Sequential Interaction of Biogenic Volatile Organic Compounds and SOAs in Urban Forests Revealed Using Toeplitz Inverse Covariance-Based Clustering and Causal Inference
Abstract
:1. Introduction
- (a)
- How can BVOC and SOA emissions be clustered using TICC and causal inference methods?
- (b)
- Diurnal variations of concentrations of various photochemical pollutants in urban forests were analyzed. What are the ecological sequential interaction characteristics of BVOCs and SOAs in urban forests?
2. Methodology
2.1. Research Location
2.2. Data Collection
2.3. Data Analysis Model
3. Results and Analysis
3.1. Results of Feature Selection
3.2. Accuracy of Prediction
3.3. Sequential Interaction of Air Pollutants in Urban Forests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Führer, E. Forest Functions, Ecosystem Stability and Management. For. Ecol. Manag. 2000, 132, 29–38. [Google Scholar] [CrossRef]
- Artaxo, P.; Hansson, H.-C.; Andreae, M.O.; Bäck, J.; Alves, E.G.; Barbosa, H.M.; Bender, F.; Bourtsoukidis, E.; Carbone, S.; Chi, J. Tropical and Boreal Forest Atmosphere Interactions: A Review. Tellus. Ser. B Chem. Phys. Meteorol. 2022, 74, 24–163. [Google Scholar] [CrossRef]
- Bridhikitti, A.; Khumphokha, P.; Wanitha, W.; Prasopsin, S. Dust Captured by a Canopy and Individual Leaves of Trees in the Tropical Mixed Deciduous Forest: Magnitude and Influencing Factors. Eur. J. For. Res. 2022. [Google Scholar] [CrossRef]
- Handayani, B.; Mardikaningsih, R. Urban Forest: The Role of Improving the Quality of The Urban Environment. Bull. Sci. Technol. Soc. 2022, 1, 25–29. [Google Scholar]
- Ramon, M.; Ribeiro, A.P.; Theophilo, C.Y.S.; Moreira, E.G.; de Camargo, P.B.; de Bragança Pereira, C.A.; Saraiva, E.F.; dos Reis Tavares, A.; Dias, A.G.; Nowak, D. Assessment of Four Urban Forest as Environmental Indicator of Air Quality: A Study in a Brazilian Megacity. Urban Ecosyst. 2023, 26, 197–207. [Google Scholar] [CrossRef]
- Legesse, F.; Degefa, S.; Soromesa, T. Ecological and Economic Impacts of REDD+ Implementation in Developing Countries. Eart Environ. Sci. Res. Rev. 2022, 5, 217–224. [Google Scholar]
- Kulmala, M.; Nieminen, T.; Chellapermal, R.; Makkonen, R.; Bäck, J.; Kerminen, V.-M. Climate Feedbacks Linking the Increasing Atmospheric CO2 Concentration, BVOC Emissions, Aerosols and Clouds in Forest Ecosystems. Biol. Control. Model. Tree Volatile Org. Compd. Emiss. 2013, 5, 489–508. [Google Scholar]
- Ma, M.; Gao, Y. Estimation of Biogenic Emission from Urban Green Spaces in China and Their Impact on Air Quality. In Proceedings of the AGU Fall Meeting Abstracts, Chicago, IL, USA, 12–16 December 2022; Volume 2022, p. A45B-02. [Google Scholar]
- Liu, H.; Liu, S.; Xue, B.; Lv, Z.; Meng, Z.; Yang, X.; Xue, T.; Yu, Q.; He, K. Ground-Level Ozone Pollution and Its Health Impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, Q.; Wang, Q.; Xu, R.; Liu, T.; Liu, Y.; Ding, Z.; Sun, H. Particulate Matter and Ozone Might Trigger Deaths from Chronic Ischemic Heart Disease. Ecotoxicol. Environ. Saf. 2022, 242, 113931. [Google Scholar] [CrossRef]
- Sun, H.Z.; Yu, P.; Lan, C.; Wan, M.W.; Hickman, S.; Murulitharan, J.; Shen, H.; Yuan, L.; Guo, Y.; Archibald, A.T. Cohort-Based Long-Term Ozone Exposure-Associated Mortality Risks with Adjusted Metrics: A Systematic Review and Meta-Analysis. Innovation 2022, 3, 100246. [Google Scholar] [CrossRef]
- Tsigaridis, K.; Kanakidou, M. The Present and Future of Secondary Organic Aerosol Direct Forcing on Climate. Curr. Clim. Change Rep. 2018, 4, 84–98. [Google Scholar] [CrossRef]
- Kasdagli, M.-I.; Katsouyanni, K.; de Hoogh, K.; Lagiou, P.; Samoli, E. Investigating the Association between Long-Term Exposure to Air Pollution and Greenness with Mortality from Neurological, Cardio-Metabolic and Chronic Obstructive Pulmonary Diseases in Greece. Environ. Pollut. 2022, 292, 118372. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, Y.; Zhao, C.; Fan, H.; Yang, Y.; Chi, Y.; Shen, L.; Yan, X. Health Risk and Disease Burden Attributable to Long-Term Global Fine-Mode Particles. Chemosphere 2022, 287, 132435. [Google Scholar]
- Eisenman, T.S.; Churkina, G.; Jariwala, S.P.; Kumar, P.; Lovasi, G.S.; Pataki, D.E.; Weinberger, K.R.; Whitlow, T.H. Urban Trees, Air Quality, and Asthma: An Interdisciplinary Review. Landsc. Urban Plan. 2019, 187, 47–59. [Google Scholar] [CrossRef]
- Chen, D.; Yin, S.; Zhang, X.; Lyu, J.; Zhang, Y.; Zhu, Y.; Yan, J. A High-Resolution Study of PM2. 5 Accumulation inside Leaves in Leaf Stomata Compared with Non-Stomatal Areas Using Three-Dimensional X-Ray Microscopy. Sci. Total Environ. 2022, 852, 158543. [Google Scholar]
- Janhäll, S. Review on Urban Vegetation and Particle Air Pollution–Deposition and Dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Liu, T.; Lin, Y.; Chen, J.; Chen, G.; Yang, C.; Xu, L.; Li, M.; Fan, X.; Zhang, F.; Hong, Y. Pollution Mechanisms and Photochemical Effects of Atmospheric HCHO in a Coastal City of Southeast China. Sci. Total Environ. 2023, 859, 160210. [Google Scholar] [CrossRef] [PubMed]
- Mahilang, M.; Deb, M.K.; Pervez, S. Biogenic Secondary Organic Aerosols: A Review on Formation Mechanism, Analytical Challenges and Environmental Impacts. Chemosphere 2021, 262, 127771. [Google Scholar] [CrossRef]
- Oak, Y.J.; Park, R.J.; Jo, D.S.; Hodzic, A.; Jimenez, J.L.; Campuzano-Jost, P.; Nault, B.A.; Kim, H.; Kim, H.; Ha, E.S. Evaluation of Secondary Organic Aerosol (SOA) Simulations for Seoul, Korea. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002760. [Google Scholar]
- Artiola, J.F.; Brusseau, M.L. The Role of Environmental Monitoring in Pollution Science. In Environmental and Pollution Science; Elsevier: Amsterdam, The Netherlands, 2019; pp. 149–162. [Google Scholar]
- Runge, J. Discovering Contemporaneous and Lagged Causal Relations in Autocorrelated Nonlinear Time Series Datasets. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, PMLR, Virtual, 3–6 August 2020; pp. 1388–1397. [Google Scholar]
- Yin, S.; Chen, D.; Zhang, X.; Yan, J. Review on the Multi-Scale Interactions of Urban Forests and Atmospheric Particles: Affecting Factors Are Scale-Dependent among Tree, Stand and Region. Urban For. Urban Green. 2022, 78, 127789. [Google Scholar] [CrossRef]
- Liu, Y.; Schallhart, S.; Taipale, D.; Tykkä, T.; Räsänen, M.; Merbold, L.; Hellén, H.; Pellikka, P. Seasonal and Diurnal Variations in Biogenic Volatile Organic Compounds in Highland and Lowland Ecosystems in Southern Kenya. Atmos. Chem. Phys. 2021, 21, 14761–14787. [Google Scholar] [CrossRef]
- Hallac, D.; Vare, S.; Boyd, S.; Leskovec, J. Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 215–223. [Google Scholar]
- Sfetsos, A.; Vlachogiannis, D. An Analysis of Ozone Variation in the Greater Athens Area Using Granger Causality. Atmos. Pollut. Res. 2013, 4, 290–297. [Google Scholar] [CrossRef]
- Krich, C.; Runge, J.; Miralles, D.G.; Migliavacca, M.; Perez-Priego, O.; El-Madany, T.; Carrara, A.; Mahecha, M.D. Estimating Causal Networks in Biosphere–Atmosphere Interaction with the PCMCI Approach. Biogeosciences 2020, 17, 1033–1061. [Google Scholar] [CrossRef]
- Ren, W.; Li, B.; Han, M. A Novel Granger Causality Method Based on HSIC-Lasso for Revealing Nonlinear Relationship between Multivariate Time Series. Phys. A Stat. Mech. Its Appl. 2020, 541, 123245. [Google Scholar] [CrossRef]
- Geweke, J.F. Measures of Conditional Linear Dependence and Feedback between Time Series. J. Am. Stat. Assoc. 1984, 79, 907–915. [Google Scholar] [CrossRef]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.; Deyle, E.; Fogarty, M.; Munch, S. Detecting Causality in Complex Ecosystems. Science 2012, 338, 496–500. [Google Scholar] [CrossRef]
- Ryali, S.; Chen, T.; Supekar, K.; Menon, V. Estimation of Functional Connectivity in FMRI Data Using Stability Selection-Based Sparse Partial Correlation with Elastic Net Penalty. NeuroImage 2012, 59, 3852–3861. [Google Scholar] [CrossRef]
- Runge, J.; Heitzig, J.; Petoukhov, V.; Kurths, J. Escaping the Curse of Dimensionality in Estimating Multivariate Transfer Entropy. Phys. Rev. Lett. 2012, 108, 258701. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin, Germany, 2013; Volume 112. [Google Scholar]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support Vector Machines. IEEE Intell. Syst. Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Longstaff, I.D.; Cross, J.F. A Pattern Recognition Approach to Understanding the Multi-Layer Perception. Pattern Recognit. Lett. 1987, 5, 315–319. [Google Scholar] [CrossRef]
- Lyu, J.; Xiong, F.; Sun, N.; Li, Y.; Liu, C.; Yin, S. Photosynthesis and Related Physiological Parameters Differences Affected the Isoprene Emission Rate among 10 Typical Tree Species in Subtropical Metropolises. Int. J. Environ. Res. Public Health 2021, 18, 954. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, Z.; Wu, J.; Tao, J.; Li, J.; Sun, Y.; Liang, L.; Liang, M.; Wang, Q. Secondary Organic Aerosol Formation and Source Contributions over East China in Summertime. Environ. Pollut. 2022, 306, 119383. [Google Scholar] [CrossRef]
- McGlynn, D.F.; Frazier, G.; Barry, L.E.; Lerdau, M.T.; Pusede, S.E.; Isaacman-VanWertz, G. Minor Contributions of Daytime Monoterpenes Are Major Contributors to Atmospheric Reactivity. Biogeosciences 2023, 20, 45–55. [Google Scholar] [CrossRef]
- Harvey, C.C.; Schwartz, S.J. Time Series Resampling Methods. In Analysis Methods for Multi-Spacecraft Data; Paschmann, G., Ed.; International Space Science Institute: Bern, Switzerland, 1998. [Google Scholar]
- Wollstadt, P.; Lizier, J.T.; Vicente, R.; Finn, C.; Martinez-Zarzuela, M.; Mediano, P.; Novelli, L.; Wibral, M. IDTxl: The Information Dynamics Toolkit Xl: A Python Package for the Efficient Analysis of Multivariate Information Dynamics in Networks. arXiv 2018, arXiv:1807.10459. [Google Scholar] [CrossRef]
- Fabian, P. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825. [Google Scholar]
- Shcherbakov, M.V.; Brebels, A.; Shcherbakova, N.L.; Tyukov, A.P.; Janovsky, T.A.; Kamaev, V.A. A Survey of Forecast Error Measures. World Appl. Sci. J. 2013, 24, 171–176. [Google Scholar]
- Dennis, A.; Fraser, M.; Anderson, S.; Allen, D. Air Pollutant Emissions Associated with Forest, Grassland, and Agricultural Burning in Texas. Atmos. Environ. 2002, 36, 3779–3792. [Google Scholar] [CrossRef]
- Shrivastava, M.; Cappa, C.D.; Fan, J.; Goldstein, A.H.; Guenther, A.B.; Jimenez, J.L.; Kuang, C.; Laskin, A.; Martin, S.T.; Ng, N.L. Recent Advances in Understanding Secondary Organic Aerosol: Implications for Global Climate Forcing. Rev. Geophys. 2017, 55, 509–559. [Google Scholar] [CrossRef]
- Fricke, W. Night-Time Transpiration–Favouring Growth? Trends Plant Sci. 2019, 24, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Iijima, Y. Recent Advances in the Application of Metabolomics to Studies of Biogenic Volatile Organic Compounds (BVOC) Produced by Plant. Metabolites 2014, 4, 699–721. [Google Scholar] [CrossRef] [PubMed]
- Kegge, W.; Pierik, R. Biogenic Volatile Organic Compounds and Plant Competition. Trends Plant Sci. 2010, 15, 126–132. [Google Scholar] [CrossRef] [PubMed]
Vegetation Parameters | Value |
---|---|
Average altitude | <50 m |
Distance from road | >300 m |
Forest age | 16 years |
Canopy density | 60~90% |
Stem density | 835 stems/hm2 |
Average height of living trees | 6.9 m |
Average diameter at breast height | 8.2 cm |
Leaf area index | 3.2–4.5 |
Monitoring Elements | Equipment | Type | Monitoring Limit |
---|---|---|---|
BVOCs (4 items): isoprene concentration, butene concentration, pentene concentration, 1,3-butadiene concentration | Proton transfer reaction time-of-flight mass spectrometer | PTR-TOF-MS | Isoprene 0.79 ppb (minimum) Butene 4.02 ppb (minimum) Pentene 3.23 ppb (minimum) 1,3-Butadiene 0.49 ppb (minimum) |
Other atmospheric chemical pollutants (4 items): O3, NO, SO2, NO2 | Nitrogen oxides analyzer | Thermo Fisher 42i | 0–0.05 to 100 ppm |
SO2 analyzer | Thermo Fisher 43i | 0–0.05, 1, 2, 5, 10, 20, 50 and 100 ppm | |
CO analyzer | Thermo Fisher 48i | 0–1 to 100 ppm | |
O3 analyzer | Thermo Fisher49i | 0–0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100 and 200 ppm | |
SOA (2 items): PM2.5, PM1 | Particle size spectroscopy | 11-R GRIMM Germany | 0.1 μg/m3~100 mg/m3 |
Environmental elements (3 items): ground-level net radiation, ground-level temperature, ground-level humidity | Automatic weather station | Yunchuang weather | Net radiation: spectral range 0.3 to 60 µm Sensitivity (typical): 3 µV/W·m−2, resolution < 2 W m−2 Temperature accuracy: −50 °C to +60 °C, ±0.2 °C, measurement resolution 0.1 °C Humidity: measurement range ~100% RH, resolution 1% RH |
Gradient weather stations | |||
Atmospheric precipitation and dust collector | Xianglan APS-3A | - |
PAR | CGC | MTE | CCM | PCMCI | PCMCI+ | |
---|---|---|---|---|---|---|
GNR | - | Y | Y | Y | - | - |
Temperature | - | - | Y | X | - | - |
PM2.5 | XY | XY | XY | Y | XY | XY |
Humidity | - | - | Y | - | - | - |
O3 | - | - | XY | Y | Y | - |
NO | XY | - | Y | - | XY | XY |
SO2 | - | - | - | - | - | - |
NO2 | XY | X | - | - | - | - |
Isoprene | - | Y | XY | X | XY | X |
Butene | XY | - | Y | X | X | - |
Pentene | - | - | X | - | - | - |
1,3-Butadiene | - | - | - | - | X | - |
Method | Treatment | Mean NRMSE | t-Stat | p-Value |
---|---|---|---|---|
AdaBoost | No TICC | 1.116 | 2.856 2.856 | 0.008 |
TICC | 0.584 | 0.008 | ||
KNN | No TICC | 1.312 | 3.413 | 0.002 |
TICC | 0.572 | 3.413 | 0.002 | |
LR | No TICC | 2.771 | 2.397 | 0.023 |
TICC | 0.614 | 2.397 | 0.023 | |
MLP | No TICC | 1.462 | 2.064 | 0.048 |
TICC | 0.606 | 2.064 | 0.048 | |
SVM | No TICC | 2.183 | 2.763 | 0.010 |
TICC | 0.713 | 2.763 | 0.010 |
Variables | Statistics | All | Sub 0 | Sub 1 | Sub 2 | Sub 3 |
---|---|---|---|---|---|---|
GNR (W/m2) | mean | 15.623 | 36.533 | 30.434 | 7.332 | 3.876 |
std | 22.773 | 27.639 | 12.275 | 14.114 | 12.822 | |
min | 0 | 8.577 | 8.392 | 0.208 | 0 | |
max | 118.087 | 118.087 | 53.912 | 65.619 | 67.020 | |
Temperature (°C) | mean | 33.206 | 37.081 | 34.757 | 33.382 | 30.288 |
std | 3.004 | 0.680 | 2.654 | 1.340 | 0.989 | |
min | 25.107 | 35.820 | 25.107 | 31.384 | 29.064 | |
max | 38.277 | 38.277 | 36.664 | 35.818 | 33.422 | |
PM2.5 (μg/m3) | mean | 19.801 | 17.054 | 25.609 | 20.397 | 19.450 |
std | 4.429 | 1.832 | 4.604 | 4.543 | 3.730 | |
min | 14.002 | 14.599 | 15.369 | 14.002 | 15.279 | |
max | 30.201 | 22.540 | 30.201 | 30.167 | 28.674 | |
PM1 (μg/m3) | mean | 14.381 | 13.213 | 20.365 | 13.431 | 13.993 |
std | 3.661 | 1.466 | 3.932 | 3.967 | 2.547 | |
min | 9.502 | 10.956 | 11.382 | 9.502 | 10.196 | |
max | 24.178 | 18.754 | 24.178 | 23.168 | 18.979 | |
Humidity (%) | mean | 69.766 | 52.524 | 63.489 | 67.600 | 83.444 |
std | 13.092 | 2.425 | 3.013 | 4.647 | 5.508 | |
min | 49.828 | 49.828 | 60.655 | 58.018 | 72.241 | |
max | 91.203 | 58.011 | 71.918 | 74.260 | 91.203 | |
O3 (ppm) | mean | 29.121 | 46.644 | 47.909 | 34.903 | 9.433 |
std | 18.454 | 7.855 | 9.885 | 8.048 | 7.566 | |
min | 0 | 35.34 | 28.511 | 19.743 | 0 | |
max | 60.893 | 56.628 | 60.893 | 49.320 | 32.669 | |
NO (ppm) | mean | 2.739 | 3.557 | 1.973 | 1.322 | 3.351 |
std | 3.204 | 0.202 | 0.446 | 0.785 | 4.821 | |
min | 0 | 2.903 | 0.876 | 0.070 | 0 | |
max | 15.428 | 3.766 | 2.411 | 2.902 | 15.428 | |
SO2 (ppm) | mean | 2.607 | 3.000 | 2.814 | 2.604 | 2.310 |
std | 0.301 | 0.097 | 0.230 | 0.116 | 0.073 | |
min | 1.460 | 2.727 | 1.460 | 2.341 | 2.162 | |
max | 3.249 | 3.249 | 3.091 | 2.825 | 2.488 | |
NO2 (ppm) | mean | 14.581 | 9.616 | 19.409 | 14.681 | 16.177 |
std | 4.869 | 2.804 | 3.813 | 2.125 | 4.885 | |
min | 6.630 | 6.630 | 10.616 | 10.491 | 8.938 | |
max | 25.917 | 16.123 | 25.917 | 19.078 | 25.607 | |
Isoprene concentration (μg/m3) | mean | 3.044 | 3.383 | 3.491 | 2.730 | 2.908 |
std | 0.599 | 0.877 | 0.571 | 0.356 | 0.238 | |
min | 0.604 | 0.604 | 1.615 | 2.063 | 2.458 | |
max | 4.699 | 4.699 | 4.267 | 3.534 | 3.665 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Zhang, W.; Sun, N.; Zhu, P.; Yan, J.; Yin, S. Sequential Interaction of Biogenic Volatile Organic Compounds and SOAs in Urban Forests Revealed Using Toeplitz Inverse Covariance-Based Clustering and Causal Inference. Forests 2023, 14, 1617. https://doi.org/10.3390/f14081617
Long Y, Zhang W, Sun N, Zhu P, Yan J, Yin S. Sequential Interaction of Biogenic Volatile Organic Compounds and SOAs in Urban Forests Revealed Using Toeplitz Inverse Covariance-Based Clustering and Causal Inference. Forests. 2023; 14(8):1617. https://doi.org/10.3390/f14081617
Chicago/Turabian StyleLong, Yuchong, Wenwen Zhang, Ningxiao Sun, Penghua Zhu, Jingli Yan, and Shan Yin. 2023. "Sequential Interaction of Biogenic Volatile Organic Compounds and SOAs in Urban Forests Revealed Using Toeplitz Inverse Covariance-Based Clustering and Causal Inference" Forests 14, no. 8: 1617. https://doi.org/10.3390/f14081617
APA StyleLong, Y., Zhang, W., Sun, N., Zhu, P., Yan, J., & Yin, S. (2023). Sequential Interaction of Biogenic Volatile Organic Compounds and SOAs in Urban Forests Revealed Using Toeplitz Inverse Covariance-Based Clustering and Causal Inference. Forests, 14(8), 1617. https://doi.org/10.3390/f14081617