Individual Tree AGB Estimation of Malania oleifera Based on UAV-RGB Imagery and Mask R-CNN
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Surveys of M. oleifera
2.3. UAV-RGB Imagery Acquisition and Preprocessing
2.4. The Canopy Detection of M. oleifera Trees Using Mask R-CNN
2.4.1. M. oleifera Tree Canopy Recognition Results
2.4.2. CA Extraction
2.5. AGB Estimation of M. oleifera
2.5.1. Establishment and Effectiveness of Allometric Growth Equation
2.5.2. Selection of Empirical Equation
3. Results and Analysis
3.1. CA Extraction of M. oleifera Trees Based on UAV-RGB Images
3.2. The CA-DBH Model of Individual M. oleifera Tree
3.3. The AGB Estimation of Individual M. oleifera Trees
4. Discussion
4.1. The Advantages of UAV-RGB Imagery in Estimating CA in Natural Mixed Forests
4.2. The Performance of Mask R-CNN for Obtaining CA of M. oleifera Trees in Natural Mixed Forests
4.3. The Optimal CA-DBH Allometric Growth Model of M. oleifera
4.4. AGB Estimation of M. oleifera
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; He, S.L. The complete chloroplast genome of Malania oleifera (Olacaceae), an endangered species in China. Mitochondrial DNA Part B Resour. 2019, 4, 1867–1868. [Google Scholar] [CrossRef]
- Yang, T.Q.; Yu, Q.; Xu, W.; Li, D.Z.; Chen, F.; Liu, A.Z. Transcriptome analysis reveals crucial genes involved in the biosynthesis of nervonic acid in woody Malania oleifera oilseeds. Bmc Plant Biol. 2018, 18, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.W.; Ma, S.J.; Song, H.; Yang, Z.; Zhao, C.Z.; Taylor, D.; Zhang, M.; Cooke, J. A 3-ketoacyl-CoA synthase 11 (KCS11) homolog from Malania oleifera synthesizes nervonic acid in plants rich in 11Z-eicosenoic acid. Tree Physiol. 2021, 41, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.Q.; Liu, H.; Zhou, S.S.; Zhang, D.X.; Zhao, W.; Wang, S.; Chen, F.; Sun, Y.Q.; Nie, S.; Jia, K.H.; et al. Genome sequence of Malania oleifera, a tree with great value for nervonic acid production. Gigascience 2019, 8, giy164. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Xu, J.; Jiao, S.Q.; Zhang, R.G.; Mao, J.F. The complete mitochondrial genome of an endangered tree: Malania oleifera. Mitochondrial DNA Part B Resour. 2020, 5, 3829–3830. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.H.; Wan, J.Y.; Xie, Y.; Wei, F.; Quek, S.; Lv, X.; Du, L.Q.; Chen, H. Lipid analysis of three special nervonic acid resources in China. Oil Crop Sci. 2020, 5, 180–186. [Google Scholar] [CrossRef]
- Wang, S.H.; Chen, J.; Yang, W.; Hua, M.; Ma, Y.P. Fruiting character variability in wild individuals of Malania oleifera, a highly valued endemic species. Sci. Rep. 2021, 11, 23605. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.M.; Zhang, L.; Han, J.W.; Bian, C.S.; Li, G.C.; Liu, J.G.; Jin, L.P. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. Isprs. J. Photogramm. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Wang, F.; Yang, M.; Ma, L.; Zhang, T.; Qin, W.; Li, W.; Zhang, Y.; Sun, Z.; Wang, Z.; Li, F.; et al. Estimation of Above-Ground Biomass of Winter Wheat Based on Consumer-Grade Multi-Spectral UAV. Remote Sens. 2022, 14, 1251. [Google Scholar] [CrossRef]
- Campbell, M.J.; Dennison, P.E.; Kerr, K.L.; Brewer, S.C.; Anderegg, W.R.L. Scaled biomass estimation in woodland ecosystems: Testing the individual and combined capacities of satellite multispectral and lidar data. Remote Sens. Environ. 2021, 262, 112511. [Google Scholar] [CrossRef]
- Jiang, F.G.; Kutia, M.; Ma, K.; Chen, S.; Long, J.P.; Sun, H. Estimating the aboveground biomass of coniferous forest in Northeast China using spectral variables, land surface temperature and soil moisture. Sci. Total Environ. 2021, 785, 147335. [Google Scholar] [CrossRef] [PubMed]
- Siddique, M.R.H.; Mahmood, H.; Siddiqui, M.B.N.; Abdullah, S.M.R.; Akhter, M.; Sola, G.; Iqbal, M.Z.; Henry, M. Conventional and additive models for estimating the biomass, carbon and nutrient stock in individual Shorea robusta Gaertn. f. tree of the Sal forests of Bangladesh. Environ. Chall. 2021, 4, 100178. [Google Scholar] [CrossRef]
- Lemi, T.; Eshete, A.; Seid, G.; Mulugeta, S.; Egeta, D.; Teshome, M. Aboveground Biomass Models for Indigenous Tree Species in the Dry Afromontane Forest, Central Ethiopia. Int. J. For. Res. 2023, 2023, 4901521. [Google Scholar] [CrossRef]
- Wang, G.S.; Wang, N.; Guo, W.L. Modelling Forest Aboveground Biomass Based on GF-3 Dual-Polarized and WorldView-3 Data: A Case Study in Datong National Wetland Park, China. Math. Probl. Eng. 2021, 2021, 9925940. [Google Scholar] [CrossRef]
- Kou, W.L.; Dong, J.W.; Xiao, X.M.; Hernandez, A.J.; Qin, Y.W.; Zhang, G.L.; Chen, B.Q.; Lu, N.; Doughty, R. Expansion dynamics of deciduous rubber plantations in Xishuangbanna, China during 2000-2010. GIScience Remote Sens. 2018, 55, 905–925. [Google Scholar] [CrossRef]
- Gesta, J.L.E.; Fernandez, J.M.; Lina, R.S.; Santillan, J.R. Aboveground Biomass and Carbon Stock Estimation of Falcata Through the Synergistic Use of Sentinel-1 and Sentinel-2 Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 117–122. [Google Scholar] [CrossRef]
- Feng, X.L.; Tang, L.; Xu, M.H. Estimating the biomass of rice by combining GF-1 and RADARSAT-2 data. Arab. J. Geosci. 2021, 14, 2124. [Google Scholar] [CrossRef]
- Han, D.; Yang, H.; Qiu, C.; Yang, G.; Chen, E.; Du, Y.; Yang, W.; Zhou, C. Estimating wheat biomass from GF-3 data and a polarized water cloud model. Remote Sens. Lett. 2019, 10, 234–243. [Google Scholar] [CrossRef]
- Akhtar, A.M.; Qazi, W.A.; Ahmad, S.R.; Gilani, H.; Mahmood, S.A.; Rasool, A. Integration of high-resolution optical and SAR satellite remote sensing datasets for aboveground biomass estimation in subtropical pine forest, Pakistan. Environ. Monit. Assess. 2020, 192, 584. [Google Scholar] [CrossRef]
- Li, H.T.; Kato, T.; Hayashi, M.; Wu, L. Estimation of Forest Aboveground Biomass of Two Major Conifers in Ibaraki Prefecture, Japan, from PALSAR-2 and Sentinel-2 Data. Remote Sens. 2022, 14, 468. [Google Scholar] [CrossRef]
- Quang, N.H.; Quinn, C.H.; Carrie, R.; Stringer, L.C.; Hue, L.T.V.; Hackney, C.R.; Tan, D.V. Comparisons of regression and machine learning methods for estimating mangrove above-ground biomass using multiple remote sensing data in the red River Estuaries of Vietnam. Remote Sens. Appl. 2022, 26, 100725. [Google Scholar] [CrossRef]
- Ramachandran, N.; Saatchi, S.; Tebaldini, S.; Alessandro, M.M.; Dikshit, O. Mapping tropical forest aboveground biomass using airborne SAR tomography. Sci. Rep. 2023, 13, 6233. [Google Scholar] [CrossRef] [PubMed]
- Jos, G.; Mansor, S.; Matthew, N.K. A Review: Forest Aboveground Biomass (AGB) Estimation Using Satellite Remote Sensing. J. Remote Sens. GIS 2021, 10, 241. [Google Scholar]
- Liang, Y.Y.; Kou, W.L.; Lai, H.Y.; Wang, J.; Wang, Q.H.; Xu, W.H.; Wang, H.; Lu, N. Improved estimation of aboveground biomass in rubber plantations by fusing spectral and textural information from UAV-based RGB imagery. Ecol. Indic. 2022, 142, 109286. [Google Scholar] [CrossRef]
- Kou, W.L.; Xiao, X.M.; Dong, J.W.; Gan, S.; Zhai, D.L.; Zhang, G.L.; Qin, Y.W.; Li, L. Mapping Deciduous Rubber Plantation Areas and Stand Ages with PALSAR and Landsat Images. Remote Sens. 2015, 7, 1048–1073. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, D.; Wang, C.; Coulston, J.; Zhang, Y.; Pavelsky, T.; Frankenberg, E.; Woodcock, C.; Song, C. Mapping Forest Aboveground Biomass Using Multisource Remotely Sensed Data. Remote Sens. 2022, 14, 1115. [Google Scholar] [CrossRef]
- Tian, Y.C.; Zhang, Q.; Huang, H.; Huang, Y.J.; Tao, J.; Zhou, G.Q.; Zhang, Y.L.; Yang, Y.W.; Lin, J.L. Aboveground biomass of typical invasive mangroves and its distribution patterns using UAV-LiDAR data in a subtropical estuary: Maoling River estuary, Guangxi, China. Ecol. Indic. 2022, 136, 108694. [Google Scholar] [CrossRef]
- Wei, Q.P.; Yu, G.B.; Jian, M.D.; Hong, Y.Y.; Xi, P.Z.; Yong, C.K. Classification of Grassland Desertification in China Based on vis-NIR UAV Hyperspectral Remote Sensing. Spectroscopy 2020, 35, 31. [Google Scholar]
- Mao, P.; Qin, L.; Hao, M.; Zhao, W.; Luo, J.; Qiu, X.; Xu, L.; Xiong, Y.; Ran, Y.; Yan, C.; et al. An improved approach to estimate above-ground volume and biomass of desert shrub communities based on UAV RGB images. Ecol. Indic. 2021, 125, 107494. [Google Scholar] [CrossRef]
- Tian, Y.C.; Huang, H.; Zhou, G.Q.; Zhang, Q.; Tao, J.; Zhang, Y.L.; Lin, J.L. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Sci. Total Environ. 2021, 781, 146816. [Google Scholar] [CrossRef]
- Abdullah, M.M.; Al-Ali, Z.M.; Srinivasan, S. The use of UAV-based remote sensing to estimate biomass and carbon stock for native desert shrubs. MethodsX. 2021, 8, 101399. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.Z.; Nie, S.; Guan, Y.S.; Zhang, D.; Wang, C.; Zhang, X.L. Forest emissions reduction assessment using airborne LiDAR for biomass estimation. Resour. Conserv. Recycl. 2022, 181, 106224. [Google Scholar] [CrossRef]
- Zhang, H.F.; Tang, Z.G.; Wang, B.Y.; Meng, B.P.; Qin, Y.; Sun, Y.; Lv, Y.Y.; Zhang, J.G.; Yi, S.H. A non-destructive method for rapid acquisition of grassland aboveground biomass for satellite ground verification using UAV RGB images. Glob. Ecol. Conserv. 2022, 33, e1999. [Google Scholar] [CrossRef]
- Kashongwe, H.B.; Roy, D.P.; Skole, D.L. Examination of the amount of GEDI data required to characterize central Africa tropical forest aboveground biomass at REDD+ project scale in Mai Ndombe province. Sci. Remote Sens. 2023, 7, 100091. [Google Scholar] [CrossRef]
- Torre-Tojal, L.; Bastarrika, A.; Boyano, A.; Lopez-Guede, J.M.; Graña, M. Above-ground biomass estimation from LiDAR data using random forest algorithms. J. Comput. Sci. 2022, 58, 101517. [Google Scholar] [CrossRef]
- Shu, M.Y.; Shen, M.Y.; Dong, Q.Z.; Yang, X.H.; Li, B.G.; Ma, Y.T. Estimating the maize above-ground biomass by constructing the tridimensional concept model based on UAV-based digital and multi-spectral images. Field Crop. Res. 2022, 282, 108491. [Google Scholar]
- Li, W.; Niu, Z.; Chen, H.; Li, D.; Wu, M.; Zhao, W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 2016, 67, 637–648. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Feng, H.; Chen, J.Y.; Chen, Y. ForestResNet: A Deep Learning Algorithm for Forest Image Classification. J. Phys. Conf. Ser. 2021, 2024, 12053. [Google Scholar] [CrossRef]
- Weinstein, B.G.; Marconi, S.; Bohlman, S.; Zare, A.; White, E. Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks. Remote Sens. 2019, 11, 1309. [Google Scholar] [CrossRef] [Green Version]
- Xi, Y.B.; Ren, C.Y.; Wang, Z.M.; Wei, S.Q.; Bai, J.L.; Zhang, B.; Xiang, H.X.; Chen, L. Mapping Tree Species Composition Using OHS-1 Hyperspectral Data and Deep Learning Algorithms in Changbai Mountains, Northeast China. Forests 2019, 10, 818. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Liu, T.; Qin, J.; Lu, N.; Zhou, C. Tree counting with high spatial-resolution satellite imagery based on deep neural networks. Ecol. Indic. 2021, 125, 107591. [Google Scholar] [CrossRef]
- Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2020, 170, 205–215. [Google Scholar] [CrossRef]
- Ogana, F.N.; Ercanli, I. Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm. J. For. Res. 2021, 33, 883–898. [Google Scholar] [CrossRef]
- Pérez-Carrasco, M.; Karelovic, B.; Molina, R.; Saavedra, R.; Cerulo, P.; Cabrera-Vives, G. Precision silviculture: Use of UAVs and comparison of deep learning models for the identification and segmentation of tree crowns in pine crops. Int. J. Digit. Earth 2022, 15, 2223–2238. [Google Scholar] [CrossRef]
- Castro, W.; Marcato, J.J.; Polidoro, C.; Osco, L.P.; Goncalves, W.; Rodrigues, L.; Santos, M.; Jank, L.; Barrios, S.; Valle, C.; et al. Deep Learning Applied to Phenotyping of Biomass in Forages with UAV-Based RGB Imagery. Sensors 2020, 20, 4802. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Li, D.N.; Fan, J.C.; Zhang, H.Q.; Eichhorn, M.P.; Wang, X.J.; Yun, T. A reinterpretation of the gap fraction of tree crowns from the perspectives of computer graphics and porous media theory. Front. Plant Sci. 2023, 14, 1109443. [Google Scholar] [CrossRef]
- He, K.M.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef]
- Gogineni, A.K.; Kishore, R.; Raj, P.; Naik, S.; Sahu, K.K. Unsupervised Clustering Algorithm as Region of Interest Proposals for Cancer Detection Using CNN; Springer International Publishing: Cham, Switzerland, 2020; pp. 1386–1396. [Google Scholar]
- Lu, N.; Wu, Y.P.; Zheng, H.B.; Yao, X.; Zhu, Y.; Cao, W.X.; Cheng, T. An assessment of multi-view spectral information from UAV-based color-infrared images for improved estimation of nitrogen nutrition status in winter wheat. Precis. Agric. 2022, 23, 1653–1674. [Google Scholar] [CrossRef]
- Lyons, M.B.; Keith, D.A.; Phinn, S.R.; Mason, T.J.; Elith, J. A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sens. Environ. 2018, 208, 145–153. [Google Scholar] [CrossRef]
- Li, S.G. Malania, a new genus of oil-yielding plant. Bull. Bot. Iab. North-East. Forest. Inst. 1980, 6, 67–72. [Google Scholar]
- Meng, C. Study on the Aboveground Biomass Model of Cinamomum camphora in Urban. Master’s Thesis, Beijing Forestry University, Beijing, China, 2011. [Google Scholar]
- Wei, C.; Li, H.L.; Cui, G.Q.; Ma, C.H.; Deng, R.G.; Zou, Z.R.; Liu, Z.Z. Efficient separation of Cinnamomum camphora leaf essential oil and in vitro evaluation of its antifungal activity. Arab. J. Chem. 2022, 15, 104225. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.H.; Huang, N.; Zhang, F.Y.; Meng, Y.Q.; Wang, J.A.; Li, Y.Y. Coordination of leaf hydraulic and economic traits in Cinnamomum camphora under impervious pavement. BMC Plant Biol. 2022, 22, 347. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Wang, Z.; Xiong, L.y.; Liu, Y.P.; Kang, X.L.; Zhao, W.H. Identification and Reconstruction of Citrus Branches under Complex Background Based on Mask R-CNN. Trans. Chin. Soc. Agric. Mach. 2019, 50, 22–30. [Google Scholar]
- He, Y.Y.; Zhang, Y.B.; Li, J.Q. Estimation of stem biomass of individual Abies faxoniana through unmanned aerial vehicle remote sensing. J. Beijing For. Univ. 2016, 38, 42–49. [Google Scholar]
- Liu, Y.D. Study on Biological Characteristics of Young Aquilaria sinensis Forest in Southern Fujian. For. Prospect. Des. 2015, 2, 77–81. [Google Scholar]
- Tang, J.W.; Pang, J.P.; Chen, M.Y.; Guo, X.M.; Zeng, R. Biomass and its estimation model of rubber plantations in Xishuangbanna, Southwest China. Chin. J. Ecol. 2009, 28, 1942–1948. [Google Scholar]
- LY/T 2262-2014; Tree Biomass Models and Related Parameters to Carbon Accounting for Pinus yunnanensis. China Standard Press: Beijing, China, 2015.
- LY/T 2658-2016; Tree Biomass Models and Related Parameters to Carbon Accounting for Quercus. China Standard Press: Beijing, China, 2017.
- Aneseyee, A.B.; Soromessa, T.; Elias, E.; Feyisa, G.L. Allometric equations for selected Acacia species (Vachellia and Senegalia genera) of Ethiopia. Carbon Balance Manag. 2021, 16, 34. [Google Scholar] [CrossRef]
Parameters | Numerical and Descriptive | Parameters | Numerical and Descriptive |
---|---|---|---|
UAV models | DJI Phantom 4 RTK | Range of obstacle perception/m | 0.2–7 |
Flight height | 100 m | Image sensors | 1″ CMOS; 20 million effective pixels |
Forward overlapping | 80% | Photograph resolution/pixels | 5472 × 3648 (3:2) 4864 × 3648 (4:3) |
Side overlapping | 70% | Spatial resolution/cm | 2.74 |
Segmentation Results | Segmentation Accuracy Evaluation Results | ||||
---|---|---|---|---|---|
TP | FN | FP | Recall | Precision | F1-Score |
141 | 30 | 16 | 83% | 90% | 86% |
Species of Trees | Morphological Characteristics | Growth Habits |
---|---|---|
M. oleifera | Evergreen trees with slightly longitudinally fissured bark, having alternate leaves with semi-cylindrical petioles. They flower from April to September and fruit from May to October. | Subtropical evergreen broad-leaved species, M. oleifera is commonly found growing in mountainous areas at altitudes ranging from about 300–1200 m. It prefers moist, fertile soils and is often found on limestone hills, but can also grow on acidic soils in sandstone and shale areas [51]. |
Cinnamomum camphora | Evergreen trees; bark with irregular longitudinal fissures; leaves alternate, ovate-elliptic; flowering Apr-May, fruit period August-November. | Subtropical evergreen broad-leaved species adapted to altitudes below 1800 m, and is light-loving, slightly shade-tolerant, and prefers a warm and humid climate. It is suitable for deep fertile acidic or neutral sandy loam soils [53,54]. |
Sample | Value |
---|---|
n | 120 |
DBH range/cm | 5.00–65.00 |
Average DBH/cm | 17.66 |
CA range/m2 | 1.50–78.58 |
Average CA/m2 | 18.62 |
No. | Models | R2 |
---|---|---|
1 | Power function | 0.755 |
2 | Polynomial | 0.739 |
3 | Linear function | 0.732 |
No. | Index | Value |
---|---|---|
1 | Mean field measured/cm | 17.66 |
2 | The standard deviation of field measured/cm | 10.91 |
4 | Mean UAV—predicted/cm | 16.98 |
5 | The standard deviation of predicted values | 9.11 |
The coefficient of determination R2 | 0.71 | |
6 | Root means square error (RMSE)/cm | 5.38 |
7 | Mean absolute error (MAE)/cm | 3.79 |
8 | Relative root means square error (rRMSE)/cm | 1.27 |
9 | Bias/cm | 1.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, M.; Kou, W.; Lu, N.; Chen, Y.; Sun, Y.; Lai, H.; Chen, B.; Wang, J.; Li, C. Individual Tree AGB Estimation of Malania oleifera Based on UAV-RGB Imagery and Mask R-CNN. Forests 2023, 14, 1493. https://doi.org/10.3390/f14071493
Gong M, Kou W, Lu N, Chen Y, Sun Y, Lai H, Chen B, Wang J, Li C. Individual Tree AGB Estimation of Malania oleifera Based on UAV-RGB Imagery and Mask R-CNN. Forests. 2023; 14(7):1493. https://doi.org/10.3390/f14071493
Chicago/Turabian StyleGong, Maojia, Weili Kou, Ning Lu, Yue Chen, Yongke Sun, Hongyan Lai, Bangqian Chen, Juan Wang, and Chao Li. 2023. "Individual Tree AGB Estimation of Malania oleifera Based on UAV-RGB Imagery and Mask R-CNN" Forests 14, no. 7: 1493. https://doi.org/10.3390/f14071493
APA StyleGong, M., Kou, W., Lu, N., Chen, Y., Sun, Y., Lai, H., Chen, B., Wang, J., & Li, C. (2023). Individual Tree AGB Estimation of Malania oleifera Based on UAV-RGB Imagery and Mask R-CNN. Forests, 14(7), 1493. https://doi.org/10.3390/f14071493