Soil Temperature, Organic-Carbon Storage, and Water-Holding Ability Should Be Accounted for the Empirical Soil Respiration Model Selection in Two Forest Ecosystems
Abstract
1. Introduction
2. Materials and Methods
2.1. The Sites, Measurements, and Soil Properties
2.2. Empirical Soil Respiration Models
3. Results and Discussion
3.1. Choice of the
3.2. Modeling Results
- For Entic Podzol and Tsoil:
- The best slope-lm values (slope, Figure 7) were observed with the TPPC model in a dry environment (slope ≈ 0.9), with the TPC model in a normal environment (slope ≈ 0.9), and with the TPP model in a wet environment (slope ≈ 0.9); the TPPC and TPPrh models show the slope > 0.85 for most of the conditions;
- The best R2-lm values (R2, Figure 7) were observed with the TPPC model in a dry environment (R2 ≈ 0.7) and with the TPPrh model in normal and wet environments (R2 ≈ 0.75); the TPPC and TPP models show the R2 > 0.7 for all moisture conditions;
- The best MBE values of the comparison between the models and measurements (, Figure 7) were observed with the TPC and TPPC models in a dry environment ( ≈ 0.15), and with the TPPrh model in normal and wet environments ( ≈ 0.08); the TPPC model shows < 0.17 for all moisture conditions.
- The best RMSE values of the comparison between the models and measurements (RMSE, Figure 7) were observed with the TPC и TPPC in a dry environment (RMSE ≈ 0.45), and with the TPPrh model in normal and wet environments (RMSE ≈ 0.55); the TPPC model shows RMSE < 0.63 for all moisture conditions.
- For Entic Podzol and Tair:
- The best slope lm values (slope, Figure 7) were observed with the TPPC model in dry and wet environments (slope ≈ 0.88–0.9), and with the TPPrh model in a normal environment (slope ≈ 0.88);
- The best R2-lm values (R2, Figure 7) were observed with the TPPC model for all moisture conditions: R2 ≈ 0.67 for dry, R2 ≈ 0.77 for wet, and R2 ≈ 0.74 for normal;
- The best MBE values (, Figure 7) were observed with the TPPC model in normal and dry environments ( ≈ 0.15), while the TPP model gives the smallest ≈ 0.11 in a wet environment;
- The best RMSE values (RMSE, Figure 7) were observed with the TPPC model for all moisture conditions: RMSE ≈ 0.47 for dry, RMSE ≈ 0.53 for wet, and RMSE ≈ 0.63 for normal.
- For Haplic Luvisol and Tsoil:
- The best slope-lm values (slope, Figure 7) were observed with the TPPrh for all moisture conditions (slope ≈ 0.85–0.9);
- The best R2-lm values (R2, Figure 7) were observed with the TPPrh for all moisture conditions (R2 ≈ 0.65–0.75);
- The best MBE values (, Figure 7) were observed with the TPPrh for all moisture conditions ( ≈ 0.15);
- The best RMSE values (RMSE, Figure 7) were observed with the TPPrh for all moisture conditions (RMSE ≈ 0.43–0.53).
- For Haplic Luvisol and Tair:
- The best slope-lm values (slope, Figure 7) were observed with the TPPrh model in dry and wet environments (slope ≈ 0.85–0.91), and with the TPC and TPPC models in a normal environment (slope ≈ 0.85);
- The best R2-lm values (R2, Figure 7) were observed with the TPPrh for all moisture conditions (R2 ≈ 0.57–0.73);
- The best MBE values (, Figure 7) were observed with the TPPrh model in normal and wet environments ( ≈ 0.15–0.23), and with the TPPC model in a dry environment ( ≈ 0.23);
- The best RMSE values (RMSE, Figure 7) were observed with the TPPrh for all moisture conditions (RMSE ≈ 0.53–0.73).
3.3. An Optimal-Model Selection and the Winter Soil Respiration Control
- with the Tsoil > 2 °C—choose the TPPrh model;
- with the Tsoil ≤ 2 °C—choose the TPPC model.
Entic Podzol | Haplic Luvisol | |||||
---|---|---|---|---|---|---|
Model | R2 | MBE | RMSE | R2 | MBE | RMSE |
(all data) | ||||||
TPPC[Tsoil]:TPPrh[Tair] | 0.734 | −0.150 | 0.527 | 0.624 | −0.348 | 0.716 |
TPPC[Tair]:TPPrh[Tair] | 0.731 | −0.156 | 0.536 | 0.623 | −0.357 | 0.723 |
TPPC[Tsoil]:TPPrh[Tsoil] | 0.735 | −0.115 | 0.524 | 0.674 | −0.287 | 0.651 |
Tsoil ≤ 2 (cold periods) | ||||||
TPPC[Tsoil] | 0.116 | −0.225 | 0.397 | 0.054 | −0.376 | 0.553 |
TPPC[Tair] | 0.110 | −0.241 | 0.428 | 0.047 | −0.402 | 0.580 |
TPPrh[Tsoil] | 0.032 | −0.224 | 0.411 | 0.110 | −0.425 | 0.581 |
TPPrh[Tair] | 0.070 | −0.288 | 0.480 | 0.040 | −0.456 | 0.643 |
Tsoil > 2 (warm periods) | ||||||
TPPC[Tsoil] | 0.583 | −0.124 | 0.638 | 0.465 | −0.413 | 0.852 |
TPPC[Tair] | 0.616 | −0.094 | 0.599 | 0.431 | −0.412 | 0.856 |
TPPrh[Tsoil] | 0.604 | −0.051 | 0.584 | 0.512 | −0.239 | 0.698 |
TPPrh[Tair] | 0.604 | −0.106 | 0.589 | 0.431 | −0.333 | 0.790 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model | Wetness | Q | Q2 | K | Slope | Intercept | |MBE| | RMSE | R2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | n | 0.545 | 0.118 | - | - | - | - | 0.827 | 0.063 | 0.237 | 0.643 | 0.720 |
TP | n | 0.545 | 0.118 | - | 0.901 | - | - | 0.819 | 0.049 | 0.266 | 0.644 | 0.726 |
TPP | n | 0.545 | 0.118 | - | −0.941 | 1.137 | - | 0.843 | 0.054 | 0.219 | 0.609 | 0.745 |
TPC | n | 0.545 | 0.118 | - | 6.838 | - | −0.179 | 0.897 | −0.022 | 0.200 | 0.617 | 0.747 |
TPPC | n | 0.545 | 0.118 | - | −0.571 | 1.753 | −0.043 | 0.863 | 0.066 | 0.172 | 0.628 | 0.724 |
TPPrh | n | 0.545 | 0.197 | 0.005 | −1.694 | 2.266 | - | 0.853 | 0.172 | 0.083 | 0.549 | 0.765 |
T | w | 0.508 | 0.121 | - | - | - | - | 0.860 | −0.044 | 0.284 | 0.645 | 0.711 |
TP | w | 0.508 | 0.121 | - | −4.341 | - | - | 0.885 | 0.029 | 0.167 | 0.625 | 0.702 |
TPP | w | 0.508 | 0.121 | - | −4.954 | 0.072 | - | 0.897 | 0.026 | 0.149 | 0.623 | 0.704 |
TPC | w | 0.508 | 0.121 | - | −5.869 | - | 0.042 | 0.863 | 0.063 | 0.171 | 0.623 | 0.697 |
TPPC | w | 0.508 | 0.121 | - | −11.137 | 0.330 | 0.148 | 0.831 | 0.152 | 0.138 | 0.617 | 0.686 |
TPPrh | w | 0.508 | 0.188 | 0.005 | −5.843 | 0.119 | - | 0.840 | 0.214 | 0.060 | 0.548 | 0.732 |
T | d | 0.526 | 0.094 | - | - | - | - | 0.763 | 0.095 | 0.233 | 0.511 | 0.610 |
TP | d | 0.526 | 0.094 | - | 0.864 | - | - | 0.753 | 0.082 | 0.261 | 0.512 | 0.623 |
TPP | d | 0.526 | 0.094 | - | 0.734 | 1.157 | - | 0.751 | 0.081 | 0.265 | 0.510 | 0.629 |
TPC | d | 0.526 | 0.094 | - | 12.374 | - | −0.353 | 0.889 | −0.003 | 0.157 | 0.451 | 0.688 |
TPPC | d | 0.526 | 0.094 | - | 20.012 | 0.870 | −0.440 | 0.898 | −0.019 | 0.161 | 0.452 | 0.692 |
TPPrh | d | 0.526 | 0.094 | 0.005 | 0.734 | 1.157 | - | 0.805 | 0.097 | 0.174 | 0.493 | 0.617 |
Model | Wetness | Q | Q2 | K | Slope | Intercept | |MBE| | RMSE | R2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | n | 0.448 | 0.119 | - | - | - | - | 0.755 | 0.112 | 0.287 | 0.718 | 0.635 |
TP | n | 0.448 | 0.119 | - | 2.179 | - | - | 0.738 | 0.079 | 0.347 | 0.717 | 0.658 |
TPP | n | 0.448 | 0.119 | - | 0.181 | 1.129 | - | 0.747 | 0.097 | 0.315 | 0.690 | 0.671 |
TPC | n | 0.448 | 0.119 | - | 10.960 | - | −1.050 | 0.856 | −0.006 | 0.239 | 0.662 | 0.696 |
TPPC | n | 0.448 | 0.119 | - | 4.537 | 1.099 | −0.767 | 0.843 | 0.044 | 0.212 | 0.650 | 0.694 |
TPPrh | n | 0.448 | 0.238 | 0.007 | 7.495 | 1.036 | - | 0.865 | 0.070 | 0.150 | 0.577 | 0.742 |
T | w | 0.432 | 0.122 | - | - | - | - | 0.794 | −0.055 | 0.416 | 0.792 | 0.631 |
TP | w | 0.432 | 0.122 | - | −5.128 | - | - | 0.818 | 0.035 | 0.285 | 0.756 | 0.619 |
TPP | w | 0.432 | 0.122 | - | −5.151 | 0.995 | - | 0.818 | 0.035 | 0.285 | 0.756 | 0.619 |
TPC | w | 0.432 | 0.122 | - | −5.316 | - | 0.030 | 0.813 | 0.039 | 0.288 | 0.756 | 0.618 |
TPPC | w | 0.432 | 0.122 | - | −2.683 | 1.298 | −0.124 | 0.828 | 0.004 | 0.298 | 0.757 | 0.626 |
TPPrh | w | 0.432 | 0.239 | 0.007 | −0.030 | 1.537 | - | 0.902 | 0.022 | 0.150 | 0.587 | 0.742 |
T | d | 0.408 | 0.093 | - | - | - | - | 0.687 | 0.057 | 0.363 | 0.607 | 0.467 |
TP | d | 0.408 | 0.093 | - | −0.356 | - | - | 0.691 | 0.061 | 0.352 | 0.605 | 0.463 |
TPP | d | 0.408 | 0.093 | - | −2.952 | 0.037 | - | 0.751 | 0.064 | 0.269 | 0.578 | 0.469 |
TPC | d | 0.408 | 0.093 | - | 6.617 | - | −1.147 | 0.794 | 0.012 | 0.264 | 0.567 | 0.500 |
TPPC | d | 0.408 | 0.093 | - | −1.954 | 0.009 | −0.180 | 0.757 | 0.064 | 0.262 | 0.577 | 0.469 |
TPPrh | d | 0.408 | 0.221 | 0.008 | −3.074 | 0.384 | - | 0.842 | 0.069 | 0.143 | 0.426 | 0.635 |
Model | Wetness | Q | Q2 | K | Slope | Intercept | |MBE| | RMSE | R2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | n | 0.686 | 0.087 | - | - | - | - | 0.836 | 0.074 | 0.211 | 0.640 | 0.717 |
TP | n | 0.686 | 0.087 | - | 0.384 | - | - | 0.832 | 0.067 | 0.224 | 0.640 | 0.720 |
TPP | n | 0.686 | 0.087 | - | −0.473 | 1.135 | - | 0.844 | 0.066 | 0.205 | 0.625 | 0.729 |
TPC | n | 0.686 | 0.087 | - | 4.362 | - | −0.128 | 0.890 | 0.013 | 0.177 | 0.626 | 0.734 |
TPPC | n | 0.686 | 0.087 | - | 1.001 | 1.122 | −0.079 | 0.885 | 0.042 | 0.157 | 0.616 | 0.736 |
TPPrh | n | 0.618 | 0.121 | 0.002 | 0.273 | 1.128 | - | 0.889 | −0.025 | 0.218 | 0.639 | 0.734 |
T | w | 0.724 | 0.082 | - | - | - | - | 0.881 | 0.014 | 0.191 | 0.553 | 0.762 |
TP | w | 0.724 | 0.082 | - | −2.618 | - | - | 0.898 | 0.056 | 0.118 | 0.544 | 0.757 |
TPP | w | 0.724 | 0.082 | - | −2.171 | 1.331 | - | 0.906 | 0.052 | 0.109 | 0.536 | 0.764 |
TPC | w | 0.724 | 0.082 | - | −4.089 | - | 0.032 | 0.884 | 0.083 | 0.114 | 0.544 | 0.753 |
TPPC | w | 0.724 | 0.082 | - | −1.114 | −2.042 | −0.055 | 0.901 | 0.054 | 0.116 | 0.532 | 0.766 |
TPPrh | w | 0.651 | 0.095 | 0.001 | −4.949 | 1.249 | - | 0.870 | 0.087 | 0.136 | 0.544 | 0.753 |
T | d | 0.649 | 0.063 | - | - | - | - | 0.755 | 0.114 | 0.225 | 0.507 | 0.608 |
TP | d | 0.649 | 0.063 | - | 0.167 | - | - | 0.754 | 0.111 | 0.231 | 0.507 | 0.611 |
TPP | d | 0.649 | 0.063 | - | −0.750 | 2.586 | - | 0.753 | 0.116 | 0.227 | 0.503 | 0.613 |
TPC | d | 0.649 | 0.063 | - | 8.757 | - | −0.291 | 0.867 | 0.038 | 0.147 | 0.464 | 0.662 |
TPPC | d | 0.649 | 0.063 | - | 20.364 | 0.763 | −0.435 | 0.883 | 0.009 | 0.153 | 0.462 | 0.672 |
TPPrh | d | 0.584 | 0.110 | 0.002 | 0.084 | 1.234 | - | 0.850 | −0.008 | 0.216 | 0.506 | 0.637 |
Model | Wetness | Q | Q2 | K | Slope | Intercept | |MBE| | RMSE | R2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | n | 0.538 | 0.100 | - | - | - | - | 0.767 | 0.103 | 0.331 | 0.810 | 0.628 |
TP | n | 0.538 | 0.100 | - | −0.204 | - | - | 0.768 | 0.107 | 0.325 | 0.809 | 0.627 |
TPP | n | 0.538 | 0.100 | - | −2.136 | 0.440 | - | 0.784 | 0.133 | 0.270 | 0.803 | 0.621 |
TPC | n | 0.538 | 0.100 | - | 3.588 | - | −0.522 | 0.823 | 0.058 | 0.272 | 0.795 | 0.640 |
TPPC | n | 0.538 | 0.100 | - | −0.946 | −0.933 | −0.202 | 0.824 | 0.094 | 0.233 | 0.764 | 0.654 |
TPPrh | n | 0.538 | 0.175 | 0.004 | −0.346 | 2.364 | - | 0.813 | 0.178 | 0.170 | 0.724 | 0.667 |
T | w | 0.611 | 0.093 | - | - | - | - | 0.823 | −0.007 | 0.338 | 0.758 | 0.662 |
TP | w | 0.611 | 0.093 | - | −3.108 | - | - | 0.842 | 0.041 | 0.254 | 0.745 | 0.654 |
TPP | w | 0.611 | 0.093 | - | −2.787 | 1.268 | - | 0.842 | 0.046 | 0.249 | 0.742 | 0.655 |
TPC | w | 0.611 | 0.093 | - | 1.107 | - | −0.318 | 0.872 | −0.023 | 0.263 | 0.747 | 0.665 |
TPPC | w | 0.611 | 0.093 | - | −0.242 | 2.004 | −0.232 | 0.860 | 0.018 | 0.245 | 0.739 | 0.662 |
TPPrh | w | 0.611 | 0.158 | 0.003 | 3.576 | −0.618 | - | 0.914 | −0.066 | 0.227 | 0.680 | 0.718 |
T | d | 0.530 | 0.065 | - | - | - | - | 0.686 | 0.078 | 0.343 | 0.584 | 0.485 |
TP | d | 0.530 | 0.065 | - | −1.484 | - | - | 0.704 | 0.098 | 0.298 | 0.574 | 0.470 |
TPP | d | 0.530 | 0.065 | - | −3.552 | 0.156 | - | 0.750 | 0.096 | 0.239 | 0.555 | 0.480 |
TPC | d | 0.530 | 0.065 | - | 3.968 | - | −0.969 | 0.792 | 0.053 | 0.225 | 0.545 | 0.504 |
TPPC | d | 0.530 | 0.065 | - | −0.013 | −0.432 | −0.595 | 0.777 | 0.081 | 0.218 | 0.543 | 0.495 |
TPPrh | d | 0.530 | 0.126 | 0.003 | −0.011 | −0.432 | - | 0.844 | −0.043 | 0.251 | 0.516 | 0.578 |
References
- Ryan, M.; Law, B. Interpreting, measuring, and modeling soil respiration. Biogeochemistry 2005, 73, 3–27. [Google Scholar] [CrossRef]
- Le Quéré, C.; Moriarty, R.; Andrew, R.M.; Peters, G.P.; Ciais, P.; Friedlingstein, P.; Jones, S.D.; Sitch, S.; Tans, P.; Arneth, A.; et al. Global carbon budget 2014. Earth Syst. Sci. Data 2015, 7, 47–85. [Google Scholar] [CrossRef]
- Valentini, R.; Matteucci, G.; Dolman, A.J.; Schulze, E.D.; Rebmann, C.; Moors, E.J.; Granier, A.; Gross, P.; Jensen, N.O.; Pilegaard, K.; et al. Respiration as the main determinant of carbon balance in European forests. Nature 2000, 404, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Peltoniemi, M.; Thürig, E.; Ogle, S.; Palosuo, T.; Schrumpf, M.; Wutzler, T.; Butterbach-Bahl, K.; Chertov, O.; Komarov, A.; Mikhailov, A.; et al. Models in country scale carbon accounting of forest soils. Silva Fenn. 2007, 41, 575–602. [Google Scholar] [CrossRef]
- Lovett, G.M.; Cole, J.J.; Pace, M.L. Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation? Ecosystems 2006, 9, 152–155. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Woodwell, G.M.; Randerson, J.T.; Rastetter, E.B.; Lovett, G.M.; Baldocchi, D.D.; Clark, D.A.; Harmon, M.E.; Schimel, D.S.; Valentini, R.; et al. Reconciling Carbon-Cycle Concepts, Terminology, and Methods. Ecosystems 2006, 9, 1041–1050. [Google Scholar] [CrossRef]
- UNFCCC. National Inventory Submissions. 2006. Available online: http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/3734.php (accessed on 1 June 2023).
- Singh, B.K. (Ed.) Soil Carbon Storage: Modulators, Mechanisms and Modeling; Academic Press: London, UK, 2018. [Google Scholar]
- Kirschbaum, M.U.F.; Eamus, D.; Gifford, R.M.; Roxburgh, G.H.; Sands, P.J. Definitions of Some Ecological Terms Commonly Used in Carbon Accounting. In Net Ecosystem Exchange Workshop Proceedings CRC for Greenhouse Accounting; Kirschbaum, M.U.F., Mueller, R., Eds.; Canberra Act: Canbera, Australia, 2001; pp. 2–5. [Google Scholar]
- Aubinet, M.; Vesala, T.; Papale, D. (Eds.) Eddy Covariance; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Burba, G. Eddy Covariance Method for Scientific, Industrial, Agricultural, and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates; LI-COR Biosciences: Lincoln, NE, USA, 2013. [Google Scholar]
- Baldocchi, D.D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—The state and future of the eddy covariance method. Glob. Chang. Biol. 2014, 20, 3600–3609. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Chu, H.; Reichstein, M. Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agric. For. Meteorol. 2017, 249, 520–533. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubient, M.; Berbiger, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Garnier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Kutsch, W.; Bahn, M.; Heinemeyer, A. Soil Carbon Dynamics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Vekuri, H.; Tuovinen, J.P.; Kulmala, L.; Papale, D.; Kolari, P.; Aurela, M.; Laurila, T.; Liski, J.; Lohila, A. A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates. Sci. Rep. 2023, 13, 1720. [Google Scholar] [CrossRef]
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Lopes De Gerenyu, V.O.; Kurganova, I.N.; Rozanova, L.N.; Kudeyarov, V.N. Annual emission of carbon dioxide from soils of the southern taiga zone of Russia. Eurasian Soil Sci. 2001, 34, 931–944. [Google Scholar]
- Kurganova, I.; Lopes de Gerenyu, V.; Rozanova, L.; Sapronov, D.; Myakshina, T.; Kudeyarov, V. Annual and seasonal CO2 fluxes from Russian southern taiga soils. Tellus B Chem. Phys. Meteorol. 2003, 55, 338–344. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Romashkin, I.V.; Zhmurin, V.A.; Kudeyarov, V.N. Native and model assessment of Respiration of forest sod-podzolic soil in Prioksko-Terrasny Biospheric Reserve. Contemp. Probl. Ecol. 2020, 13, 813–824. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Khoroshaev, D.A.; Blagodatskaya, E. Effect of snowpack pattern on cold-season CO2 efflux from soils under temperate continental climate. Geoderma 2017, 304, 28–39. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Khoroshaev, D.A.; Myakshina, T.N.; Sapronov, D.V.; Zhmurin, V.A.; Kudeyarov, V.N. Analysis of the Long-Term Soil Respiration Dynamics in the Forest and Meadow Cenoses of the Prioksko-Terrasny Biosphere Reserve in the Perspective of Current Climate Trends. Eurasian Soil Sci. 2020, 53, 1421–1436. [Google Scholar] [CrossRef]
- Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valnetini, R.; Banza, J.; Caslas, P.; Cheng, Y.; Grunzweig, J.M.; Irvine, J.; et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob. Biogeochem. Cycles 2003, 17, 1104. [Google Scholar] [CrossRef]
- Raich, J.W.; Potter, C.S. Global patterns of carbon dioxide emission from soils. Glob. Biogeochem. Cycles 1995, 9, 23–36. [Google Scholar] [CrossRef]
- Hashimoto, S.; Carvalhais, N.; Ito, A.; Migliavacca, M.; Nishina, K.; Reichstein, M. Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 2015, 12, 4121–4132. [Google Scholar] [CrossRef]
- Pavelka, M.; Darenova, E.; Dusek, J. Modeling of soil CO2 efflux during water table fluctuation based on in situ measured data from a sedge-grass marsh. Appl. Ecol. Environ. Res. 2016, 14, 423–437. [Google Scholar] [CrossRef]
- Komarov, A.S.; Chertov, O.G.; Nadporozhskaya, M.A.; Priputina, I.V. Models of Forest Soil Organic Matter Dynamics; Kudeyarov, V.N., Ed.; Nauka: Moscow, Russia, 2007; 380p. (In Russian) [Google Scholar]
- Chertov, O.G.; Nadporozhskaya, M.A. Models of soil organic matter dynamics: Problems and perspectives. Comput. Res. Model. 2016, 8, 391–399. (In Russian) [Google Scholar] [CrossRef]
- Priputina, I.V.; Bykhovets, S.S.; Frolov, P.V.; Chertov, O.G.; Kurganova, I.N.; Lopes de Gerenyu, V.O.; Sapronov, D.V.; Myakshina, T.N. Application of Mathematical Models ROMUL and Romul_Hum for Estimating CO2 Emissions and Dynamics of Organic Matter in Albic Luvisol under Deciduous Forest in Southern Moscow Region. Eurasian Soil Sci. 2020, 53, 1480–1491. [Google Scholar] [CrossRef]
- Lopes De Gerenyu, V.O.; Kurganova, I.N.; Rozanova, L.N.; Kudeyarov, V.N. Effect of temperature and moisture on CO2 evolution rate of cultivated Phaeozem: Analyses of long-term field experiment. Plant Soil Environ. 2005, 51, 213–219. [Google Scholar] [CrossRef]
- Juhász, C.; Huzsvai, L.; Kovács, E.; Kovács, G.; Tuba, G.; Sinka, L.; Zsembeli, J. Carbon Dioxide Efflux of Bare Soil as a Function of Soil Temperature and Moisture Content under Weather Conditions of Warm, Temperate, Dry Climate Zone. Agronomy 2022, 12, 3050. [Google Scholar] [CrossRef]
- Howard, P.J.A.; Howard, D.M. Respiration of decomposing litter in relation to temperature and moisture. Oikos 1979, 33, 457465. [Google Scholar] [CrossRef]
- O’Connell, A.M. Microbial Decomposition (Respiration) of Litter in Eucalypt Forests of South-Western Australia: An Empirical Model Based on Laboratory Incubations. Soil Biol. Biochem. 1990, 22, 153–160. [Google Scholar] [CrossRef]
- Orchard, V.A.; Cook, F.J. Relationship between soil respiration and soil moisture. Soil Biol. Biochem. 1983, 15, 447–453. [Google Scholar] [CrossRef]
- Jarvis, P.; Rey, A.; Petsikos, C.; Wingate, L.; Rayment, M.; Pereira, J.; Banza, J.; David, J.; Miglietta, F.; Borghetti, M.; et al. Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: The “Birch effect”. Tree Physiol. 2007, 27, 929–940. [Google Scholar] [CrossRef]
- Maier, M.; Schack-Kirchner, H.; Hildebrand, E.E.; Holst, J. Pore-space CO2 dynamics in a deep, well-aerated soil. Eur. J. Soil Sci. 2010, 61, 877–887. [Google Scholar] [CrossRef]
- Chamindu Deepagoda, T.K.K.; Elberling, B. Characterization of diffusivity-based oxygen transport in Arctic organic soil. Eur. J. Soil Sci. 2015, 66, 983–991. [Google Scholar] [CrossRef]
- Vygodskaya, N.N.; Varlagin, A.V.; Kurbatova, Y.A.; Ol’chev, A.V.; Panferov, O.I.; Tatarinov, F.A.; Shalukhina, N.V. Response of taiga ecosystems to extreme weather conditions and climate anomalies. Dokl. Biol. Sci. 2009, 429, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Yuste, J.C.; Janssens, I.A.; Carrara, A.; Meiresonne, L.; Ceulemans, R. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol. 2003, 23, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Kurganova, I.N.; Lopes De Gerenyu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Savin, I.Y.; Shorohova, E.V. Carbon balance in forest ecosystems of southern part of Moscow region under a rising aridity of climate. Contemp. Probl. Ecol. 2017, 10, 748–760. [Google Scholar] [CrossRef]
- Karelin, D.V.; Zamolodchikov, D.G.; Isaev, A.S. Unconsidered sporadic sources of carbon dioxide emission from soils in taiga forests. Dokl. Biol. Sci. 2017, 475, 165–168. [Google Scholar] [CrossRef]
- Sukhoveeva, O.E.; Karelin, D.V. Assessment of Soil Respiration with the Raich−Hashimoto Model: Parameterisation and Prediction. Izvestia RAN. Ser. Geogr. 2022, 86, 519–527. [Google Scholar]
- Kayranli, B.; Scholz, M.; Mustafa, A.; Hedmark, Å. Carbon Storage and Fluxes within Freshwater Wetlands: A Critical Review. Wetlands 2010, 30, 111–124. [Google Scholar] [CrossRef]
- Makhnykina, A.V.; Polosukhina, D.A.; Kolosov, R.A.; Prokushkin, A.S. Seasonal Dynamics of CO2 Emission from the Surface of the Raised Bog in Central Siberia. Geosph. Res. 2021, 4, 85–93. (In Russian) [Google Scholar] [CrossRef]
- Xu, X.; Inubushi, K.; Sakamoto, K. Effect of vegetations and temperature on microbial biomass carbon and metabolic quotients of temperate volcanic forest soils. Geoderma 2006, 136, 310–319. [Google Scholar] [CrossRef]
- Del Grosso, S.; Parton, W.; Mosier, A.; Holland, E.A. Modeling soil CO2 emissions from ecosystems. Biogeochemistry 2005, 73, 71–91. [Google Scholar] [CrossRef]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Zou, J.; Shen, Q.; Hu, Z.; Qin, Y.; Chen, H.; Pan, G. Modeling interannual variability of global soil respiration from climate and soil properties. Agric. For. Meteorol. 2010, 150, 590–605. [Google Scholar] [CrossRef]
- Ilyasov, D.V.; Molchanov, A.G.; Glagolev, M.V.; Suvorov, G.G.; Sirin, A.A. Modelling of carbon dioxide net ecosystem exchange of hayfield on drained peat soil: Land use scenario analysis. Comput. Res. Model. 2020, 12, 1427–1449. (In Russian) [Google Scholar] [CrossRef]
- WRB 2014. 2015. Available online: https://www.fao.org/soils-portal/data-hub/soil-classification/world-reference-base/en/ (accessed on 1 June 2023).
- Reddy, K.R.; DeLaune, R.D. Biogeochemistry of Wetlands: Science and Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Brown, R.B. Soil Texture; Agronomy Fact Sheet Series: Fact Sheet SL-29; Department of Crop and Soil Sciences, Cornell University: Ithaca, NY, USA, 2007. [Google Scholar]
- Kurganova, I.; Lopes de Gerenyu, V.; Khoroshaev, D.; Myakshina, T.; Sapronov, D.; Zhmurin, V. Temperature Sensitivity of Soil Respiration in Two Temperate Forest Ecosystems: The Synthesis of a 24-Year Continuous Observation. Forests 2022, 13, 1374. [Google Scholar] [CrossRef]
- Liu, Y.; Shang, Q.; Wang, Z.; Zhang, K.; Zhao, C. Spatial Heterogeneity of Soil Respiration Response to Precipitation Pulse in A Temperate Mixed Forest in Central China. J. Plant Anim. Ecol. 2017, 1, 1–13. [Google Scholar] [CrossRef]
- Wu, Z.; Dijkstra, P.; Koch, G.W.; Penuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and 696 precipitation change: A meta-analysis of experimental manipulation. Glob. Chang. Biol 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Deng, Q.; Hui, D.; Zhang, D.; Zhou, G.; Liu, J.; Liu, S.; Chu, G.; Li, J. Effects of precipitation increase on soil respiration: A 698 three-year field experiment in subtropical forests in China. PLoS ONE 2012, 7, e41493. [Google Scholar] [CrossRef]
- Schindlbacher, A.; Wunderlich, S.; Borken, W.; Kitzler, B.; Zechmeister-Boltenstern, S.; Jandl, R. Soil respiration under climate 656 change: Prolonged summer drought offsets soil warming effects. Glob. Chang. Biol. 2012, 18, 2270–2279. [Google Scholar] [CrossRef]
- Lundquist, E.J.; Scow, K.M.; Jackson, L.E.; Uesugi, S.L.; Johnson, C.R. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biol. Biochem. 1999, 12, 1661–1675. [Google Scholar] [CrossRef]
- Xu, X.; Luo, X. Effect of wetting intensity on soil GHG fluxes and microbial biomass under a temperate forest floor during dry season. Geoderma 2012, 170, 118–126. [Google Scholar] [CrossRef]
- Monteith, J.L.; Unsworth, M.H. Chapter 13—Steady-State Heat Balance: (i) Water Surfaces, Soil, and Vegetation. In Principles of Environmental Physics, 4th ed.; Monteith, J.L., Unsworth, M.H., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 217–247. [Google Scholar]
- Cuxart, J.; Boone, A.A. Evapotranspiration over Land from a Boundary-Layer Meteorology Perspective. Bound.-Layer Meteorol. 2020, 177, 427–459. [Google Scholar] [CrossRef]
- Karelin, D.V.; Zamolodchikov, D.G.; Shilkin, A.V.; Popov, S. The effect of tree mortality on CO2 fluxes in an old-growth spruce forest. Eur. J. Forest Res. 2021, 140, 287–305. [Google Scholar] [CrossRef]
Entic Podzol | Haplic Luvisol | ||
---|---|---|---|
Forest | Forest zone | coniferous-deciduous | Deciduous |
Forest type | mature mixed with pine, linden, aspen, birch, and oak, the age of which reaches 90–120 years 2 | secondary deciduous with aspen, linden, and maple of an average tree age of 50–70 years 2 | |
Soil | Texture | sandy-loamy 3 | loamy 3 |
granulometry (sand:silt:clay) | 11.6:1.0:1.3 1 | 4:4:2 2 | |
pHKCl | 3.67 1 | 5.56 2 | |
C/N | 15.3 1 | 12.8 2 | |
SOC storage [kg C/m2] | 1.23 (0–20 cm) 4 | 5.02 (0–20 cm) 4 | |
Water-holding capacity [%] | 40.5 2 | 57.5 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kivalov, S.; Lopes de Gerenyu, V.; Khoroshaev, D.; Myakshina, T.; Sapronov, D.; Ivashchenko, K.; Kurganova, I. Soil Temperature, Organic-Carbon Storage, and Water-Holding Ability Should Be Accounted for the Empirical Soil Respiration Model Selection in Two Forest Ecosystems. Forests 2023, 14, 1568. https://doi.org/10.3390/f14081568
Kivalov S, Lopes de Gerenyu V, Khoroshaev D, Myakshina T, Sapronov D, Ivashchenko K, Kurganova I. Soil Temperature, Organic-Carbon Storage, and Water-Holding Ability Should Be Accounted for the Empirical Soil Respiration Model Selection in Two Forest Ecosystems. Forests. 2023; 14(8):1568. https://doi.org/10.3390/f14081568
Chicago/Turabian StyleKivalov, Sergey, Valentin Lopes de Gerenyu, Dmitry Khoroshaev, Tatiana Myakshina, Dmitry Sapronov, Kristina Ivashchenko, and Irina Kurganova. 2023. "Soil Temperature, Organic-Carbon Storage, and Water-Holding Ability Should Be Accounted for the Empirical Soil Respiration Model Selection in Two Forest Ecosystems" Forests 14, no. 8: 1568. https://doi.org/10.3390/f14081568
APA StyleKivalov, S., Lopes de Gerenyu, V., Khoroshaev, D., Myakshina, T., Sapronov, D., Ivashchenko, K., & Kurganova, I. (2023). Soil Temperature, Organic-Carbon Storage, and Water-Holding Ability Should Be Accounted for the Empirical Soil Respiration Model Selection in Two Forest Ecosystems. Forests, 14(8), 1568. https://doi.org/10.3390/f14081568