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Abstract: Forest aboveground biomass (AGB) is an important research topic in the field of forestry,
with implications for carbon cycles and carbon sinks. Malania oleifera Chun et S. K. Lee (M. oleifera)
is a valuable plant species that is listed on the National Second-Class Protected Plant checklist and
has received global attention for its conservation and resource utilization. To obtain accurate AGB
of individual M. oleifera trees in a fast, low-finance-cost and low-labor-cost way, this study first
attempted to estimate individual M. oleifera tree AGB by combining the centimeter-level resolution
RGB imagery derived from unmanned aerial vehicles (UAVs) and the deep learning model of Mask
R-CNN. Firstly, canopy area (CA) was obtained from the 3.5 cm high-resolution UAV-RGB imagery
using the Mask R-CNN; secondly, to establish an allometric growth model between the diameter
at breast height (DBH) and CA, the correlation analysis of both was conducted; thirdly, the AGB
estimation method of individual M. oleifera trees was presented based on an empirical equation. The
study showed that: (1) The deep learning model of Mask R-CNN achieved an average segmentation
accuracy of 90% in the mixed forests to the extraction of the canopy of M. oleifera trees from UAV-RGB
imagery. (2) The correlation between the extracted CA and field-measured DBH reached an R2 of
0.755 (n = 96). (3) The t-test method was used to verify the predicted and observed values of the
CA-DBH model presented in this study, and the difference in deviation was not significant (p > 0.05).
(4) AGB of individual M. oleifera was estimated for the first time. This study provides a reference
method for the estimation of individual tree AGB of M. oleifera based on centimeter-level resolution
UAV-RGB images and the Mask R-CNN deep learning.

Keywords: Malania oleifera; aboveground biomass; UAV; Mask R-CNN; allometric growth model

1. Introduction

Malania oleifera Chun & S. K. Lee (M. oleifera) is a rare, high-value, and protected
species of evergreen broad-leaved trees found in arid regions. It belongs to the genus
Malania within the Olacaceae family and is highly valued for its fruits, leaves, and trunk [1].
The kernels of M. oleifera contain over 60% oil and can be used to extract edible and
aromatic oils [2]. Its fruit oil is also rich in neuronic acid, an important material for
treating neurological diseases and promoting brain growth and nerve regulation [2]. M.
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oleifera is an important source of neuronic acid extraction and is a sustainable alternative
to animal sources. Although marine animals also contain neuronic acid, the amount that
can be extracted is limited, and the extraction of neuronic acid from marine animals has
been explicitly banned [3]. Therefore, M. oleifera is an important source of neuronic acid
extraction, instead of animal sources, as a new energy source for neuronic acid extraction
and is sustainable. However, the current resources of the M. oleifera species are very limited;
it is only found growing in Funing and Guangnan counties in eastern Wenshan Zhuang
and Miao Autonomous Prefecture (Wenshan), Yunnan Province, and in the karst landscape
areas of western Guangxi Zhuang Autonomous Region (Guangxi) in China [4,5], and is
scattered in complex natural mixed forests. Therefore, it is urgent to investigate and protect
M. oleifera resources, expand its planting area, and enhance the management and utilization
of native M. oleifera resources. Biomass estimation is critical for monitoring plant growth
and yield; however, aboveground biomass (AGB) estimation for M. oleifera has not been
reported in the existing literature. Previous studies on M. oleifera have focused on plant
cultivation, pests, diseases, oil extraction [3,6,7], extraction and isolation of volatile oil [7],
and genome analysis [2,4], while its AGB estimation has not been reported yet.

AGB is a key parameter in characterizing life activities and is the most basic quanti-
tative characteristic of forest ecosystems. It not only indicates the traits of plant growth,
but also is of great significance for plant growth monitoring, yield estimation [8,9], indus-
trialization development, and protection of germplasm resources. Additionally, it is also
an important indicator to evaluate ecosystem health and carbon storage [10–12]. Trees are
the mainstay of forest ecosystems, and individual tree biomass accounts for the majority
of the biomass in ecosystems. Accurate estimation of individual tree biomass is highly
essential for the quantification of forest biomass, carbon stocks, carbon channels, forest
management, and climate changes. To accurately estimate forest AGB in complex forest
stands, a reliable individual tree AGB model should first be constructed. Although the
AGB estimation method based on traditional field investigations has the advantage of
fine estimation accuracy at small scales, it is time-consuming and inefficient, physically
impairs the trees, and is unsuitable for large areas [9,13]. In recent years, satellite remote
sensing technology has been used to overcome the limitations of traditional estimation
methods and has become an efficient way to evaluate forest AGB. Using satellite remote
sensing technology to obtain forest parameters can reduce the damage to forests and save
the output of the labor force and financial resources, and thereby achieve multi-scale,
multi-temporal remote sensing [14–16]. Among these approaches, optical (such as Landsat,
Sentinel-2, GF-1, GF-2) and synthetic aperture radar (such as Sentinel-1, GF-3) data are
commonly used [14,17–21] to estimate forest AGB and can greatly improve the overall
efficiency [15,18–23] compared to traditional methods. However, satellite remote sensing
images are susceptible to cloud contamination and low spatial and temporal resolution,
which makes it difficult to guarantee the quality of the acquired satellite images [23–25].
Although some research makes up for this shortcoming by using airborne methods to ob-
tain satellite remote sensing images to improve their quality [26–28], because of their need
for a high-cost and cumbersome process, they are not suitable for widespread applications.

With the rapid development of unmanned aerial vehicle (UAV) technology, UAVs
have become a new remote sensing data acquisition platform. Different types of sensors
mounted on UAVs can obtain a variety of high-resolution remote sensing images. More
accurate forest parameters can be extracted from UAV high-resolution imagery than from
satellites and can satisfy the requirements of mixed forest AGB estimation [29,30]. Re-
mote sensing images derived from UAV-based RGB, multi-spectral, hyperspectral, light
detection and ranging (LiDAR) sensors are extensively used to estimate the AGB of crops,
trees, and grasslands, as well as predict their yield and monitor their growth [8,29–33].
Among these sensors, although other sensors perform better than the RGB sensor in AGB
estimation [9,34–36], their application is seriously limited in practice due to their high costs
and complex operations. RGB cameras have great potential in forest resources monitoring
and AGB estimation, with the advantages of simple operations, low costs, and high spatial
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resolution [24]. The parameters of texture, spectral information, structural indices, etc. have
been extracted from UAV-RGB images and already used to successfully estimate the AGB
of desert shrubs [29], corn [37], and rubber plantations [24].

There has been rapid development in the field of machine learning in recent years,
which has been widely used in the estimation of biomass, identification of tree species,
and classification of trees. As an important subset of machine learning, the deep learning
method is represented by the Convolutional Neural Network (CNN). The CNN extracts
deep features of images by training a large amount of data and has achieved excellent
results in image recognition, classification, segmentation, and remote sensing [38–41]. It
also shows great potential in individual tree detection, classification, and tree canopy
segmentation in the study of remote sensing data [39,41]. High-precision tree species
can be recognized using deep learning algorithms combined with hyperspectral data or
UAV-RGB remote sensing images [40,42]. In recent years, the deep learning algorithms
of AlexNet, ResNet, and Mask R-CNN were extensively used to extract tree height [43],
segment individual trees [44], and estimate forages AGB [45] in combination with UAV-
RGB remote sensing images. Furthermore, the deep learning algorithm has tremendous
potential in extracting mixed forest parameters, tree species identification, and estimating
AGB. It can also greatly improve the analysis accuracy and reduce the output of material
and financial resources [39–41]. In particular, Mask R-CNN can achieve high recognition
accuracy in highly depressed forest fractions [44]. Thus, Mask R-CNN deep learning
algorithms provide a new way to identify and extract tree canopies of M. oleifera for AGB
estimation and yield prediction.

Canopy Area (CA) can be aerially and visually measured on remote sensing images,
but the diameter at breast height (DBH) needs to be investigated in the field, which is
time-consuming and laborious [34,46]. Fortunately, there is a high correlation between CA
and DBH [42,43], so DBH can be estimated by CA measured from high-resolution remote
sensing based on the allometric growth model. As a scattered tree species, M. oleifera is
sporadically distributed in complex mixed natural forest stands, and traditional methods to
identify their canopies are very difficult to apply. However, it is highly feasible to identify
and extract the canopy of this species using UAV high-resolution remote sensing images
combined with deep learning algorithms.

Therefore, this study aimed to detect M. oleifera canopies in complex forests using
the Mask R-CNN model based on high-resolution remote sensing images acquired from
RGB sensors mounted on UAVs. Exploring the effectiveness of Mask R-CNN models for
M. oleifera canopy recognition and the individual CA of M. oleifera was conducted using the
ArcGIS10.7 software. Technical support was provided for the survey of M. oleifera resources
and the acquisition of forest parameters. Secondly, a CA-DBH anisotropic growth model
was constructed using field measurements of DBH and CA to analyze the anisotropic
growth relationship. Finally, the empirical equation of the AGB of Cinnamomum camphora
based on the DBH parameter was used to estimate the AGB of individual M. oleifera. As
the first attempt to estimate the AGB of M. oleifera, this study can provide a methodological
reference for estimating the AGB of M. oleifera, and then provide technical support for
M. oleifera resource monitoring and yield prediction.

2. Materials and Methods
2.1. Study Area

The study area is situated in Funing county, Wenshan, Yunnan Province, China, within
the coordinates of 105◦13′–106◦12′ E and 23◦11′–24◦09′ N. It is bordered by Guangxi in the
east and north, which is adjacent to Ha Giang Province Vietnam, Guangnan, and Malipo
counties in the west of Wenshan. The sampling was mainly conducted in Mudu village,
Banlun township, Funing county, which is located at an altitude of 1440 m and has an
average annual temperature of 19.8 ◦C and annual precipitation of 1378.8 mm. This area is
more densely populated with the natural distribution of M. oleifera (Figure 1).



Forests 2023, 14, 1493 4 of 16

Forests 2023, 14, x FOR PEER REVIEW 4 of 17 
 

 

has an average annual temperature of 19.8 °C and annual precipitation of 1378.8 mm. This 
area is more densely populated with the natural distribution of M. oleifera (Figure 1). 

 
Figure 1. The location of the study area. 

2.2. Field Surveys of M. oleifera 
In order to identify the canopies of M. oleifera in high-resolution UAV-RGB images, 

the study relied on a combination of field surveys and image analysis. Field surveys were 
conducted from 17 to 19 January, on 17 April, and from 23 to 24 April in 2021. Because M. 
oleifera grows in rocky mountain environments, the field survey was conducted under the 
leadership of local rangers. The M. oleifera with DBH ≥ 5 cm was measured by a diameter 
ruler at a height of the trees of 1.3 m. The tree height of M. oleifera was acquired by a direct 
reading altimeter. A real-time kinematic instrument called ZHD V200 (RTK, Guangzhou 
Hi-Target Navigation Tech Co., Ltd., Guangzhou, China) was used to determine the geo-
graphic location of the M. oleifera. The DBH, tree height, and location of a total of 217 M. 
oleifera trees were collected for subsequent processing and analysis. 

2.3. UAV-RGB Imagery Acquisition and Preprocessing 
This study employed a DJI Phantom 4 RTK multi-rotor drone with an integrated new 

RTK module and a new Time Sync system with a 1” CMOS sensor to acquire true color 
(RGB) images in JPEG format with a resolution of 5472 × 3648 pixels (Table 1). The flight 
campaign was conducted at between 10:00 a.m and 3:00 p.m in the local time on 17 April 
2021 during the flowering stage of M. oleifera. Given the large elevation difference of the 
study area, we utilized the terrain awareness flight mode of the DJI Phantom 4 RTK sys-
tem to obtain the same resolution RGB images. The 30 m digital elevation model (DEM) 
of the study area was downloaded from the Earthdata website (https://www. 
data.nasa.gov/ accessed on 20 March 2021), and was processed into terrain data supported 
by the DJI flight control system. To cover the entire investigation area and ensure flight 
safety, the study area was divided into multiple subareas based on terrain changes. There-
fore, multiple flights were carried out to acquire high-resolution RGB imagery of M. oleif-
era at the same flight height of 100 m. To generate an orthophoto to cover the entire study 
site, the forward and side overlaps were set to 80% and 70%, respectively. 

  

Figure 1. The location of the study area.

2.2. Field Surveys of M. oleifera

In order to identify the canopies of M. oleifera in high-resolution UAV-RGB images,
the study relied on a combination of field surveys and image analysis. Field surveys were
conducted from 17 to 19 January, on 17 April, and from 23 to 24 April in 2021. Because
M. oleifera grows in rocky mountain environments, the field survey was conducted under
the leadership of local rangers. The M. oleifera with DBH ≥ 5 cm was measured by a
diameter ruler at a height of the trees of 1.3 m. The tree height of M. oleifera was acquired
by a direct reading altimeter. A real-time kinematic instrument called ZHD V200 (RTK,
Guangzhou Hi-Target Navigation Tech Co., Ltd., Guangzhou, China) was used to determine
the geographic location of the M. oleifera. The DBH, tree height, and location of a total of
217 M. oleifera trees were collected for subsequent processing and analysis.

2.3. UAV-RGB Imagery Acquisition and Preprocessing

This study employed a DJI Phantom 4 RTK multi-rotor drone with an integrated new
RTK module and a new Time Sync system with a 1” CMOS sensor to acquire true color
(RGB) images in JPEG format with a resolution of 5472 × 3648 pixels (Table 1). The flight
campaign was conducted at between 10:00 a.m and 3:00 p.m in the local time on 17 April
2021 during the flowering stage of M. oleifera. Given the large elevation difference of the
study area, we utilized the terrain awareness flight mode of the DJI Phantom 4 RTK system
to obtain the same resolution RGB images. The 30 m digital elevation model (DEM) of the
study area was downloaded from the Earthdata website (https://data.nasa.gov/ accessed
on 20 March 2021), and was processed into terrain data supported by the DJI flight control
system. To cover the entire investigation area and ensure flight safety, the study area was
divided into multiple subareas based on terrain changes. Therefore, multiple flights were
carried out to acquire high-resolution RGB imagery of M. oleifera at the same flight height
of 100 m. To generate an orthophoto to cover the entire study site, the forward and side
overlaps were set to 80% and 70%, respectively.

https://data.nasa.gov/
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Table 1. The UAV system parameters.

Parameters Numerical and Descriptive Parameters Numerical and Descriptive

UAV models DJI Phantom 4 RTK Range of obstacle
perception/m 0.2–7

Flight height 100 m Image sensors 1′′ CMOS; 20 million effective pixels

Forward overlapping 80% Photograph resolution/pixels 5472 × 3648 (3:2)
4864 × 3648 (4:3)

Side overlapping 70% Spatial resolution/cm 2.74

In this study, based on UAV-RGB, 2547 images of the M. oleifera research area were
collected, excluding distorted ones. Agisoft metashape (Agisoft LLC, St. Petersburg, Russia)
software was used to splice the images obtained by the UAV to obtain digital orthophoto
map (DOM) and digital surface model (DSM) data. The stitching process is shown in
Figure 2.
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2.4. The Canopy Detection of M. oleifera Trees Using Mask R-CNN

The Mask R-CNN network segmentation algorithm was used to extract tree canopies,
as it has been shown to perform better in semantic segmentation compared to traditional
algorithms [47]. The algorithm is improved based on Faster R-CNN, incorporating ideas
from Fully Convolutional Networks (FCNs) and Feature Pyramid Networks (FPNs) with a
Mask branch. The Mask R-CNN has two processing stages; the first stage is responsible
for extracting image features, and the second stage predicts the location and category of
each region of interest, as well as masking for the target object [47,48]. The architecture of
Mask R-CNN is shown in Figure 3. In this study, the Mask R-CNN model construction
and application of the implementation were based on the detectron2 (https://github.
com/facebookresearch/detectron2 accessed on 15 November 2021) platform. Firstly, the
M. oleifera trees in images acquired by the UAV-RGB camera were manually annotated by
the “Labelme” (https://github.com/wkentaro/labelme accessed on 28 November 2021)
image annotation tool to generate a file in JSON format. Then, all images were split
into training images (1016) and testing images (254). The Mask R-CNN model was used
to perform canopy segmentation analysis with an image size of 800 × 800 pixels and
120,000 iterations.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/wkentaro/labelme
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An important application of the Mask R-CNN model is tree canopy detection and
delineation. During the computation, the model provides an overlapping threshold to
average the detection results to avoid bias. The overlapping threshold here refers to the
intersection over union (IoU, Equation (1)) between an individual candidate box and the
actual annotated box. In object detection and segmentation tasks, the IoU is a metric used
to evaluate the accuracy of predicted bounding boxes or segmentation masks.

IoU =
SA∩B
SA∪B

(1)

where A represents the real object area and B represents the predicted bounding box or
segmentation mask. The IoU value is calculated as the ratio between the intersection area
of A and B and the union area of A and B. The IoU value ranges from 0 to 1, where a higher
value indicates a better prediction accuracy of the bounding box or segmentation mask.
This segmentation result is True Positive (TP) when IoU ≥ 0.5, False Positive (FP) when
IoU < 0.5, and False Negative (FN) when the individual wood canopy is incorrectly detected
as background.
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This research evaluated the accuracy of the Mask R-CNN model for M. oleifera individ-
ual tree canopy segmentation using recall (R, Equation (2)), precision (P, Equation (3)), and
F1-score (Equation (4)). The purpose of this evaluation was to determine the performance
of the model and provide insights into its strengths and weaknesses. By evaluating the
model using these metrics, we can determine its accuracy in identifying M. oleifera indi-
vidual tree canopy segments. This can help improve the model and its performance in
future applications.

R =
TP

TP + FN
(2)

P =
TP

TP + FP
(3)

F1-score = 2× P× R
P + R

(4)

where TP is True Positive, FP is False Positive, FN is False Negative, R represents the recall,
and P represents the precision.

2.4.1. M. oleifera Tree Canopy Recognition Results

According to the data in Table 2, the Mask R-CNN model can identify most of the
individual tree canopies of M. oleifera against a complex stand background. However, due
to canopy aggregation, connection, and even overlap in the growth area of M. oleifera, there
are still under-segmentation or difficult segmentation problems.

Table 2. Evaluation of individual tree canopy segmentation results.

Segmentation Results Segmentation Accuracy Evaluation Results

TP FN FP Recall Precision F1-Score

141 30 16 83% 90% 86%

Individual tree canopy segmentation tests were carried out on the test set by the
trained Mask R-CNN model. The results of individual tree canopy splitting of M. oleifera
were obtained (Figure 5) and the segmentation accuracy was 90%.
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2.4.2. CA Extraction

Real-time kinematic (RTK) differential techniques can eliminate ionospheric, tropo-
spheric, and other errors, and these techniques greatly improve the accuracy of the mea-
surement. In this study, the geographic coordinate points of M. oleifera were obtained
through RTK, and the images were processed by the overlay analysis tool in ArcGIS10.7
software (https://www.arcgis.com/ accessed on 5 November 2020). The outline range of
the M. oleifera during the field survey was used to merge the over-segmented canopies and
to adjust the parts of the M. oleifera that were outside the canopy (Figure 6).
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2.5. AGB Estimation of M. oleifera
2.5.1. Establishment and Effectiveness of Allometric Growth Equation

The establishment of the allometric growth equation is a common non-destructive
method of estimating AGB, and its basic mathematical model is a power function. Figure 7
shows the relationship between DBH and CA. The linear model, power function model,
and polynomial model were chosen to fit the data. The power function returned the largest
R2 and was chosen as the optimal equation to fit the data, and DBH was selected as the
independent variable. The allometric equation for CA-DBH was built as Equation (5):

D = aCb (5)

where D is the diameter at breast height of M. oleifera measured by the field survey, C is the
canopy area of individual M. oleifera obtained from UAV-RGB remote sensing images, and
a and b are the relevant parameters obtained by regressing the obtained CA and DBH.

To build a reliable CA-DBH model, the DBH data collected in the field survey cor-
responding to the 120 CAs extracted based on Mask R-CNN were divided into 80% (96)
for model calibration and 20% (24) for model validation using a k-fold cross validation
approach (in this case, 5-fold) [49,50]. The coefficient of determination (R2, Equation (6))
and the significance (P) were used to evaluate the fitting results. The predicted and ob-
served values were subjected to a t-test. The reliability of the model was verified and
evaluated using the mean absolute error (MAE, Equation (7)), the root mean square error
(RMSE, Equation (8)), the relative root mean square error (rRMSE, Equation (9)), and the
Bias (Equation (10)).

R2 = 1− ∑n
i=1
(
yi − ŷi)

2

∑n
i=1(yi − y)2 (6)

MAE =

(
∑n

i=1

∣∣∣∣yi −
^
yi

∣∣∣∣)
n

(7)

RMSE =

√
(∑n

i=1(yi − ŷi)2 )

n
(8)

https://www.arcgis.com/
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rRMSE =

√
(∑n

i=1(yi − ŷi)2 )/n
yi

(9)

Bias = ∑(ŷi − yi)

n
(10)

where yi represents the measured value, ŷi represents the predicted value, yi represents the
average value, and n represents the sample size.
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2.5.2. Selection of Empirical Equation

M. oleifera is an ancient and high-value species, classified as a National Second-Class
Protected Plant, and is rich in oil and nervonic acid. However, its AGB cannot be estimated
by the traditional parsed wood method. Taxonomically, M. oleifera was previously clas-
sified under Lauraceae, and it has the odor of Lauraceae; furthermore, the species of the
Camphor family are evergreen broad-leaved woody oil plants [51]. Their morphological
characteristics and growth environment are also relatively similar (Table 3). M. oleifera and
Cinnamomum camphora have similarities in morphological characteristics, with both having
distinctive features such as dried flowers, petals, stamens, and styles. In addition, the leaves
of both also have some similarities, both presenting a deformed ovate or obovate shape.
In terms of ecological and geographic distribution patterns, both prefer to grow in areas
with abundant rainfall, a warm climate, and fertile soil. M. oleifera is mainly distributed in
southern provinces such as Yunnan and Guangxi, while Cinnamomum camphora is widely
distributed in southern China and Southeast Asia [7,51]. In summary, the M. oleifera and
Cinnamomum camphora have similarities in morphological characteristics, ecological envi-
ronment, geographical distribution, and growth habits. Therefore, the AGB of M. oleifera
was estimated with the empirical AGB equation of Cinnamomum camphora [52]

W = 0.147 × D2.191 (11)

where W is the whole AGB of a tree.
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Table 3. The comparison of M. oleifera and Cinnamomum camphora.

Species of Trees Morphological Characteristics Growth Habits

M. oleifera

Evergreen trees with slightly
longitudinally fissured bark, having

alternate leaves with semi-cylindrical
petioles. They flower from April to

September and fruit from May to October.

Subtropical evergreen broad-leaved species, M.
oleifera is commonly found growing in mountainous
areas at altitudes ranging from about 300–1200 m. It

prefers moist, fertile soils and is often found on
limestone hills, but can also grow on acidic soils in

sandstone and shale areas [51].

Cinnamomum camphora

Evergreen trees; bark with irregular
longitudinal fissures; leaves alternate,

ovate-elliptic; flowering Apr-May, fruit
period August-November.

Subtropical evergreen broad-leaved species adapted
to altitudes below 1800 m, and is light-loving,

slightly shade-tolerant, and prefers a warm and
humid climate. It is suitable for deep fertile acidic or

neutral sandy loam soils [53,54].

3. Results and Analysis
3.1. CA Extraction of M. oleifera Trees Based on UAV-RGB Images

The Mask R-CNN algorithm was utilized to extract the contours of M. oleifera canopies
for a total of 120 plants, achieving an average recognition accuracy of 90% and recall
of 83%. The resulting tree canopy profiles were imported into ArcGIS10.7 software
(https://www.arcgis.com/ accessed on 5 November 2020), and the CA was calculated. The
DBH varied from 5.00 to 65.00 cm, with a mean value of 17.66 cm, while the CA ranged
from 1.500 to 78.58 m2, with a mean value of 18.62 m2 (Table 4).

Table 4. The CA extraction results of M. oleifera based on UAV-RGB images.

Sample Value

n 120
DBH range/cm 5.00–65.00

Average DBH/cm 17.66
CA range/m2 1.50–78.58

Average CA/m2 18.62

3.2. The CA-DBH Model of Individual M. oleifera Tree

The regression analysis results of the power function, linear, and polynomial models
indicated a strong correlation between CA and DBH, with an R2 value above 0.8 for all
models (Table 5). Among the three models, the power function model was identified
as the optimal one for establishing the anisotropic growth model between CA and DBH
(Equation (12)).

D = 3.825 × C0.546 (12)

where D is the DBH of the M. oleifera and C is the area of the individual M. oleifera canopy
measured by UAV-RGB remote sensing images.

Table 5. The fitting results of different models.

No. Models R2

1 Power function 0.755
2 Polynomial 0.739
3 Linear function 0.732

A t-test was performed on the predicted and observed values of the CA-DBH model
for 20% (24) of the validation data set (Table 6). The results showed that the bias of the
DBH predicted by the CA-DBH model and measured DBH was 1.03 cm. The deviation
between the predicted and observed values of the model was not significant (p > 0.05).

https://www.arcgis.com/
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Table 6. The t-test results of the measured and predicted values of DBH of M. oleifera in the
sampled data.

No. Index Value

1 Mean field measured/cm 17.66
2 The standard deviation of field measured/cm 10.91
4 Mean UAV—predicted/cm 16.98
5 The standard deviation of predicted values 9.11

The coefficient of determination R2 0.71
6 Root means square error (RMSE)/cm 5.38
7 Mean absolute error (MAE)/cm 3.79
8 Relative root means square error (rRMSE)/cm 1.27
9 Bias/cm 1.03

3.3. The AGB Estimation of Individual M. oleifera Trees

The empirical equation for the AGB of Cinnamomum camphora (Equation (11)) combines
the fitted CA-DBH model (Equation (12)) to estimate the AGB of individual M. oleifera
trees. The measured DBH was used as validation data to estimate the biomass. The results
indicated that a good estimation accuracy (R2 = 0.69, MAE = 23.04 kg, RMSE = 34.03 kg,
rRMSE = 3.56 kg, Bias = 6.94 kg) was achieved for the AGB of individual M. oleifera trees.

4. Discussion
4.1. The Advantages of UAV-RGB Imagery in Estimating CA in Natural Mixed Forests

Traditional field investigations for estimating forest AGB can be subjective and lead to
deviations in estimates due to different investigator experiences. In recent years, the use of
UAV remote sensing technology has rapidly risen in agriculture, forestry, and other fields.
As a high-value tree species, M. oleifera is sporadically distributed in natural mixed forests
and is difficult to investigate in the field. Consequently, UAV remote sensing technology
is an efficient way to investigate M. oleifera resources. Although many scholars have used
satellite remote sensing images to estimate forest AGB over the past decades [18,22], it is
difficult to estimate the AGB of natural mixed forests using satellite images with relatively
coarse resolution. In contrast, UAV-RGB sensors have centimeter-level resolutions and
can provide different image resolutions by adjusting the flight height. The CA can be
accurately measured, through UAV-RGB centimeter-level imagery, by investigators indoors
(Figure 8). This study set the flight altitude to 100 m, and the resolution of the UAV-RGB
images was about 3.5 cm. The flight mode of imitating landforms is an efficient solution
to the problem of terrain ups and downs. It provides the best image data source for quick
and accurate extraction of M. oleifera canopy information. Additionally, the accuracy of the
canopy extracted by the deep learning algorithm was further improved, providing data
sources and technical references for resource management and the development of the
utilization of M. oleifera.

4.2. The Performance of Mask R-CNN for Obtaining CA of M. oleifera Trees in Natural
Mixed Forests

The Mask R-CNN is a network for object detection and segmentation based on Faster
R-CNN and is extensively used in the technology of image detection, recognition, and
segmentation [47]. Yang Changhui et al. [55] used Mask R-CNN to identify the branches
of citrus trees, and the average recognition accuracy reached 98.15%. In this study, the
CA-DBH allometric growth model was established based on CA and DBH; thus, accurate
extraction of the canopy contour was very crucial for the regression model. Based on
UAV-RGB imagery with a spatial resolution of about 3.5 cm, the Mask R-CNN model
was used to detect and extract the canopy of M. oleifera. Since M. oleifera is sporadically
distributed in natural mixed stands, the stand environment is more complex than artificially
planted citrus orchards. The segmentation accuracy of the M. oleifera canopy in this study
was 90% and the average recall was 83%. This shows that the Mask R-CNN model used
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in this study can recognize the canopy of trees in natural mixed forests and improve CA
measurement efficiency.
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It is a meaningful achievement to quickly and efficiently identify a tree species and
extract its canopy information in a complex forest stand. The Mask R-CNN model is
capable of automatically retrieving accurate CA from UAV-RGB centimeter-level remote
sensing images. Meanwhile, the accurate RTK coordinates of the M. oleifera collected in
the field survey are beneficial to delineate the final M. oleifera CA. The canopy boundary
of the M. oleifera tree extracted based on the Mask R-CNN model was trimmed with the
canopy contours outlined in field investigations, which improved the AGB estimation of
individual M. oleifera trees.

4.3. The Optimal CA-DBH Allometric Growth Model of M. oleifera

This study separately used the linear, polynomial, and power function models to fit
the CAs measured from UAV-RGB images with DBHs investigated in the field of M. oleifera,
and their R2 of all fitting results was above 0.8. This illustrates that there is a high correlation
between them. The R2 of the power function model is the highest among the three models
and was selected to construct the CA-DBH allometric growth model in this study; other
studies had similar findings [56]. It was further demonstrated that the power function
model was more effective for modeling the heterogeneous growth rate of CA and DBH, and
the biomass estimation using this method was reliable. In addition, the high correlation
between CA and DBH of tall tree species such as fir and M. oleifera indicates that the use of
CA to estimate the biomass of individual plants of M. oleifera is feasible.

4.4. AGB Estimation of M. oleifera

Due to M. oleifera being a National Second-Class Protected Plant, it was not possible in
this study to cut the trees to construct an AGB model by traditional methods. Hence, the
AGB model of Cinnamomum camphora was employed to estimate individual AGB values
of the M. oleifera tree due to the similarity of the two species. Both of them are very
similar in appearance and growth habits, belong to subtropical evergreen tree species,
are photophilous plants, mainly grow in fertile soil areas below 1800 m altitude, and
are characterized as woody oil plants with high oil content. Moreover, M. oleifera and
Cinnamomum camphora were both initially classified as Lauraceae. This is a common
approach for the study of rare species; for example, since Aquilaria sinensis is a rare medicinal
plant and a national secondary protected species, its volume is calculated using the binary
volume calculation formula of Schima Crenata [57]. Therefore, it was feasible in this study
to estimate the AGB of the M. oleifera tree with the help of empirical equations used to
estimate the biomass of Cinnamomum camphora.
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This study is the first attempt to estimate the AGB of individual M. oleifera trees, which
fills a gap in the study of the biomass of a special species. Although some studies found that
the AGB is highly correlated with tree height, DBH, crown width, and wood density, more
variables may increase the burden of data acquisition and processing [58]. Therefore, this
study only used one parameter (DBH) to establish the AGB estimation model of individual
M. oleifera trees. This idea is consistent with the previous study by Tang et al. (2009), which
reported that the allometric growth model based on DBH achieved a high R2 of 0.99 for the
AGB of an individual rubber tree.

In addition, since M. oleifera is a key protected species and its measured AGB cannot be
retrieved using a destructive sampling method, in this study, the existing empirical model
of Cinnamomum camphora was used to obtain the measured AGB of M. oleifera. The two
species have more similarities in terms of their morphological characteristics, ecological
environment, geographical distribution, and growth habits. Nonetheless, we also tried to
estimate the biomass of M. oleifera using the AGB estimation equation of Pinus yunnanensis
(Franch) [59] and Quercus spp. [60], which are common tree species in Yunnan Province.
The results showed consistent trends in estimating the AGB of M. oleifera using biomass
estimation models of Pinus yunnanensis, Quercus spp., and Cinnamomum camphora (Figure 9).
The results obtained using the Cinnamomum camphora biomass estimation equation were
more similar to those obtained using the biomass estimation equation of Pinus yunnanensis,
the most common tree species in Yunnan Province [61], further indicating that Cinnamomum
camphora is the most suitable tree species for estimating AGB of M. oleifera. Of course, using
the AGB estimation model of Cinnamomum camphora to estimate the AGB of M. oleifera is
bound to cause some error or uncertainty [61]. Therefore, some dead standing trees of
M. oleifera could be collected to update our model in further research Figure 9.
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5. Conclusions

The estimation of AGB is crucial for monitoring, managing, developing, and uti-
lizing the resources of M. oleifera, a monotypic genus of a national secondary protected
plant. In this study, the combination of centimeter-level UAV-RGB remote sensing images
(3.5 cm/pixel) and the Mask R-CNN model was employed to accurately identify and ex-
tract the canopies of M. oleifera in natural mixed forests. The average segmentation accuracy
of canopy extraction was 90%. A CA-DBH allometric growth model of individual M. oleifera
trees (Equation (12)) was established, and the fitting results showed that CA and DBH are
highly correlated (R2 = 0.755). This indicates that CA can be used to estimate the DBH.
However, due to the unavailability of experimental materials for the M. oleifera tree, an
AGB estimation of the individual tree of M. oleifera was first attempted using the empirical
equation of Cinnamomum camphora (Equation (11)). The results of 24 samples showed that
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the average AGB was 89.789 kg, the average value of the measured AGB was 84.864 kg,
the bias was 6.94 kg, and R2 was 0.69; in addition, the values of MAE, RMSE, and rRMSE
were 23.04 kg, 34.03 kg, and 3.56 kg, respectively. In the future, the Mask R-CNN model
will be optimized to achieve high efficiency and accuracy in the extraction of M. oleifera tree
canopies from centimeter-level resolution UAV-RGB images. Additionally, a three-scale
model of M. oleifera will be established to extract AGB to provide references for monitoring,
managing, developing, and utilizing M. oleifera resources.
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