska, A.; Woznica, K.; Zaleski, T. Succession from meadow to mature forest: Impacts on soil biological, chemical and physical properties- Evidence from the Pieniny Mountains, Poland. Catena 2020, 189, 104503. [Google Scholar] [CrossRef]
- Van de Walle, I.; Mussche, S.; Samson, R.; Lust, N.; Lemeur, R. The above- and belowground carbon pools of two mixed deciduous forest stands located in East-Flanders (Belgium). Ann. For. Sci. 2001, 58, 507–517. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy. Soil Sci. Soc. Am. J. 2000, 64, 1042–1049. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Khandakar, T.; Guppy, C.; Rabbi, S.M.; Daniel, H. Poorly crystalline iron and aluminium oxides contribute to the carbon saturation and sorption of dissolved organic carbon in the soil. Soil Use Manag. 2021, 37, 120–125. [Google Scholar] [CrossRef]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Stewart, C.E.; Paustian, K.; Conant, R.T.; Plante, A.F.; Six, J. Soil carbon saturation: Concept, evidence and evaluation. Biogeochemistry 2007, 86, 19–31. [Google Scholar] [CrossRef]
- Six, J.; Doetterl, S.; Laub, M.; Müller, C.R.; Van de Broek, M. The six rights of how and when to test for soil C saturation. EGUsphere 2023. preprint. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, D.; Li, W.; Sun, D.; Jin, C.; Yuan, F.; Wang, A.; Wu, J. The effects of forest thinning on soil carbon stocks and dynamics: A meta-analysis. For. Ecol. Manag. 2018, 429, 36–43. [Google Scholar] [CrossRef]
- Mayer, M.; Pescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, K.; Ferreria, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Cammeraat, E.; Pérez-Cardiel, E.; Lasanta, T. How do soil organic carbon stocks change after cropland abandonment in Mediterranean humid mountain areas? Sci. Total Environ. 2016, 566, 741–752. [Google Scholar] [CrossRef]
- Wang, M.; Chen, H.; Zhang, W.; Wang, K. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area, southwest China. Sci. Total Environ. 2018, 619, 1299–1307. [Google Scholar] [CrossRef]
- Campo, J.; Stijsiger, R.J.; Nadal-Romero, E.; Cammeraat, E.L. The effects of land abandonment and long-term afforestation practices on the organic carbon stock and lignin content of Mediterranean humid mountain soils. Eur. J. Soil Sci. 2019, 70, 947–959. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortijos-López, M.; Sánchez-Navarrete, P.; Lasanta, T.; Cammeraat, E.L.H.; Nadal-Romero, E. Afforestation, Natural Secondary Forest or Dehesas? Looking for the Best Post-Abandonment Forest Management for Soil Organic Carbon Accumulation in Mediterranean Mountains. Forests 2024, 15, 166. https://doi.org/10.3390/f15010166
Cortijos-López M, Sánchez-Navarrete P, Lasanta T, Cammeraat ELH, Nadal-Romero E. Afforestation, Natural Secondary Forest or Dehesas? Looking for the Best Post-Abandonment Forest Management for Soil Organic Carbon Accumulation in Mediterranean Mountains. Forests. 2024; 15(1):166. https://doi.org/10.3390/f15010166
Chicago/Turabian StyleCortijos-López, Melani, Pedro Sánchez-Navarrete, Teodoro Lasanta, Erik L. H. Cammeraat, and Estela Nadal-Romero. 2024. "Afforestation, Natural Secondary Forest or Dehesas? Looking for the Best Post-Abandonment Forest Management for Soil Organic Carbon Accumulation in Mediterranean Mountains" Forests 15, no. 1: 166. https://doi.org/10.3390/f15010166
APA StyleCortijos-López, M., Sánchez-Navarrete, P., Lasanta, T., Cammeraat, E. L. H., & Nadal-Romero, E. (2024). Afforestation, Natural Secondary Forest or Dehesas? Looking for the Best Post-Abandonment Forest Management for Soil Organic Carbon Accumulation in Mediterranean Mountains. Forests, 15(1), 166. https://doi.org/10.3390/f15010166