The Influence of Seismic Lines on Wildfire Potential in the Boreal Region of Northern Alberta, Canada
Abstract
:1. Introduction
2. Objectives
3. Materials and Methods
3.1. Meteorology
3.2. Water Table
3.3. Fire Fuel Properties
3.4. Smouldering Potential
3.5. Fire Weather Index
3.6. Surface Microtopography
3.7. Statistics and Analysis
4. Results
4.1. Wind Speed and Direction
4.2. Soil Moisture
4.3. Soil Temperature
4.4. Groundwater Level and Local Topography
4.5. Microtopographic Variation
4.6. Duff Properties
4.7. Fire Weather Index
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dabros, A.; Pyper, M.; Castilla, G. Seismic lines in the boreal and arctic ecosystems of North America: Environmental impacts, challenges, and opportunities. Environ. Rev. 2018, 26, 214–229. [Google Scholar] [CrossRef] [Green Version]
- Davidson, S.J.; Goud, E.M.; Franklin, C.; Nielsen, S.E.; Strack, M. Seismic Line Disturbance Alters Soil Physical and Chemical Properties Across Boreal Forest and Peatland Soils. Front. Earth Sci. 2020, 8, 281. [Google Scholar] [CrossRef]
- Filicetti, A.T.; Nielsen, S.E. Fire and forest recovery on seismic lines in sandy upland jack pine (Pinus banksiana) forests. For. Ecol. Manag. 2018, 421, 32–39. [Google Scholar] [CrossRef]
- Stevenson, C.; Filicetti, A.; Nielsen, S. High Precision Altimeter Demonstrates Simplification and Depression of Microtopography on Seismic Lines in Treed Peatlands. Forests 2021, 10, 295. [Google Scholar] [CrossRef]
- Strack, M.; Hayne, S.; Lovitt, J.; McDermid, G.J.; Rahman, M.M.; Saraswati, S.; Xu, B. Petroleum exploration increases methane emissions from northern peatlands. Nat. Commun. 2019, 10, 2804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filicetti, A.T.; Nielsen, S.E. Tree regeneration on industrial linear disturbances in treed peatlands is hastened by wildfire and delayed by loss of microtopography1. Can. J. For. Res. 2020, 50, 936–945. [Google Scholar] [CrossRef]
- James, A.R.C.; Stuart-Smith, A.K. Distribution of Caribou and Wolves in Relation to Linear Corridors. J. Wildl. Manag. 2000, 64, 154–159. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Logan, K.A.; Amiro, B.D.; Skinner, W.R.; Stocks, B.J. Future Area Burned in Canada. Clim. Chang. 2005, 72, 1–16. [Google Scholar] [CrossRef]
- Xi, D.D.Z.; Taylor, S.W.; Woolford, D.G.; Dean, C.B. Statistical Models of Key Components of Wildfire Risk. Annu. Rev. Stat. Its Appl. 2019, 6, 197–222. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Development and Structure of the Canadian Forest Fire Weather Index System; Forestry Technical Report; Minister of Supply and Services Canada: Ottawa, ON, Canada, 1987; ISBN 978-0-662-15198-2. [Google Scholar]
- Wotton, B.M.; Martell, D.L. A lightning fire occurrence model for Ontario. Can. J. For. Res. 2005, 35, 1389–1401. [Google Scholar] [CrossRef]
- Wilkinson, S.L.; Moore, P.A.; Thompson, D.K.; Wotton, B.M.; Hvenegaard, S.; Schroeder, D.; Waddington, J.M. The effects of black spruce fuel management on surface fuel condition and peat burn severity in an experimental fire. Can. J. For. Res. 2018, 48, 1433–1440. [Google Scholar] [CrossRef]
- Rein, G.; Cleaver, N.; Ashton, C.; Pironi, P.; Torero, J.L. The severity of smouldering peat fires and damage to the forest soil. CATENA 2008, 74, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Arienti, M.C.; Cumming, S.G.; Boutin, S. Empirical models of forest fire initial attack success probabilities: The effects of fuels, anthropogenic linear features, fire weather, and management. Can. J. For. Res. 2006, 36, 3155–3166. [Google Scholar] [CrossRef]
- Riva, F.; Pinzon, J.; Acorn, J.H.; Nielsen, S.E. Composite Effects of Cutlines and Wildfire Result in Fire Refuges for Plants and Butterflies in Boreal Treed Peatlands. Ecosystems 2020, 23, 485–497. [Google Scholar] [CrossRef]
- Deane, P.J.; Wilkinson, S.L.; Moore, P.A.; Waddington, J.M. Seismic Lines in Treed Boreal Peatlands as Analogs for Wildfire Fuel Modification Treatments. Fire 2020, 3, 21. [Google Scholar] [CrossRef]
- Johnson, E.A.; Johnson, E.A. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest; Cambridge University Press: Cambridge, UK, 1996; ISBN 978-0-521-34943-7. [Google Scholar]
- Benscoter, B.W.; Thompson, D.K.; Waddington, J.M.; Flannigan, M.D.; Wotton, B.M.; De Groot, W.J.; Turetsky, M.R. Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils. Int. J. Wildland Fire 2011, 20, 418. [Google Scholar] [CrossRef] [Green Version]
- Lukenbach, M.C.; Hokanson, K.J.; Moore, P.A.; Devito, K.J.; Kettridge, N.; Thompson, D.K.; Wotton, B.M.; Petrone, R.M.; Waddington, J.M. Hydrological controls on deep burning in a northern forested peatland. Hydrol. Process. 2015, 29, 4114–4124. [Google Scholar] [CrossRef]
- Kiil, A.D. An Assessment of Fire Hazard on Seismic Lines in Alberta. In Canadian Forestry Service Department of Fisheries and Forestry; Forest Research Laboratory: Edmonton, AB, Canada, 1970. [Google Scholar]
- Miller, C.; Urban, D.L. Connectivity of forest fuels and surface fire regimes. Landsc. Ecol. 2000, 15, 145–154. [Google Scholar] [CrossRef]
- Thompson, D.K.; Baisley, A.S.; Waddington, J.M. Seasonal variation in albedo and radiation exchange between a burned and unburned forested peatland: Implications for peatland evaporation. Hydrol. Process. 2015, 29, 3227–3235. [Google Scholar] [CrossRef]
- Morvan, D. A numerical study of flame geometry and potential for crown fire initiation for a wildfire propagating through shrub fuel. Int. J. Wildland Fire 2007, 16, 511–518. [Google Scholar] [CrossRef]
- Beer, T. The interaction of wind and fire. Bound.-Layer Meteorol. 1991, 54, 287–308. [Google Scholar] [CrossRef]
- Government of Alberta. Provincial Restoration and Establishment Framework for Legacy Seismic Lines in Alberta; Government of Alberta: Vermilion, AL, Canada, 2017. [Google Scholar]
- Pinzon, J.; Dabros, A.; Riva, F.; Glasier, J.R.N. Short-term effects of wildfire in boreal peatlands: Does fire mitigate the linear footprint of oil and gas exploration? Ecol. Appl. 2021, 31, e02281. [Google Scholar] [CrossRef] [PubMed]
- Martin, J. Wisconsin Woodlands: Estimating Stocking Conditions in Your Timber Stand; Extension Natural Resources Institute: Madison, WI, USA, 1996. [Google Scholar]
- HOBO. Onset Computer Corporation HOBO U30 USB Station (U30-NRC) Manual; HOBO Data Logger: Melbourne, Australia, 2020. [Google Scholar]
- Delta-T Devices Ltd. User Manual for the WET Sensor; Delta-T Devices Ltd.: Cambridge, UK, 2018. [Google Scholar]
- Smart Level Smart Level LLC|Precision Construction Altimeter|1-800-472-3741. Available online: https://www.smartlevel.us/ (accessed on 1 June 2023).
- Deane, P.J.; Wilkinson, S.L.; Verkaik, G.J.; Moore, P.A.; Schroeder, D.; Waddington, J.M. Peat surface compression reduces smouldering fire potential as a novel fuel treatment for boreal peatlands. Can. J. For. Res. 2022, 52, 396–405. [Google Scholar] [CrossRef]
- Van Wagner, C.E.; Pickett, T.L. Equations and FORTRAN Program for the Canadian Forest Fire Weather Index System; Canadian Forestry Service Government of Canada: Ottawa, ON, Canada, 1985. [Google Scholar]
- Agriculture and Irrigation Alberta, Climate Information Service (ACIS). Available online: https://acis.alberta.ca (accessed on 22 June 2023).
- Golden Software. Surfer; Golden Software LLC: Golden, CO, USA, 2022. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 14 October 2022).
- Chandler, C.; Cheney, P.; Thomas, P.; Trabaud, L.; Williams, D. Volume 1. Forest Fire Behavior and Effects. Volume 2. Forest Fire Management and Organization. Fire in Forestry Volume 1 Forest Fire Behavior and Effects Volume 2 Forest Fire Management and Organization. 1983. Available online: https://www.cabdirect.org/cabdirect/abstract/19850699124 (accessed on 15 June 2023).
- Christensen, E.G.; Hu, Y.; Purnomo, D.M.J.; Rein, G. Influence of wind and slope on multidimensional smouldering peat fires. Proc. Combust. Inst. 2021, 38, 5033–5041. [Google Scholar] [CrossRef]
- Drury, S. Fuel Continuity. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S.L., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–3. ISBN 978-3-319-51727-8. [Google Scholar]
- Lukenbach, M.C.; Hokanson, K.J.; Devito, K.J.; Kettridge, N.; Petrone, R.M.; Mendoza, C.A.; Granath, G.; Waddington, J.M. Post-fire ecohydrological conditions at peatland margins in different hydrogeological settings of the Boreal Plain. J. Hydrol. 2017, 548, 741–753. [Google Scholar] [CrossRef]
- Frandsen, W.H. Ignition probability of organic soils. Can. J. For. Res. 1997, 27, 1471–1477. [Google Scholar] [CrossRef]
- Prat-Guitart, N.; Belcher, C.M.; Thompson, D.K.; Burns, P.; Yearsley, J.M. Fine-scale distribution of moisture in the surface of a degraded blanket bog and its effects on the potential spread of smouldering fire. Ecohydrology 2017, 10, e1898. [Google Scholar] [CrossRef]
- Franklin, C.M.A.; Filicetti, A.T.; Nielsen, S.E. Seismic line width and orientation influence microclimatic forest edge gradients and tree regeneration. For. Ecol. Manag. 2021, 492, 119216. [Google Scholar] [CrossRef]
- Echiverri, L.F.I.; Macdonald, S.E.; Nielsen, S.E. Disturbing to restore? Effects of mounding on understory communities on seismic lines in treed peatlands. Can. J. For. Res. 2020, 50, 1340–1351. [Google Scholar] [CrossRef]
Site Name | Location | Average Relative Surface Elevation (cm) | Range Surface Elevation Change (cm) | Surface Area (m2) | Variance |
---|---|---|---|---|---|
EW | Seismic line | −20.6 | −43–1.2 | 50.91 | 0.006 |
EW | Natural area | −34.5 | −57.6–(−2.8) | 49.44 | 0.002 |
NS | Seismic line | 19.5 | −19.5–55.2 | 49.35 | 0.020 |
NS | Natural area | −34.6 | −107.2–183.9 | 49.55 | 0.210 |
Site Name | Location | Bulk Density (0–5) (g/cm3) | Bulk Density (10–15) (g/cm3) | Hcomb/Hign |
---|---|---|---|---|
EW | Seismic Line | 0.15 | 0.13 | 4.445 |
EW | Natural Area | 0.05 | 0.09 | 2.226 |
NS | Seismic Line | 0.16 | 1.24 | 0.849 |
NS | Natural Area | 0.04 | 0.05 | 0.686 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiland, L.; Green-Harrison, T.; Ketcheson, S. The Influence of Seismic Lines on Wildfire Potential in the Boreal Region of Northern Alberta, Canada. Forests 2023, 14, 1574. https://doi.org/10.3390/f14081574
Weiland L, Green-Harrison T, Ketcheson S. The Influence of Seismic Lines on Wildfire Potential in the Boreal Region of Northern Alberta, Canada. Forests. 2023; 14(8):1574. https://doi.org/10.3390/f14081574
Chicago/Turabian StyleWeiland, Lelia, Tori Green-Harrison, and Scott Ketcheson. 2023. "The Influence of Seismic Lines on Wildfire Potential in the Boreal Region of Northern Alberta, Canada" Forests 14, no. 8: 1574. https://doi.org/10.3390/f14081574