Decision-Tree Application to Predict and Spatialize the Wood Productivity Probabilities of Eucalyptus Plantations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Forest Datasets
2.3. Environmental Datasets
2.4. Decision-Tree Modeling
2.5. Eucalyptus Forest Productivity Zoning
3. Results and Discussion
3.1. Climate Modeling
3.2. Decision-Tree Modeling

3.3. Innovations in Decision-Tree Use


| Forest Zone | Leaf Node (m3 ha−1) | Aridity (PET/R) | Altitude (m) | Soil Order | Soil Texture | 15th (m3 ha−1) | 50th (m3 ha−1) | 85th (m3 ha−1) | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Zone 01 | 386 | when | is | 0.59 | to | 0.64 | and | >= | 900 | and | is | C, G, L, or T | and | is | a | 308 | 395 | 462 | ||
| Zone 02 | 369 | when | is | 0.62 | to | 0.65 | and | is | 720 | to | 760 | and | is | C, G, L, or T | 307 | 368 | 419 | |||
| Zone 03 | 358 | when | is | 0.59 | to | 0.64 | and | is | 800 | to | 900 | and | is | L | 300 | 364 | 412 | |||
| Zone 04 | 354 | when | is | 0.59 | to | 0.64 | and | >= | 900 | and | is | C, G, L, or T | and | is | m | 291 | 351 | 418 | ||
| Zone 05 | 353 | when | < | 0.46 | and | >= | 980 | and | is | C, G, L, or T | 275 | 362 | 420 | |||||||
| Zone 06 | 349 | when | is | 0.61 | to | 0.73 | and | < | 720 | and | is | A, M, or N | and | is | m | 292 | 354 | 410 | ||
| Zone 07 | 346 | when | is | 0.62 | to | 0.70 | and | is | 780 | to | 800 | and | is | C, G, L, or T | 302 | 344 | 397 | |||
| Zone 08 | 345 | when | is | 0.67 | to | 0.74 | and | < | 720 | and | is | C, G, L, or T | and | is | a | 290 | 348 | 397 | ||
| Zone 09 | 341 | when | is | 0.65 | to | 0.74 | and | is | 720 | to | 760 | and | is | C, G, L, or T | 272 | 342 | 396 | |||
| Zone 10 | 338 | when | is | 0.67 | to | 0.74 | and | < | 620 | and | is | C, G, L, or T | and | is | m or r | 288 | 338 | 389 | ||
| Zone 11 | 337 | when | is | 0.64 | to | 0.74 | and | is | 800 | to | 900 | and | is | C, G, L, or T | 270 | 346 | 393 | |||
| Zone 12 | 334 | when | is | 0.46 | to | 0.59 | and | >= | 980 | and | is | C, G, L, or T | 261 | 349 | 405 | |||||
| Zone 13 | 333 | when | is | 0.59 | to | 0.64 | and | is | 800 | to | 900 | and | is | C | 266 | 335 | 402 | |||
| Zone 14 | 331 | when | < | 0.47 | and | < | 980 | and | is | C, G, L, or T | 256 | 336 | 403 | |||||||
| Zone 15 | 328 | when | < | 0.74 | and | is | 720 | to | 800 | and | is | A, M, or N | and | is | a or m | 246 | 324 | 404 | ||
| Zone 16 | 327 | when | is | 0.61 | to | 0.73 | and | < | 720 | and | is | A, M, or N | and | is | a or r | 277 | 324 | 377 | ||
| Zone 17 | 326 | when | is | 0.67 | to | 0.74 | and | is | 620 | to | 720 | and | is | C, G, L, or T | and | is | m or r | 281 | 324 | 370 |
| Zone 18 | 324 | when | is | 0.62 | to | 0.70 | and | is | 760 | to | 780 | and | is | C, G, L, or T | 264 | 322 | 373 | |||
| Zone 19 | 315 | when | is | 0.62 | to | 0.67 | and | < | 720 | and | is | C, G, L, or T | 229 | 332 | 420 | |||||
| Zone 20 | 308 | when | is | 0.64 | to | 0.74 | and | >= | 900 | and | is | C, G, L, or T | 260 | 308 | 351 | |||||
| Zone 21 | 299 | when | is | 0.50 | to | 0.59 | and | is | 800 | to | 980 | and | is | C, G, L, or T | 245 | 298 | 359 | |||
| Zone 22 | 297 | when | is | 0.73 | to | 0.74 | and | < | 720 | and | is | A, M, or N | 227 | 285 | 341 | |||||
| Zone 23 | 294 | when | is | 0.74 | to | 0.77 | and | is | m | 254 | 298 | 336 | ||||||||
| Zone 24 | 290 | when | < | 0.74 | and | >= | 800 | and | is | A, M, or N | and | is | a or m | 235 | 295 | 358 | ||||
| Zone 25 | 277 | when | is | 0.50 | to | 0.59 | and | < | 800 | and | is | C, G, L, or T | 215 | 286 | 340 | |||||
| Zone 26 | 276 | when | is | 0.77 | to | 0.82 | and | is | m | 232 | 274 | 321 | ||||||||
| Zone 27 | 273 | when | is | 0.70 | to | 0.74 | and | is | 760 | to | 800 | and | is | C, G, L, or T | 238 | 277 | 312 | |||
| Zone 28 | 269 | when | < | 0.74 | and | >= | 720 | and | is | A, M, or N | and | is | r | 204 | 272 | 326 | ||||
| Zone 29 | 267 | when | is | 0.74 | to | 0.82 | and | < | 640 | and | is | a or r | 230 | 264 | 307 | |||||
| Zone 30 | 265 | when | < | 0.61 | and | < | 720 | and | is | A, M, or N | 206 | 275 | 334 | |||||||
| Zone 31 | 263 | when | is | 0.47 | to | 0.50 | and | < | 980 | and | is | C, G, L, or T | 200 | 264 | 326 | |||||
| Zone 32 | 245 | when | >= | 0.82 | and | < | 520 | 210 | 241 | 284 | ||||||||||
| Zone 33 | 242 | when | is | 0.74 | to | 0.82 | and | >= | 640 | and | is | a or r | 199 | 244 | 288 | |||||
| Zone 34 | 240 | when | is | 0.59 | to | 0.62 | and | < | 800 | and | is | C, G, L, or T | 194 | 238 | 289 | |||||
| Zone 35 | 228 | when | >= | 0.82 | and | >= | 520 | 187 | 226 | 268 | ||||||||||
3.4. Decision-Tree Spatialization

3.5. Yield Gap Approach
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, X.; Engel, B.A.; Qian, H.; Hua, E.; Sun, S.; Wang, Y. Will reaching the maximum achievable yield potential meet future global food demand? J. Clean. Prod. 2021, 294, 126285. [Google Scholar] [CrossRef]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef] [PubMed]
- Verkerk, P.J.; Hassegawa, M.; Van Brusselen, J.; Cramm, M.; Chen, X.; Imparato Maximo, Y.; Koç, M.; Lovrić, M.; Tekle Tegegne, Y. The Role of Forest Products in the Global Bioeconomy—Enabling Substitution by Wood-Based Products and Contributing to the Sustainable Development Goals; FAO on Behalf of the Advisory Committee on Sustainable Forestbased Industries (ACSFI): Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Binkley, D.; Campoe, O.C.; Alvares, C.A.; Carneiro, R.L.; Stape, J.L. Variation in whole-rotation yield among Eucalyptus genotypes in response to water and heat stresses: The TECHS project. For. Ecol. Manag. 2020, 462, 117953. [Google Scholar] [CrossRef]
- Binkley, D.; Campoe, O.C.; Alvares, C.; Carneiro, R.L.; Cegatta, R.L.; Stape, J.L. The interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and Uruguay. For. Ecol. Manag. 2017, 405, 271–283. [Google Scholar] [CrossRef]
- Gonçalves, J.L.M.; Alvares, C.A.; Higa, A.R.; Silva, L.D.; Alfenas, A.C.; Stahl, J.; Ferraz, S.F.B.; Lima, W.P.; Brancalion, P.H.S.; Hubner, A.; et al. Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For. Ecol. Manag. 2013, 301, 6–27. [Google Scholar] [CrossRef]
- Alvares, C.A.; Sentelhas, P.C.; Chou, S.C. Future Climate Projections in South America and Their Influence on Forest Plantations, 1st ed.; IPEF—Instituto de Pesquisas e Estudos Florestais: Piracicaba, Brazil, 2021; 96p. [Google Scholar]
- Gonçalves, J.L.; Alvares, A.C.; Rocha, J.H.; Brandani, C.B.; Hakamada, R. Eucalypt plantation management in regions with water stress. South. For. J. For. Sci. 2017, 79, 169–183. [Google Scholar] [CrossRef]
- da Cunha, T.Q.G.; Santos, A.C.; Novaes, E.; Hansted, A.L.S.; Yamaji, F.M.; Sette Júnior, C.R. Eucalyptus expansion in Brazil: Energy yield in new forest frontiers. Biomass-Bioenergy 2020, 144, 105900. [Google Scholar] [CrossRef]
- Tupinambá-Simões, F.; Bravo, F.; Guerra-Hernández, J.; Pascual, A. Assessment of drought effects on survival and growth dynamics in eucalypt commercial forestry using remote sensing photogrammetry. A showcase in Mato Grosso, Brazil. For. Ecol. Manag. 2022, 505, 119930. [Google Scholar] [CrossRef]
- Elli, E.F.; Sentelhas, P.C.; de Freitas, C.H.; Carneiro, R.L.; Alvares, C.A. Assessing the growth gaps of Eucalyptus plantations in Brazil–Magnitudes, causes and possible mitigation strategies. For. Ecol. Manag. 2019, 451, 117464. [Google Scholar] [CrossRef]
- Gava, J.L.; Gonçalves, J.L.M. Soil attributes and wood quality for pulp production in plantations of Eucalyptus grandis clone. Sci. Agricola 2008, 65, 306–313. [Google Scholar] [CrossRef]
- Elli, E.F.; Sentelhas, P.C.; de Freitas, C.H.; Carneiro, R.L.; Alvares, C.A. Intercomparison of structural features and performance of Eucalyptus simulation models and their ensemble for yield estimations. For. Ecol. Manag. 2019, 450, 117493. [Google Scholar] [CrossRef]
- Scolforo, H.F.; McTague, J.P.; Burkhart, H.; Roise, J.; Alvares, C.A.; Stape, J.L. Site index estimation for clonal eucalypt plantations in Brazil: A modeling approach refined by environmental variables. For. Ecol. Manag. 2020, 466, 118079. [Google Scholar] [CrossRef]
- Reddy, G.P.O.; Kumar, N. Data Science—Algorithms and Applications in Earth Observation. In Data Science in Agriculture and Natural Resource Management. Studies in Big Data; Reddy, G.P.O., Raval, M.S., Adinarayana, J., Chaudhary, S., Eds.; Springer: Singapore, 2022; Volume 96. [Google Scholar] [CrossRef]
- Divakaran, S. Data Science: Principles and Concepts in Modeling Decision Trees. In Data Science in Agriculture and Natural Resource Management. Studies in Big Data; Reddy, G.P.O., Raval, M.S., Adinarayana, J., Chaudhary, S., Eds.; Springer: Singapore, 2022; Volume 96. [Google Scholar] [CrossRef]
- Barbosa, L.O.; Costa, E.A.; Schons, C.T.; Finger, C.A.G.; Liesenberg, V.; Bispo, P.D.C. Individual Tree Basal Area Increment Models for Brazilian Pine (Araucaria angustifolia) Using Artificial Neural Networks. Forests 2022, 13, 1108. [Google Scholar] [CrossRef]
- Shi, M.; Xu, J.; Liu, S.; Xu, Z. Productivity-Based Land Suitability and Management Sensitivity Analysis: The Eucalyptus E. urophylla × E. grandis Case. Forests 2022, 13, 340. [Google Scholar] [CrossRef]
- Sotomayor, L.N.; Cracknell, M.J.; Musk, R. Supervised machine learning for predicting and interpreting dynamic drivers of plantation forest productivity in northern Tasmania, Australia. Comput. Electron. Agric. 2023, 209, 107804. [Google Scholar] [CrossRef]
- Elavarasan, D.; Vincent, D.R.; Sharma, V.; Zomaya, A.Y.; Srinivasan, K. Forecasting yield by integrating agrarian factors and machine learning models: A survey. Comput. Electron. Agric. 2018, 155, 257–282. [Google Scholar] [CrossRef]
- Pant, J.; Pant, R.; Singh, M.K.; Singh, D.P.; Pant, H. Analysis of agricultural crop yield prediction using statistical techniques of machine learning. Mater. Today Proc. 2021, 46, 10922–10926. [Google Scholar] [CrossRef]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Ghaffarian, S.; van der Voort, M.; Valente, J.; Tekinerdogan, B.; de Mey, Y. Machine learning-based farm risk management: A systematic mapping review. Comput. Electron. Agric. 2022, 192, 106631. [Google Scholar] [CrossRef]
- de Almeida, G.M.; Pereira, G.T.; Bahia, A.S.R.D.S.; Fernandes, K.; Júnior, J.M. Machine learning in the prediction of sugarcane production environments. Comput. Electron. Agric. 2021, 190, 106452. [Google Scholar] [CrossRef]
- Dos Reis, A.A.; Franklin, S.E.; de Mello, J.M.; Junior, F.W.A. Volume estimation in a Eucalyptus plantation using multi-source remote sensing and digital terrain data: A case study in Minas Gerais State, Brazil. Int. J. Remote Sens. 2019, 40, 2683–2702. [Google Scholar] [CrossRef]
- de Freitas, E.C.S.; de Paiva, H.N.; Neves, J.C.L.; Marcatti, G.E.; Leite, H.G. Modeling of eucalyptus productivity with artificial neural networks. Ind. Crops Prod. 2020, 146, 112149. [Google Scholar] [CrossRef]
- Miranda, E.N.; Barbosa, B.H.G.; Silva, S.H.G.; Monti, C.A.U.; Tng, D.Y.P.; Gomide, L.R. Variable selection for estimating individual tree height using genetic algorithm and random forest. For. Ecol. Manag. 2022, 504, 119828. [Google Scholar] [CrossRef]
- Silva, J.P.M.; da Silva, M.L.M.; de Mendonça, A.R.; da Silva, G.F.; de Barros Junior, A.A.; da Silva, E.F.; Aguiar, M.O.; Santos, J.S.; Rodrigues, N.M.M. Prognosis of forest production using machine learning techniques. Inf. Process. Agric. 2021, 10, 71–84. [Google Scholar]
- Santos, J.S.; de Mendonça, A.R.; Gonçalves, F.G.; da Silva, G.F.; de Almeida, A.Q.; Carvalho, S.d.P.C.E.; Silva, J.P.M.; Carvalho, R.C.; da Silva, E.F.; Aguiar, M.O. Predicting eucalyptus plantation growth and yield using Landsat imagery in Minas Gerais, Brazil. Ecol. Inform. 2023, 75, 102120. [Google Scholar] [CrossRef]
- Harris, N.; Goldman, E.D.; Gibbes, S. Spatial Database of Planted Trees (SDPT VERSION 1.0); WRI: Washington, DC, USA, 2019. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Alvares, C.A.; Sentelhas, P.C.; Stape, J.L. Modeling monthly meteorological and agronomic frost days, based on minimum air temperature, in Center-Southern Brazil. Theor. Appl. Clim. 2018, 134, 177–191. [Google Scholar] [CrossRef]
- Radambrasil, P. Levantamento de Recursos Naturais; Ministério das Minas e Energia, Departamento Nacional da Produção Mineral, Projeto Radambrasil: Brasília, Brazil, 1973.
- IPT—Instituto de Pesquisas Tecnológicas. Mapa Geológico do Estado de São Paulo, 1:500,000, Nota Explicativa; IPT: São Paulo, Brazil, 1981; 126p. [Google Scholar]
- Perrota, M.M.; Salvador, E.D.; Lopes, R.C.; D’Agostinho, L.Z.; Peruffo, N.; Gomes, S.D.; Sachs, L.L.B.; Meira, V.T.; Garcia, M.G.M.; Lacerda Filho, J.V. Mapa Geológico do Estado de São Paulo, Escala 1:750,000; Programa Geologia do Brasil—PGB, CPRM: São Paulo, Brazil, 2005.
- Alvares, C.A. Mapeamento e Modelagem Edafoclimática da Produtividade de Plantações de Eucalyptus no Sul do Estado de São Paulo. Ph.D. Thesis, University of São Paulo, Piracicaba, Brazil, 2011. Available online: www.teses.usp.br/teses/disponiveis/11/11150/tde-23052011-161837/en.php (accessed on 5 January 2021).
- Flores, T.B.; Alvares, C.A.; Souza, V.C.; Stape, J.L. Eucalyptus in Brazil: Climatic Zoning and Identification Guide; IPEF: Piracicaba, Brazil, 2018.
- EMBRAPA. Sistema Brasileiro de Classificação de Solos, 3rd ed.; Embrapa Produção de Informação: Brasília, Brazil; Embrapa Solos: Rio de Janeiro, Brazil, 2015; 353p. [Google Scholar]
- Soil Survey Staff. Illustrated Guide to Soil Taxonomy; U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2015.
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily gridded meteorological variables in Brazil (1980–2013). Int. J. Clim. 2016, 36, 2644–2659. [Google Scholar] [CrossRef]
- Stackhouse, P.W.; Zhang, T.; Westber, D.; Barnett, A.J.; Bristow, T.; Macpherson, B.; Hoell, J.M.; Hamilton, B.A. POWER Release 8.0.1 (with GIS Applications) Methodology (Data Parameters, Sources, Validation); Technical Report; NASA Langley Research Center: Hampton, VA, USA, 2018.
- Burrough, P.A.; McDonnell, R.A. Principles of Geographical Information Systems; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M. Modeling monthly mean air temperature for Brazil. Theor. Appl. Climatol. 2013, 113, 407–427. [Google Scholar] [CrossRef]
- Tomlin, C.D. Geographic Information Systems and Cartographic Modelling; Prentice Hall: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
- ArcGIS 10; ESRI—Environmental Systems Research Institute, Inc.: Redlands, CA, USA, 2010; Available online: https://www.arcgis.com/index.html (accessed on 20 January 2021).
- Farr, T.G.; Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Am. Geophys. Union Eos 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4. Available from the CGIAR-CSI SRTM 90m Database. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 20 January 2021).
- Theobald, D.M. GIS Concepts and ArcGIS Methods, 3rd ed.; Conservation Planning Technologies: Fort Collins, CO, USA, 2007. [Google Scholar]
- Ormsby, T.; Napoleon, E.; Burke, R.; Groessl, C.; Bowden, L. Getting to know ArcGIS Desktop: Updated for ArcGIS 10, 2nd ed.; ESRI Press: Redlands, Australia, 2010. [Google Scholar]
- Allen, D.W. Getting to Know ArcGIS ModelBuilder; ESRI Press: Redlands, Australia, 2011. [Google Scholar]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Chen, X.; Zhou, P.; Liu, X.; Xiao, Y.; Sun, G.; Scott, D.F.; Zhou, S.; Han, L.; et al. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 2015, 6, 5918. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, R.M.; Carneiro, R.L.; Campoe, O.; Alvares, C.A.; Figura, M.A.; Moreira, G.G. Contrasting water use of two Eucalyptus clones across a precipitation and temperature gradient in Brazil. For. Ecol. Manag. 2020, 475, 118407. [Google Scholar] [CrossRef]
- Therneau, T.; Atkinson, B.; Ripley, B. Rpart: Recursive Partitioning and Regression Trees. R Package Version 4.1-10. 2015. Available online: https://cran.r-project.org/web/packages/rpart/index.html (accessed on 1 February 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Project: Vienna, Austria, 2017; Available online: https://www.r-project.org/ (accessed on 20 January 2021).
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Rossi, M. Mapa Pedológico do Estado de São Paulo: Revisado e Ampliado; Instituto Florestal: São Paulo, Brazil, 2017; Volume 1, p. 118. [Google Scholar]
- Matheron, G. The Theory of Regionalized Variables and Its Applications; Ecole de Mines: Fontainbleau, France, 1971; 211p. [Google Scholar]
- Diniz, F.D.A.; Ramos, A.M.; Rebello, E.R.G. Normais Climatológicas do Brasil 1981–2010. Pesqui. Agropecuária Bras. 2018, 53, 131–143. [Google Scholar] [CrossRef]
- Ranhao, S.; Baiping, Z.; Jing, T. A Multivariate Regression Model for Predicting Precipitation in the Daqing Mountains. Mt. Res. Dev. 2008, 28, 318–325. [Google Scholar] [CrossRef]
- Dias, S.H.B.; Filgueiras, R.; Filho, E.I.F.; Arcanjo, G.S.; da Silva, G.H.; Mantovani, E.C.; da Cunha, F.F. Reference evapotranspiration of Brazil modeled with machine learning techniques and remote sensing. PLoS ONE 2021, 16, e0245834. [Google Scholar] [CrossRef]
- Ryan, M.G.; Stape, J.L.; Binkley, D.; Alvares, C.A. Cross-site patterns in the response of Eucalyptus plantations to irrigation, climate and intra-annual weather variation. For. Ecol. Manag. 2020, 475, 118444. [Google Scholar] [CrossRef]
- Rossit, D.A.; Olivera, A.; Céspedes, V.V.; Broz, D. A Big Data approach to forestry harvesting productivity. Comput. Electron. Agric. 2019, 161, 29–52. [Google Scholar] [CrossRef]
- Campoe, O.C.; Munhoz, J.S.; Alvares, C.A.; Carneiro, R.L.; de Mattos, E.M.; Ferez, A.P.C.; Stape, J.L. Meteorological seasonality affecting individual tree growth in forest plantations in Brazil. For. Ecol. Manag. 2016, 380, 149–160. [Google Scholar] [CrossRef]
- Scolforo, H.F.; McTague, J.P.; Burkhart, H.; Roise, J.; Alvares, C.A.; Stape, J.L. Modeling whole-stand survival in clonal eucalypt stands in Brazil as a function of water availability. For. Ecol. Manag. 2019, 432, 1002–1012. [Google Scholar] [CrossRef]
- Elli, E.F.; Huth, N.; Sentelhas, P.C.; Carneiro, R.L.; Alvares, C.A. Ability of the APSIM Next Generation Eucalyptus model to simulate complex traits across contrasting environments. Ecol. Model. 2020, 419, 108959. [Google Scholar] [CrossRef]
- Pinheiro, R.C.; Bouillet, J.-P.; Bordron, B.; Aló, L.L.; Costa, V.E.; Alvares, C.A.; Meersche, K.V.D.; Stape, J.L.; Guerrini, I.A.; Laclau, J.-P. Distance from the trunk and depth of uptake of labelled nitrate for dominant and suppressed trees in Brazilian Eucalyptus plantations: Consequences for fertilization practices. For. Ecol. Manag. 2019, 447, 95–104. [Google Scholar] [CrossRef]
- Silva, V.E.; Nogueira, T.A.R.; Abreu-Junior, C.H.; He, Z.; Buzetti, S.; Laclau, J.-P.; Filho, M.C.M.T.; Grilli, E.; Murgia, I.; Capra, G.F. Influences of edaphoclimatic conditions on deep rooting and soil water availability in Brazilian Eucalyptus plantations. For. Ecol. Manag. 2020, 455, 117673. [Google Scholar] [CrossRef]
- Almeida, A.C.; Landsberg, J.J.; Sands, P.J. Parameterisation of 3-PG model for fast-growing Eucalyptus grandis plantations. For. Ecol. Manag. 2004, 193, 179–195. [Google Scholar] [CrossRef]
- Lemos, C.C.Z.; Hakamada, R.E.; Carrero, O.; Alvares, C.A.; Stape, J.L. Estimation, zoning and sensitive analyses of forest productivity of Eucalyptus in northeast São Paulo using the 3-PG model. Sci. For. 2018, 119, 459–471. [Google Scholar]
- Attia, A.; Nouvellon, Y.; Cuadra, S.; Cabral, O.; Laclau, J.-P.; Guillemot, J.; Campoe, O.; Stape, J.-L.; Galdos, M.; Lamparelli, R.; et al. Modelling carbon and water balance of Eucalyptus plantations at regional scale: Effect of climate, soil and genotypes. For. Ecol. Manag. 2019, 449, 117460. [Google Scholar] [CrossRef]
- Caldeira, D.R.M.; Alvares, C.A.; Campoe, O.C.; Hakamada, R.E.; Guerrini, I.A.; Cegatta, R.; Stape, J.L. Multisite evaluation of the 3-PG model for the highest phenotypic plasticity Eucalyptus clone in Brazil. For. Ecol. Manag. 2020, 462, 117989. [Google Scholar] [CrossRef]
- Elli, E.F.; Sentelhas, P.C.; Huth, N.; Carneiro, R.L.; Alvares, C.A. Gauging the effects of climate variability on Eucalyptus plantations productivity across Brazil: A process-based modelling approach. Ecol. Indic. 2020, 114, 106325. [Google Scholar] [CrossRef]
- Marcatti, G.E.; Resende, R.T.; Resende, M.D.V.; Ribeiro, C.A.A.; dos Santos, A.R.; da Cruz, J.P.; Leite, H.G. GIS-based approach applied to optimizing recommendations of Eucalyptus genotypes. For. Ecol. Manag. 2017, 392, 144–153. [Google Scholar] [CrossRef]
- Scolforo, H.F.; McTague, J.P.; Burkhart, H.; Roise, J.; McCarter, J.; Alvares, C.A.; Stape, J.L. Stand-level growth and yield model system for clonal eucalypt plantations in Brazil that accounts for water availability. For. Ecol. Manag. 2019, 448, 22–33. [Google Scholar] [CrossRef]
- Smethurst, P.J.; Valadares, R.V.; Huth, N.I.; Almeida, A.C.; Elli, E.F.; Neves, J.C. Generalized model for plantation production of Eucalyptus grandis and hybrids for genotype-site-management applications. For. Ecol. Manag. 2020, 469, 118164. [Google Scholar] [CrossRef]
- Binkley, D. Editorial: Four tips for communicating clearly with readers: Designs, interpretations, and statistics. Trees For. People 2020, 2, 100010. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvares, C.A.; Cegatta, Í.R.; Scolforo, H.F.; Mafia, R.G. Decision-Tree Application to Predict and Spatialize the Wood Productivity Probabilities of Eucalyptus Plantations. Forests 2023, 14, 1334. https://doi.org/10.3390/f14071334
Alvares CA, Cegatta ÍR, Scolforo HF, Mafia RG. Decision-Tree Application to Predict and Spatialize the Wood Productivity Probabilities of Eucalyptus Plantations. Forests. 2023; 14(7):1334. https://doi.org/10.3390/f14071334
Chicago/Turabian StyleAlvares, Clayton Alcarde, Ítalo Ramos Cegatta, Henrique Ferraço Scolforo, and Reginaldo Gonçalves Mafia. 2023. "Decision-Tree Application to Predict and Spatialize the Wood Productivity Probabilities of Eucalyptus Plantations" Forests 14, no. 7: 1334. https://doi.org/10.3390/f14071334
APA StyleAlvares, C. A., Cegatta, Í. R., Scolforo, H. F., & Mafia, R. G. (2023). Decision-Tree Application to Predict and Spatialize the Wood Productivity Probabilities of Eucalyptus Plantations. Forests, 14(7), 1334. https://doi.org/10.3390/f14071334

