Analysis of the Natural Aging of Silver Fir (Abies alba Mill.) Structural Timber Using Dendrochronological, Colorimetric, Microscopic and FTIR Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Sample Preparation and Dendrochronological Analysis
2.3. Determination of Wood Color
2.4. Light Microscopy Analysis
2.5. Analysis of Chemical Changes Using FTIR Spectroscopy
Spectral Data Analysis
3. Results
3.1. Growth Characteristics of Wood Samples
3.2. Visual Appearance of Wood Samples
3.3. Analysis of Wood Color
3.4. Light Microscopy Analysis
3.5. FTIR Analysis
4. Discussion
5. Conclusions
- Wood aging, a slow and mild thermal oxidation process, resulted in a decrease in color lightness (L*) and chroma (b*) in the inner part of structural fir wood from the 18th century. This color change is particularly pronounced in latewood.
- Microscopic analysis of the studied historic fir wood by staining and epifluorescence confirmed the increase in lignin content in the juvenile-adult region (JA) relative to the content of hemicelluloses and cellulose, which was also confirmed by FTIR spectroscopy.
- Microscopic analysis of structural fir wood felled in 1772 using polarized light suggests a partly (juvenile-adult (JA) and adult (A) region) increased degree of cellulose crystallinity due to possible degradation of amorphous areas of cellulose and hemicelluloses, which was partially confirmed by FTIR spectroscopy.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kránitz, K.; Sonderegger, W.; Bues, C.T.; Niemz, P. Effects of aging on wood: A literature review. Wood Sci. Technol. 2016, 50, 7–22. [Google Scholar] [CrossRef]
- Froidevaux, J.; Volkmer, T.; Ganne-Chédeville, C.; Gril, J.; Navi, P. Viscoelastic behaviour of aged and non-aged spruce wood in the radial direction. Wood Mater. Sci. Eng. 2012, 7, 1–12. [Google Scholar] [CrossRef]
- Matsuo, M.; Yokoyama, M.; Umemura, K.; Sugiyama, J.; Kawai, S.; Gril, J.; Kubodera, S.; Mitsutani, T.; Ozaki, H.; Sakamoto, M.; et al. Aging of wood: Analysis of color changes during natural aging and heat treatment. Holzforschung 2011, 65, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Sundqvist, B.; Karlsson, O.; Westermark, U. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci. Technol. 2006, 40, 549–561. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood Chemistry Ultrastructure Reactions; Walter de Gruyter: Berlin, Germany, 1989. [Google Scholar]
- Kranitz, K. Effect of Natural Aging on Wood. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2014. [Google Scholar]
- Ganne-Chédeville, C.; Jääskeläinen, A.S.; Froidevaux, J.; Hughes, M.; Navi, P. Natural and artificial ageing of spruce wood as observed by FTIR-ATR and UVRR spectroscopy. Holzforschung 2012, 66, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Hudson-McAulay, K.J. The Structural and Mechanical Integrity of Historic Wood. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2016. Available online: http://theses.gla.ac.uk/7529/ (accessed on 15 March 2021).
- Inagaki, T.; Yonenobu, H.; Tsuchikawa, S. Near-Infrared Spectroscopic Monitoring of the Water Adsorption/Desorption Process in Modern and Archaeological Wood. Appl. Spectrosc. 2009, 62, 860–865. [Google Scholar] [CrossRef]
- Gawron, J.; Szczesna, M.; Zielenkiewicz, T.; Gołofit, T. Cellulose crystallinity index examination in oak wood originated from antique woodwork. Drewno 2012, 188, 109–114. [Google Scholar]
- Kačík, F.; Šmíra, P.; Kačíková, D.; Reinprecht, L.; Nasswettrová, A. Chemical Changes in Fir Wood from Old Buildings due to Ageing. Cellul. Chem. Technol. Cellul. Chem. Technol. 2014, 48, 79–88. [Google Scholar]
- Straže, A.; Dremelj, M.; Žveplan, E.; Čufar, K. Spremembe fizikalnih lastnosti hrastovega lesa iz zgodovinskih konstrukcij v življenjski dobi: Changes in physical properties of oak wood from historical constructions during service life. Les/Wood 2018, 67, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Kojiro, K.; Furuta, Y.; Ohkoshi, M.; Ishimaru, Y.; Yokoyama, M.; Sugiyama, J.; Kawai, S.; Mitsutani, T.; Ozaki, H.; Sakamoto, M.; et al. Changes in micropores in dry wood with elapsed time in the environment. J. Wood Sci. 2008, 54, 515–519. [Google Scholar] [CrossRef]
- Borgin, K.; Faix, O.; Schweers, W. The effect of aging on lignins of wood. Wood Sci. Technol. 1975, 9, 207–211. [Google Scholar] [CrossRef]
- Čufar, K.; Bizjak, M.; Kuzman, M.K.; Merela, M.; Grabner, M.; Brus, R. Castle Pišece, Slovenia—Building history and wood economy revealed by dendrochronology, dendroprovenancing and historical sources. Dendrochronologia 2014, 32, 357–363. [Google Scholar] [CrossRef]
- Čufar, K.; Eržen, T.D.; Krže, L.; Merela, M. Dendrochronological study of painted chests from the collection of the Gorenjska museum in Kran. Les/Wood 2020, 69, 33–45. [Google Scholar] [CrossRef]
- Čufar, K.; Demšar, B.; Beuting, M.; Balzano, A.; Škrk, N.; Krže, L.; Merela, M. Dendrochronological Dating and Provenancing of String Instruments. JoVE (J. Vis. Exp.) 2022, e64591. [Google Scholar] [CrossRef]
- Rydval, M.; Larsson, L.; McGlynn, L.; Gunnarson, B.E.; Loader, N.J.; Young, G.H.; Wilson, R. Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland. Dendrochronologia 2014, 32, 191–204. [Google Scholar] [CrossRef]
- Best, J. Colour Design: Theories and Applications, 2nd ed.; Woodhead Publishing: Delhi, India, 2017. [Google Scholar]
- Prislan, P.; del Castillo, E.M.; Skoberne, G.; Špenko, N.; Gričar, J. Sample preparation protocol for wood and phloem formation analyses. Dendrochronologia 2022, 73, 125959. [Google Scholar] [CrossRef]
- van der Werf, G.W.; Sass-Klaassen, U.G.W.; Mohren, G.M.J. The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 2007, 25, 103–112. [Google Scholar] [CrossRef]
- Čufar, K.; Merela, M.; Erič, M. A Roman barge in the Ljubljanica river (Slovenia): Wood identification, dendrochronological dating and wood preservation research. J. Archaeol. Sci. 2014, 44, 128–135. [Google Scholar] [CrossRef]
- Faix, O. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 1991, 45, 21–28. [Google Scholar] [CrossRef]
- Faix, O.; Böttcher, J.H. The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood. Eur. J. Wood Wood Prod. 1992, 50, 221–226. [Google Scholar] [CrossRef]
- Yilgor, N.; Dogu, D.; Moore, R.; Terzi, E.; Kartal, S.N. Evaluation of fungal deterioration in liquidambar orientalis mill. Heartwood by FT-IR and light microscopy. BioResources 2013, 8, 2805–2826. [Google Scholar] [CrossRef] [Green Version]
- Schultz, T.P.; Glasser, W.G. Quantitave structural analysis of lignin by diffusive reflectance fourier transform spectrometry. Holzforschung 1986, 40, 37–44. [Google Scholar]
- Pandey, K.; Theagarajan, K. Analysis of wood surfaces and ground wood by diffuse reflectance (DRIFT) and photoacoustic (PAS) Fourier Transform Infrared Spectroscopic techniques. Eur. J. Wood Wood Prod. 1997, 55, 383–390. [Google Scholar] [CrossRef]
- Parente, J.P.; Adão, C.R.; Da Silva, B.P.; Tinoco, L.W. Structural characterization of an acetylated glucomannan with antiinflammatory activity and gastroprotective property from Cyrtopodium andersonii. Carbohydr. Res. 2014, 391, 16–21. [Google Scholar] [CrossRef]
- Pawar, P.M.A.; Koutaniemi, S.; Tenkanen, M.; Mellerowicz, E.J. Acetylation of woody lignocellulose: Significance and regulation. Front. Plant Sci. 2013, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Kobal, M.; Grčman, H.; Zupan, M.; Levanič, T.; Simončič, P.; Kadunc, A.; Hladnik, D. Influence of soil properties on silver fir (Abies alba Mill.) growth in the Dinaric Mountains. For. Ecol. Manag. 2015, 337, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Manetti, M.C.; Cutini, A. Tree-ring growth of silver fir (Abies alba Mill.) in two stands under different silvicultural systems in central Italy. Dendrochronologia 2006, 23, 145–150. [Google Scholar] [CrossRef]
- Čater, M.; Kobler, A. Light response of Fagus sylvatica L. and Abies alba Mill. in different categories of forest edge—Vertical abundance in two silvicultural systems. For. Ecol. Manag. 2017, 391, 417–426. [Google Scholar] [CrossRef]
- Zobel, B.J.; van Buijtenen, J.P. Wood Variation: Its Causes and Control; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Gorišek, Ž.; Torelli, N. Microfibril Angle in Juvenile, Adult and Compression Wood of Spruce and Silver Fir. Phyton (B. Aires) 1999, 39, 129–132. [Google Scholar]
- Andersson, S.; Wikberg, H.; Pesonen, E.; Maunu, S.L.; Serimaa, R. Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees-Struct. Funct. 2004, 18, 346–353. [Google Scholar] [CrossRef]
- Bertaud, F.; Holmbom, B. Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci. Technol. 2004, 38, 245–256. [Google Scholar] [CrossRef]
- Tomassetti, M.; Campanella, L.; Tomellini, R. Thermogravimetric analysis of ancient and fresh woods. Thermochim. Acta 1990, 170, 51–65. [Google Scholar] [CrossRef]
- Tsuchikawa, S.; Yonenobu, H.; Siesler, H.W. Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method. Analyst 2005, 130, 379–384. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dremelj, M.; Novak, K.; Merela, M.; Straže, A. Analysis of the Natural Aging of Silver Fir (Abies alba Mill.) Structural Timber Using Dendrochronological, Colorimetric, Microscopic and FTIR Techniques. Forests 2023, 14, 1363. https://doi.org/10.3390/f14071363
Dremelj M, Novak K, Merela M, Straže A. Analysis of the Natural Aging of Silver Fir (Abies alba Mill.) Structural Timber Using Dendrochronological, Colorimetric, Microscopic and FTIR Techniques. Forests. 2023; 14(7):1363. https://doi.org/10.3390/f14071363
Chicago/Turabian StyleDremelj, Matjaž, Klemen Novak, Maks Merela, and Aleš Straže. 2023. "Analysis of the Natural Aging of Silver Fir (Abies alba Mill.) Structural Timber Using Dendrochronological, Colorimetric, Microscopic and FTIR Techniques" Forests 14, no. 7: 1363. https://doi.org/10.3390/f14071363
APA StyleDremelj, M., Novak, K., Merela, M., & Straže, A. (2023). Analysis of the Natural Aging of Silver Fir (Abies alba Mill.) Structural Timber Using Dendrochronological, Colorimetric, Microscopic and FTIR Techniques. Forests, 14(7), 1363. https://doi.org/10.3390/f14071363