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Abstract: Brazil is one of the world’s wood short-fiber producers, cultivating 7.5 million hectares
of eucalypt trees. Foresters and resource managers often face difficulties in surveying reliable
Eucalyptus productivity levels for the purpose of purchasing and prospecting lands. Spatial data
science (DS) and machine learning (ML) provide powerful approaches to make the best use of the
large datasets available today. Agriculture has made great use of these approaches, and in this paper,
we explore how forestry can benefit as well. We hypothesized that both DS and ML techniques
can be used to improve Eucalyptus productivity zoning based on multiple operational datasets of
tree growth and environment. Based on more than 12,000 permanent forest inventory plots of
commercial Eucalyptus plantations and the climate, soil, and altitude variables associated with them,
a supervised ML approach was adjusted to model the forest plantation productivity. A multi-tuning
of the decision-tree (DT) algorithm hyperparameters was prepared to yield 450 DT models, with
a better one delivering an RMSE of 53.5 m3 ha−1, split in 35 terminal nodes, here interpreted as
Eucalyptus productivity zones. The DT model showed an optimum performance index of 0.83, a
coefficient of determination of 0.91, a root mean squared error of 12.3 m3 ha−1, and a mean absolute
percentage error only of 3.1% in predicting the testing dataset throughout the study area. The DT
rule set was interpreted in a user-friendly table and was prepared to classify any location within the
study area in each one of the 35 productivity zones based on the required environment variables
of the DT algorithm. The high quality of the model obtained made it possible to spatialize the DT
rules, providing a reliable cartographic visualization of the probability levels of true Eucalyptus
productivity for a huge region of forest-based industries in Brazil. These data-science techniques also
provided a yield gap analysis using a very down-to-earth approach. We estimated a yield gap by
an amount of 4.2 × 107 m3, representing a few more than 113,000 ha, or 15% of the current forest
base. This is the amount of avoided area expansion to accumulate the same wood stock in case
the productivity is raised to the attainable level in each zone. This present study provided deeper
analysis and reproducible tools to manage forest assets sustainably.

Keywords: forest inventory; spatial data science; machine learning tuning; yield gap; forest plantations

1. Introduction

Growing global demand for food and fiber [1], which added to the impacts of climate
change [2], will require more efficient and resilient actions to consolidate the bioeconomy
as a global economic system [3]. At the end of the day, the forest scientists and resource
managers will provide more wood volume on less land.

Brazil is one of the world’s short-fiber wood baskets, home to some of the most
productive and important multipurpose Eucalyptus plantations on the globe [4]. The
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country holds 7.5 million hectares of Eucalyptus plantations managed for the production
of charcoal, panels, laminate flooring, paper, and mainly cellulose. The sector industries
produced 21 million tons of pulp in 2020, seeing a strong increase of 90% in pulp exportation
in the last 10 years worldwide (https://iba.org/eng, (accessed on 10 January 2022).

Historically, intensive research and development into forest growth in Southeastern
Brazil outstandingly resulted in a fourfold increase in Eucalyptus productivity in the country
from 1970 to 2015 [5]. However, most recently, the annual average Eucalyptus productivity
growth rates dropped to zero when new forest expansions migrated to more climatically
challenging regions of the country, which were still poorly understood ecophysiologically.
New pests and issues related to variability and climate change have also exerted pres-
sure to flatten the curve and fading productivity of Eucalyptus plantations in Brazil [6,7].
The impacts on Eucalyptus survival and productivity were well characterized during the
dramatically long major droughts that struck Central–Southern Brazil between 2014 and
2015, between 2015 and 2016 in the Northern region, and between 2019 and 2021 again in
Central–Southern Brazil, causing losses of hundreds of thousand hectares and a couple of
billion dollars in forest assets [8–10].

Forest management mistakes in tropical regions generally result in larger yield gaps
than in subtropical regions [11]. In-depth knowledge of production environments, their
productivity levels, and the nature of their abiotic and biotic limitations are crucial points
for the success of forest plantations in tropical regions. Most foresters know that the diverse
physiographic and edaphoclimatic gradients found in tropical regions yield equally in
diverse and complex production environments. Nonetheless, they often face difficulties
in surveying their land’s reliable levels of productivity, basing their strategies on very
site-specific models derived from purely empirical knowledge. Empirical models have
their functionality in very specific situations where the rule set was created, as, for ex-
ample, shown by Gava and Gonçalves [12]. Therefore, caution must be taken to avoid
misunderstanding in any attempt of upscaling an empirical model.

The strategies used on productivity zoning should span multiple spatial scales and
require a sound mechanistic understanding of the interactions between tree resource use
dynamics over space and time. In Eucalyptus plantations, the use of ecophysiological and
statistical models that incorporate climate variables such as rainfall or soil water deficit,
adjusted with appropriate regionwide trials, are great examples to predict forest yield levels
in target regions [13,14]. These studies have provided satisfactory results, but once based
on experimental data generally scarcer, such approaches cannot perform distribution and
probability modeling of the variable to be predicted.

Currently, most forest-based companies hold huge datasets of forest inventory and en-
vironmental monitoring with meteorological series and increasingly accurate soil and relief
maps. However, in most cases, those tree growth and environment datasets are collected
and used for purely operational purposes, despite foresters knowing such data remain
latent for deeper applications to generate insights and other more powerful predictions.
Hence, given the massive amount of data, available computational power, and balanced
empirical and scientific knowledge, an opportunity arises to use spatial data-science (DS)
and machine-learning (ML) concepts to improve the Eucalyptus productivity zoning.

DS is an interdisciplinary field that uses data collection, data curation, extraction,
cleaning, analysis, model building, result visualization, and communication to abstract
information and insights from large datasets [15]. ML refers to a set of available techniques
in the toolbox of data scientists to produce predictions. ML is grouped into three categories,
which include supervised, unsupervised, and reinforcement learning. Decision tree (DT) is
a popular supervised classification that offers support in decision making, and it defines
the logical structure, associated uncertainties, and constructive results of the decisions [15].
DT is a multifaceted machine-learning algorithm known as a glass-box model. After the
DT model has determined the patterns in the training dataset, even readers with little or no
machine-learning experience, after a brief explanation, might exactly and intuitively see
what decisions will be made for a dataset that we want to predict. When it comes to ML, it is
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crucial to carefully weigh the trade off between estimation power and model interpretation.
The DT algorithm excels at providing simple and straightforward results and interpretation
models, showcased via elegant decision trees [16]. However, other ML methods that have a
strong predictive ability often face challenges in terms of interpretation, reproducibility,
and sharing capabilities [17–19].

In the tide of the digital world we live in today, there are many IT technicians working
in large forest companies supporting digitizing processes and building big data. Neverthe-
less, they often take on roles beyond their professional skills, generally with a background
in the basic sciences, and they rarely wet their feet in the field. Machine-learning algorithms
used in forest ecology and management are prone to misinterpretation, which requires
application with great caution. To avoid these interpretation problems, data scientists
and foresters should go through the careful discovery phase. This includes the finding
of relevant data, their formats from numerous sources to accomplish basic necessities,
priorities, and objectives of the task, and also the major ecophysiological key cause–effect
relationships involved in the studied case.

In a survey of machine-learning techniques for climate-based crop yield prediction,
Elavarasan et al. [20] compared some existing supervised and unsupervised machine-
learning models, and they concluded DT approach was faster and more precise, providing
easily interpretable rules and assisting in identifying the significant fields. Pant et al. [21]
made a comparison appraisal with a couple of machine-learning models to make maize,
potatoes, rice, and wheat yield predictions and found that the DT regression resulted
in the best accuracy for crop predictions compared to other algorithms, which linked
to its reproducibility making the DT algorithm very powerful for solving problems in
many applications on cash crops. Furthermore, the selection of predictor variables is
another key point of a successful machine-learning implementation. Variables that are both
strong predictors to target variables and simple to obtain or understand should be used.
For example, for Eucalyptus productivity zoning, predictor variables such as temperature,
rainfall, soil type, and altitude should be considered. Indeed, these major predictor variables
fully converge with a literature review that showed these environmental features were the
most applied in machine learning for crop yield prediction worldwide [22].

In the last 4 years, machine-learning usage for farm risk management has tripled [23].
Agriculture has made great use of these approaches [24], and in this paper, we explore how
forestry can benefit as well. Numerous recent studies have employed various machine-
learning techniques to assess the productivity of planted forests [25–29]. However, a notable
limitation across these studies is the lack of comprehensive exploration regarding the tools
utilized, deeper data visualizations, and the production of applicable and reproducible
results and conclusions for end users. Furthermore, some of these studies have neglected
multicollinearity in modeling analyses. This gap in the literature leaves a significant
opportunity for further research and investigation to address these shortcomings and
provide comprehensive and actionable insights for stakeholders in the field of planted
forest productivity evaluation.

Therefore, our hypothesis suggests that the decision-tree approach can be utilized to
enhance Eucalyptus productivity zoning by generating results that are transparent, repro-
ducible, and based on multiple sets of operational tree growth data and environmental
factors. The integration of decision-tree modeling allows for a more interpretable and
explainable approach, shedding light on the key factors influencing Eucalyptus productivity.
Additionally, this methodology facilitates the replication of results and fosters greater confi-
dence in the zoning outcomes. Considering that, the objectives of this paper were fourfold:
(1) to implement the data science and its components as discovery, data preparation, model
building, model planning, model evaluation, result visualization, and communication on
huge operational forest datasets; (2) to implement and assess a broad multi-tuning DT
modeling approach to multiple datasets of tree growth and environment; (3) to perform
zoning geographically explicit of the Eucalyptus productivity based on the adjusted DT
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model; (4) to determinate the Eucalyptus yield gaps using a machine-learning approach on
a region-wide scale.

2. Materials and Methods
2.1. Study Area

The study area consists of approximately 11.4 million hectares located in Southeastern
Brazil, covering nearly 46% of the State of São Paulo (Figure 1). According to the Spatial
Database of Planted Trees [30], the State of São Paulo had in 2013/2014 approximately
823,619 hectares of Eucalyptus plantations belonging to companies in the pulp and paper,
fiberboard, and wood panel industries, small growers, and participants in outgrower
schemes and in state-owned forests. Of this total area, almost 95% of the Eucalyptus
plantations (781,654 ha) were within the study area (Figure 1), i.e., the other 5% (41,965 ha)
are well sparsely distributed in the 54% of the midwestern region of the state.
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Figure 1. Distribution of Eucalyptus plantations (light gray), modified from the Spatial Database of
Planted Trees [30] and Suzano’s network with 9953 (7975 for training set and 1978 for testing set)
Eucalyptus permanent forest inventory plots used for the decision-tree modeling. Training and test
datasets are very similar in terms of distribution, median, and quartiles of wood productivity.

Covering different production environments and a large latitudinal gradient, the study
area shows both tropical and subtropical features. Average annual temperature varies from
14 to 23 ◦C (on higher mountains, above 2000 m, average annual temperature can be as low
as 14 ◦C), rainfall ranging 1200 to 2000 mm year−1, and the frost days hits are frequent in
the southern part are main climatological traits of study area [31,32].

The study area has complex relief, with altitude ranging from 400 to 1500 m above
mean sea level and a relevant geological diversity with parent sedimentary (sandstone,
claystone, and siltstone), metamorphic (phyllites, shales, gneiss) and igneous (diabase and
basalt) materials, resulting in large range of deep and shallow tropical soils distributed
across the study area on erratic way on part regions [33–35].
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Such geographic distribution of Eucalyptus plantations shows that the study area is one
of the most traditional forest regions in the country with almost 100 years of experience in
Eucalyptus silviculture [6,36] because it is one of the most favorable in world for silvicultural
success due to its high suitability for dozens of Eucalyptus species [37].

2.2. Forest Datasets

Approximately 12,000 permanent forest inventory plots of commercial Eucalyptus
plantations of the Suzano SA company (www.suzano.com.br/en, (accessed on 15 June
2023) at harvest time between 2013 and 2016 (with planting year between 2008 and 2011)
were available for this study. Circular permanent inventory plots had an area of 400 m2

and were systematically distributed with a density of one plot per ten hectares. During
field measurements, diameter at breast height (DBH, 1.3 m above the ground) of all trees,
total height of the central ten trees, and the total height of the four largest trees in terms of
DBH (defining dominant trees) were surveyed in the inventory plot. The mean height of
these dominant trees defined the dominant height of the plot. Dominant height, basal area,
and age on the inventory date were then used in local volume equations to estimate the
total wood volume with bark for each plot. A total of 9953 forest inventory plots composed
of 517,000 live trees (by a total of 528,000 trees) were selected for this study after tree data
consistency, which included filtering them to have plots with (i) live trees between 800 and
1900 trees ha−1, (ii) age between 5.5 and 6.5 years (age class center of 6 years old) at harvest
time, (iii) standard size plots, (iv) only first rotation forest (not coppice), (v) free pests and
diseases plots, (vi) no record of plots faced strong weed competition and fire scars, and
(vii) double checking its geographic location. Finally, a visual dispersion analysis of the
permanent forest inventory plots database was required to ensure reliable analysis and
modeling, with the final dataset clean-up dropping any strange relationship between basal
area and total wood volume (Figure S1).

The forest inventory database was randomly divided into two datasets using a geo-
graphically weighted approach. The first, referred to as the training dataset, with 80% of
all plots, was used in DT modeling exercise in order to build the productivity zones for
planted Eucalyptus forests. Another group, called testing dataset, with 20% remaining plots
(unseen data by the model), was used to perform the validation of the productivity zones
output of the DT. The forest inventory dataset consisted of 70 pure or hybrid Eucalyptus
clones of the species E. grandis, E. urophylla, E. smithii, and E. dunnii.

2.3. Environmental Datasets

For each forest inventory plot, information such as geographic location, altitude
obtained in the field, average terrain slope, planting date, measurement date, genetic
material, planting spacing, wood volume, rotation, soil order, and soil texture was provided.

Soil information of each plot is from company-owned detailed soil maps, surveyed at
scale of 1:50,000 and elaborated by professional pedologists specialized in tropical soils.
Those company soil maps cover only Eucalyptus stands. Well-developed and deep soils
accounted for 57.3% of the plots, as the order Latossolos (L, Oxisols) with 43.1%, Argissolos
(A, Ultisols) with 13.9%, and Nitossolos (T, Oxisols) with 0.4% remaining. On the other
hand, less developed and/or shallow soils totaled for 42.5% of the plots, as Neossolos (N,
Entisols) with 29.6%, and Cambissolos (C, Inceptisols) with 12.9% of them. Finally, 0.2%
of the plots were classified as hydromorphic soil order Gleissolos (G, Entisols). Soil order
names in Portuguese are according to the Brazilian Soil Classification System [38]. The
symbol letter for soil order used on DT modeling and an approximate identification based
on the USDA soil taxonomy are in parentheses [39].

Climatological data such as average annual temperature, average annual rainfall, aver-
age annual potential evapotranspiration, and aridity index were associated with each forest
inventory plot. Meteorological data from a network of 48 automatic weather stations of the
Brazilian National Institute of Meteorology (INMET, https://mapas.inmet.gov.br, (accessed
on 15 May 2021)), Integrated Center of Agrometeorological Information of Campinas Insti-

www.suzano.com.br/en
https://mapas.inmet.gov.br
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tute of Agronomy (CIIAGRO/IAC, www.ciiagro.sp.gov.br/rede.html, (accessed on 15 May
2021)), and from the forest company, covering the entire study area, were used to develop
the climatological database (Figure 2). We considered a climatic period of the last 26 years
(1995 to 2020) to build maps of the monthly climatological normals for both air temperature
and rainfall. The weather station datasets presented some data gaps in rainfall and air
temperature records. Those missing data were filled with monthly gridded data published
by Xavier et al. [40] at in spatial resolution of 0.25◦ and from NASA/POWER—NASA Lan-
gley Research Center POWER Project, which has recently been released at 0.5◦ × 0.5◦ grid
cell [41].
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Figure 2. Digital elevation model (meters above mean sea level) composed of SRTM tiles, and the
network of weather stations used in this study provided by INMET (Brazilian National Institute of
Meteorology), CIIAGRO (Integrated Center of Agrometeorological Information of Campinas Institute
of Agronomy), and from the forest company. The upper small plot shows the distribution of weather
stations in the study area according to their altitude strata.

Average annual rainfall dataset was analyzed according to geostatistical procedures
proposed by Alvares et al. [31]. The omnidirectional experimental semivariogram for
the annual rainfall data was prepared, whereas only 10 lag classes of equal intervals
in a geometric field of 50% range dataset (latitude and longitude) was prepared. The
experimental semivariogram was tested by adjusting them to the theoretical spherical,
exponential, Gaussian, and linear models since they usually covered the general dispersion
of environmental spatial events [42]. The best fit was based on the smallest reduced
sum of squares and on the highest determination coefficient (R2). Using these structural
parameters of the theoretical semivariogram extracted from experimental semivariogram,
average annual rainfall map was composed with a geographic information system. A
punctual ordinary kriging estimator was used for geostatistical interpolation. With these
procedures, the annual rainfall map had a spatial resolution of 100 m.

www.ciiagro.sp.gov.br/rede.html
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The air temperature dataset was used to establish the relationship between the de-
pendent (average air temperature) and independent (altitude, latitude, longitude, and
their combinations) variables based on a general multivariate nonlinear regression model
proposed by Alvares et al. [43] as follows (Equation (1)):

Ti = a0 + a1ϕ+ a2λ+ a3h + a4ϕλ+ a5ϕh + a6λh + a7ϕ2 + a8λ2 + a9h2 (1)

where Ti is the average temperature, monthly (i = 1, 2, . . . , 12) or annual (i = 13); ϕ
is latitude, in decimal degrees (negative in the southern hemisphere); λ is longitude, in
decimal degrees (negative values for west of Greenwich meridian); h is altitude in meters;
and a0 to a9 are the coefficients of the multivariate regression equation.

Using map algebra techniques [42,44], the results from the multivariate regression
models for average monthly air temperature were converted into maps using the software
ArcGIS [45], processing the independent variables as raster layer. The altitude layer, in
meters, was obtained from the digital elevation model (DEM) provided by the Shuttle
Radar Topography Mission (SRTM) [46] in its fourth version [47]. Subsequently, ArcGIS
was used to build the DEM for stud area at 100 m resolution (Figure 2). Latitude and
longitude layers were obtained in decimal degrees using the central coordinates of each
pixel corresponding to the DEM. Using geoprocessing techniques [48–50], monthly air
temperature models were programmed and run in ArcGIS.

After building the monthly temperature maps, we proceeded with the potential evap-
otranspiration calculations. Average annual potential evapotranspiration was estimated
via the method of Thornthwaite [51]. Such method is very practical and easy to reproduce
as it only requires the average monthly temperature observed as an input. The observed
climatological normals are used to calculate Thornthwaite’s monthly and annual heat
indices (Equations (3) and (4)). Latitude is used to calculate the photoperiod over the
course of the year. Lastly, we must consider the number of days to adjust the potential
evapotranspiration of each month (Equation (2)). After calculations, the monthly potential
evapotranspiration maps were summed to obtain the annual potential evapotranspiration
map.

PETi = 16
(

N
30

)(
P
12

)(
10Ti

I

)a
(2)

I =
12

∑
i=1

(0.2Ti)
2 (3)

a =
(

6.75× 10−7
)

I3 −
(

7.71× 10−5
)

I2 +
(

1.7912× 10−2
)

I + 0.49239 (4)

where PETi is the estimated potential evapotranspiration of month i (mm); N is the number
of days in month i; P is the average daily photoperiod of month i (hours); Ti is the average
daily temperature of month i (◦C); and a and I are the Thornthwaite’s heat indices, which
depend on the average daily temperature of month i.

Based on annual potential evapotranspiration and annual rainfall maps, the aridity
index was calculated (Equation (5)). Aridity index is an indicator for the degree of site
dryness [52] and is used as the surrogate of water stress on Eucalyptus plantations [8,53].
After the spatializations of annual air temperature, annual rainfall, annual potential evapo-
transpiration, and aridity index, extractions of these data to populate the forest inventory
plot datasets were performed.

Aridity index =

(
PET

R

)
(5)

where PET is the estimated annual potential evapotranspiration (mm), and R is average
annual rainfall (mm).
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2.4. Decision-Tree Modeling

In order to guarantee the feasibility and reproducibility of the productivity zones
for planted Eucalyptus forests by the foresters, small rural producers, forest beekeepers,
participants interested in forest outgrower schemes, extension technicians, and researchers,
a range of easily obtainable variables of climate, soil, and terrain were used to model and
train the decision tree. One object of this study is to create a method that the end users can
use in a straightforward way and apply the results of the productivity zoning model of
planted Eucalyptus forests, thus maintaining the practicability of the system.

After the consistency and processing of tree growth and environmental data, each
dataset was joined into a data frame composed of 9953 observations and 11 variables,
which are as follows: forest inventory plot ID, latitude, longitude, training or testing
dataset, genetic material, tree age, total wood volume with bark as the response variable;
and the predictor variables as terrain altitude, soil order, soil texture, and average annual
aridity index. However, some adaptations for DT algorithm were made as the smooth
discretization of aridity index on the 0.015 scale and of ground altitude on the 20 m scale in
order to have adequate aesthetics in the DT and easy interpretation of the thresholds of
these predictive variables.

Based on the objectives of this study, the rpart package (Recursive Partitioning and
Regression Trees [54]) and its routines for R software [55] were used to predict the pro-
ductivity zones for planted Eucalyptus forests. The rpart’s main outcome is a recursive
partitioning model displayed as a decision tree.

Before making our DT grow, we prepared a tuning using rpart hyperparameters
that control aspects of the model fit. Basically, there are hyperparameters that control
the growth and pruning of the DT as well as its complexity. Minbucket parameter is the
minimum number of observations in any leaf (terminal) node. Minsplit parameter is the
minimum number of observations that must exist in a node for a split to be attempted.
Cost-complexity factor (cp parameter) is the metric that stops splits that are not deemed
important enough to tree grow up and explain data.

A broad multi-tuning of the DT hyperparameters was planned. We wrote functions to
control the hyperparameters during tuning approach that ranged as follows: minbucket
parameter from 79 to 1000, by 100; minsplit parameter from 158 to 1000, by 100; and cp
parameter tested the complexity measures of 0.01, 0.001, 0.0005, 0.0001, and 0.00001. Once
DT modeling requires caution in terms of growth, pruning and trim, and tree complexity,
we wrote functions to display the accuracy of each one DT outputted using the multi-
tuning approach. The same function set also produced a visualization of ranging upper
hyperparameters of decision-tree tuning process, supporting the better-chosen DT setup.
Before departure of hyperparameter tuning modeling, we already assume a premise that
minbucket parameters start at 79, i.e., the number of observations in the leaf node must be
at least 1% of training dataset, ensuring an acceptable minimum forest and environmental
representations of the data entries. Hence, we can notice minsplit parameter was set to
start with 158 observations.

Once the DT model was defined and its best-fitting hyperparameters were set up, the
next step was to assess the performance of the model making predictions of independent
data (the 20% unseen data). For that, the testing set was used to validate the classifica-
tion and regression model via the following relative errors indices: mean absolute error
(MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE),
respectively, as shown in Equations (6)–(8). The performance of the DT model was also
tested using the Performance index “Pi” (Alvares et al. 2013b [43]), which is the product of
the coefficient of correlation “r” (Equation (9)), which defines models’ precision, and the
refined agreement index “dr” (Equation (10)) [56], which defines the models’ accuracy. The
criteria for interpreting “Pi” (Equation (11)) include the following: Pi ≥ 0.75 as optimum
performance; 0.6≤ Pi < 0.75 as very good performance; 0.45≤ Pi < 0.6 as good performance;
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0.3 ≤ Pi < 0.45 as tolerable performance; 0.15 ≤ Pi < 0.3 as poor performance; 0 ≤ Pi < 0.15
as bad performance; Pi < 0 as very bad performance [43].

MAE =
1
N ∑|yi − xi| (6)

RMSE =

√
1
N ∑(yi − xi)

2 (7)

MAPE =
100
N ∑

∣∣∣∣yi − xi

yi

∣∣∣∣ (8)

r =
(xi − x)(yi − y)√

[(xi − x)2][(yi − y)2]
(9)

dr =

1− ∑|yi−xi|
c ∑|yi−y| , when ∑|yi − xi| ≤ c ∑|yi − y|

c ∑|yi−y|
∑|yi−xi|

− 1, when ∑|yi − xi| > c ∑|yi − y|
(10)

Pi = r × dr (11)

where xi is the i-th observed value, yi is the i-th predicted value, N is the number of samples
considered, x is mean of all observed values, y is mean of all predicted values, r is the
Pearson’s correlation coefficient, dr is refined agreement index, c is 2, and Pi is performance
index.

Finally, after obtaining the final DT model, we wrote R functions that extracted the
environmental predictor variable rules for each leaf node (Eucalyptus productivity zones)
and put them in organized and straightforward way in an interpretive and illustrated table
to be used by the end users.

2.5. Eucalyptus Forest Productivity Zoning

In this section, we deal with the geographic visualization of the DT outputs. Each
DT leaf node was interpreted as a productivity zone for planted Eucalyptus forests, i.e., a
production region’s average of Eucalyptus plantations productivity, observed at training
dataset, is explained via the same environmental predictor variables and its thresholds.

We already reported the spatialized environmental predictor variables such as altitude
and aridity index used to populate the training and testing datasets as independent data,
as obtained in Section 2.3. Finally, the semi-detailed soil map of the State of São Paulo
published by Rossi [57] was used to complete the required environmental information to
apply the Eucalyptus forest productivity zoning outputted via DT. In total, this soil map has
247 soil mapping units, and it presented 20 soil classes (order and suborder) in the study
area according to Figure 3. In order to use the soil map on DT modeling, each soil order
found at Rossi [57] in study area, as already described in Section 2.3 for the soil information
of the forest inventory plots, was coded as follows: A represents Argissolos; L represents
Latossolos; N represents Neossolos; C represents Cambissolos; T represents Nitossolos; G
represents Gleissolos; M represents Chernossolos. Likewise, the subsurface horizon soil
texture identified by Rossi [57] received the code “a” for clayey texture (clay content > 35%),
“m” for medium texture (15% < clay content < 35%), and “r” for sandy texture (15% < clay
content). Soil order and soil texture vector maps were converted to raster in the spatial
resolution of 100 m. Lastly, a prediction was made by transforming and spatializing each
leaf node on productivity zones Eucalyptus for the whole study area based on DT rules and
the predictor environmental variables.
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Figure 3. Semi-detailed soil map surveyed at scale of 1:100,000 in the study area (modified of the
soil map of the State of São Paulo, published by Rossi [57]). Soil names (order and suborder) in
Portuguese are according to the Brazilian Soil Classification System (Embrapa, 2015 [38]). The symbol
letter for soil order used on DT modeling, the area in hectares of each soil class, and an approxi-
mate identification for soil order based on the USDA soil taxonomy are between parentheses [39].
Afloramento Rochoso (not used, 612 ha, Rocky outcrop), Argissolos Amarelos (A, 3487 ha, Ultisols),
Argissolos Vermelho-Amarelos (A, 3,668,139 ha, Ultisols), Argissolos Vermelhos (A, 103,510 ha,
Ultisols), Cambissolos Húmicos (C, 134,286 ha, Inceptisols), Cambissolos Háplicos (C, 829,359 ha,
Inceptisols), Chernossolos Argilúvicos (M, 1879 ha, Molisols), Gleissolos Háplicos (G, 154,848 ha,
Entisols), Gleissolos Melânicos (G, 108,222 ha, Entisols), Latossolos Amarelos (L, 89,140 ha, Oxisols),
Latossolos Brunos (L, 15,143 ha, Oxisols), Latossolos Vermelho-Amarelos (L, 1,968,217 ha, Oxisols),
Latossolos Vermelhos (L, 2,676,635 ha, Oxisols), Luvissolos Háplicos (not used, 4891 ha, Alfisols),
Neossolos Litólicos (N, 296,019 ha, Udorthent), Neossolos Quartzarênicos (N, 409,052 ha, Psamment),
Nitossolos Vermelhos (T, 153,608 ha, Oxisols), Organossolos Háplicos (not used, 55,361 ha, Histosols),
Planossolos Háplicos (not used, 23,094 ha, Oxisols), and Plintossolos Pétricos (not used, 18 ha, Ox-
isols). The upper small map shows the soil texture interpretation of each soil class (also modified of
the soil map of the State of São Paulo, published by Rossi [57]). Blank polygons refer to urban areas,
rivers, and dams. Afloramento Rochoso, Organossolos Háplicos, Planossolos Háplicos, Luvissolos
Háplicos, and Plintossolos Pétricos were not used in the DT spatialization.

3. Results and Discussion
3.1. Climate Modeling

The average annual rainfall dataset from 48 weather stations was analyzed according
to the concepts of the regionalized variables theory [58]. Among the theoretical models
tested, the spherical model best described the annual rainfall experimental semivariogram
(nugget effect = 13,600; partial sill = 102,980; and range of spatial dependence = 7.3 degrees).
The estimated residues were low and had a high coefficient of determination (R2 = 0.97).
The average annual rainfall of the study area (Figure 4) has spatial variability similar to
the current and official climatological normal map presented by Diniz et al. [59]. Average
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annual rainfall ranged from 1250 to 2050 mm, very similar to what was found in other
studies [31,59].
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Figure 4. Average annual rainfall (mm) obtained via kriging interpolation and based on a network of
48 meteorological stations distributed on the study area (top map), and the average annual potential
evapotranspiration (mm) obtained using Thornthwaite’s model [51] (bottom plot). The boxplots
show the distribution of observed monthly rainfall on the weather stations used in this study and
calculated monthly potential evapotranspiration.

All monthly and annual average air temperature multivariate regression models were
significant (p < 0.001), and the independent variables obtained showed a significance of
5% (Table S1). Different from other studies [43,60], the combined predictor variables that
used the square of altitude (h2) were significant at 5%, thus contributing to predicting the
average air temperatures, both in monthly and annual time scales (Figure S2).

The average annual PET range (540–1220 mm) in the study area (Figure 4) was quite
similar to that presented by Dias et al. [61]. Thereby, the ratio between annual PET and



Forests 2023, 14, 1334 12 of 24

annual rainfall was applied to obtain the annual aridity index (Figure 5). The higher index
identifies more arid environments. The average annual aridity index map showed the
uplands and mountain regions, with altitudes above 900 m, mainly on the Serra do Mar
range and the Mantiqueira region, where atmospheric water demands are very low, with an
aridity index of less than 0.5. These upland regions have a water surplus of approximately
50% of the amount of annual rainfall, indicating high suitability for Eucalyptus growth [37].
Conversely, the aridity index exceeded 0.76 in most areas in the central–west region of the
study area, denoting water stress throughout the year. Paraiba Valley (southeast of the
study area) also has a high aridity index which certainly penalizes Eucalyptus productivity,
as evidenced by many recent studies [5,8,14,62]. Our aridity index map ranges likewise to
the one presented by Hubbard et al. [53]. These authors showed at tropical environments,
the Eucalyptus trees grow according to soil water availability and that both high- and
low-productivity Eucalyptus clones investigated transpired on average 60, 46, and 34%
annual precipitation on dry (annual aridity index of 2.2), mesic (1.0), and wet (0.6) sites,
respectively.

Forests 2023, 14, x FOR PEER REVIEW 12 of 24 
 

 

(southeast of the study area) also has a high aridity index which certainly penalizes Euca-

lyptus productivity, as evidenced by many recent studies [5,8,14,62]. Our aridity index 

map ranges likewise to the one presented by Hubbard et al. [53]. These authors showed 

at tropical environments, the Eucalyptus trees grow according to soil water availability and 

that both high- and low-productivity Eucalyptus clones investigated transpired on average 

60, 46, and 34% annual precipitation on dry (annual aridity index of 2.2), mesic (1.0), and 

wet (0.6) sites, respectively. 

 

Figure 5. Average annual aridity index obtained is ratio of annual potential evapotranspiration and 

annual rainfall and is spatially calculated by both respective maps. The higher the index, the more 

arid the environment. The boxplot shows the distribution of calculated monthly aridity index, which 

is the ratio of annual potential evapotranspiration and annual rainfall observed on the weather sta-

tions used in this study. 

3.2. Decision-Tree Modeling 

The hyperparameter tuning approach yielded 450 DT models, with RMSE ranging 

from 60.1 m3 ha−1 for the worst model to 53.3 m3 ha−1 for the best model. A scatter plot with 

all tuning modeling outputs allowed us to visualize a global exponential decay pattern 

between RMSE and the number of leaf nodes in each DT model, showing also that increas-

ing the number of leaf nodes linearly reduces the RMSE for each one of the five cost-com-

plexity factors applied (Figure S3). While Figure S3 provided an overview of tuning mod-

eling, Figure S4 gave a zoom-in visualization of how all RMSE and the number of leaf 

nodes outputs are distributed between minsplit and minbucket hyperparameters for the 

cost-complexity factor = 0.0005. Among selecting the best DT by math tools like the mini-

mum curve radius method, there is an important trade off with the empirical foresters’ 

knowledge. Therefore, the best and final DT was chosen based on those accuracy plot 

panels of the machine-learning algorithm modeling and on the practicality of the results 

and tools that were objectives of this study. Consequently, as expected and described pre-

viously, our premise considered that all leaf nodes must have at least 1% of the training 

dataset revealed via combining empirical and computational approaches because the bet-

ter DT setup selected has the following hyperparameters: minbucket = 79, minsplit = 158, 

and cp = 0.0005, leaf node = 35, and RMSE = 53.5 m3 ha−1 (Figures S3 and S4). Rossit et al. 

Figure 5. Average annual aridity index obtained is ratio of annual potential evapotranspiration
and annual rainfall and is spatially calculated by both respective maps. The higher the index, the
more arid the environment. The boxplot shows the distribution of calculated monthly aridity index,
which is the ratio of annual potential evapotranspiration and annual rainfall observed on the weather
stations used in this study.

3.2. Decision-Tree Modeling

The hyperparameter tuning approach yielded 450 DT models, with RMSE ranging
from 60.1 m3 ha−1 for the worst model to 53.3 m3 ha−1 for the best model. A scatter
plot with all tuning modeling outputs allowed us to visualize a global exponential decay
pattern between RMSE and the number of leaf nodes in each DT model, showing also
that increasing the number of leaf nodes linearly reduces the RMSE for each one of the
five cost-complexity factors applied (Figure S3). While Figure S3 provided an overview of
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tuning modeling, Figure S4 gave a zoom-in visualization of how all RMSE and the number
of leaf nodes outputs are distributed between minsplit and minbucket hyperparameters for
the cost-complexity factor = 0.0005. Among selecting the best DT by math tools like the
minimum curve radius method, there is an important trade off with the empirical foresters’
knowledge. Therefore, the best and final DT was chosen based on those accuracy plot
panels of the machine-learning algorithm modeling and on the practicality of the results
and tools that were objectives of this study. Consequently, as expected and described
previously, our premise considered that all leaf nodes must have at least 1% of the training
dataset revealed via combining empirical and computational approaches because the better
DT setup selected has the following hyperparameters: minbucket = 79, minsplit = 158, and
cp = 0.0005, leaf node = 35, and RMSE = 53.5 m3 ha−1 (Figures S3 and S4). Rossit et al. [63]
carried out a big data study on forestry harvest productivity and also determined that the
smallest leaf node must contain at least 1% of the dataset on DT modeling since obtaining
decision rules for sets representing less than 1% is meaningless for the problem addressed.
The DT selected in our study has only half of the leaf nodes of the better statistical model, but
an RMSE quite similar was only 0.39% lower, guaranteeing the intelligibility and simplicity
of the final machine-learning algorithm while avoiding jeopardizing both feasibility and
reproducibility of the forest productivity zones so desired for the final users. Although
the hyperparameter tuning process is a recognized procedure and fundamental step in
machine-learning modeling, van Klompenburg et al. [22] performed a broad systematic
literature review on crop yield prediction using machine learning, evidencing that only in
one study had authors used hyperparameter tuning for sugarcane yield predictions.

Based on the hyperparameter setup of the selected DT, the recursive partitioning
model delivered the Eucalyptus forest zone productivity classification displayed as an ele-
gant decision-tree scheme (Figure 6). The rpart algorithm produced a DT with a maximum
of nine branch levels until leaf (terminal) nodes were identified at the bottom of the tree.
The rpart algorithm departed from the root node with 100% of the data (7975 observations
from the training dataset) and with an average Eucalyptus total wood volume of 308 m3

ha−1. The first splitting criterion was “Is the aridity index equal to or greater than 0.74?”;
when the stated condition is true, we must move to the left branch. The left node with a
higher aridity index (≥0.74) represents 24% of the observations, averaging 263 m3 ha−1,
while the right node with a lower aridity index accounts for 76% of the remnants of data,
averaging 323 m3 ha−1 (Figure 6). After this brief explanation, even readers with little ex-
perience in machine learning can read the DT following the Boolean choice questions until
reaching the leaf node. As noted previously, the aridity index had significant importance
for the recursive partitioning of our tree growth data. Soil water availability is quite well
recognized for controlling the Eucalyptus wood productivity in tropical and subtropical
conditions sites worldwide [64–66]. Soil order arose on the second splitting criterion of tree
slicing the wettest zones on the following two subsets: the less productive zones with soil
orders A, M, or N; the more productive zones with soil orders C, G, L, or T. Although the
interpretation of the relevance of the order of soil in the DT is not so evident, we note that
deeper soils are much more important for the survival and productivity of Eucalyptus in
regions with higher water deficit, as demonstrated by Pinheiro et al. [67] and Silva et al. [68]
on similar soils in the study area. Altitude strata were present on most of the leaf nodes,
positively correlating with wood productivity. The highest zones are generally cold, which,
in turn, has a lower PET rate resulting in a milder aridity index. Lastly, the soil texture was
less relevant but significant to split early nodes of the drier zones and for end branches of
the wetter and productive zones (Figure 6). Quite generally, sandy soils were related to low
productive zones, while medium texture and clayey soils have linked to more productive
zones. Many researchers found a noteworthy relationship between Eucalyptus productiv-
ity and several attributes of soil, mainly clay content, which was directly related to the
amount of soil’s plant-available water content, and these findings are well documented in
Gonçalves et al. [6].
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Figure 6. Recursive partitioning model is displayed as a decision tree showing the classification for
Eucalyptus forest zone productivity. Node color ramp corresponds with those displayed also in
Figures 7–10 and Table 1. The integer and percentages values inside nodes represent, respectively,
the average total wood volume at 6 years old and proportion of observations from the root node
(training dataset) in each internal or leaf (terminal) node. Texts outside nodes are predictor variables
used in the decision-tree modeling and classification of Eucalyptus forest zone productivity. Aridity
= discretized aridity index on the 0.015 scale; Order = qualitative polytomous variable denoting
the soil order, see Section 2.5 to learn symbols used in this study and representing the Brazilian
Soil Classification System; Texture = qualitative polytomous variable denoting the soil texture, see
Section 2.5 to learn symbols used in this study and covering the soil texture interpretation of Brazilian
Soil Classification System; Altitude = elevation above mean sea level discretized on the 10 m scale.

The validation of the DT model showed that our algorithm had an optimum per-
formance (Pi = 0.83) in predicting the existing testing dataset throughout the study area
(top plot of Figure 7). Moreover, statistical goodness-of-fit validation tests revealed a high
coefficient of determination (R2 = 0.91), an RMSE of 12.3 m3 ha−1, and an MAPE of only
3.1%. The validation procedure comprised making a comparison between the average
Eucalyptus total wood volume of each leaf node against the Eucalyptus total wood volume
predicted via the regression algorithm of the unseen data. It is necessary to highlight
that the validation was performed between total wood volume averages, which basically
represent a 50% probability of reaching this percentile for both DT regression and predicted
results. Therefore, our initial concern for performing an adequate data division between
training and testing datasets was important before starting the machine-learning modeling
but, above all, having defined a minimum threshold of observations in each leaf node,
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pruning the tree growth’s every decision where a node had up to 1% of the training dataset,
thus ensuring an appropriate total wood volume distribution for any climate, soil, and
altitude conditions detected in the study area. Eucalyptus productivity zoning studies
have shown that validation is a major part of modeling credibility, whether it is an em-
pirical or a process-based model, from extremely localized applications, as presented by
Almeida et al. [69]; at the regional level by Lemos et al. [70] and Attia et al. [71]; and at
continental level, as shown by Caldeira et al. [72] and Elli et al. [73]. Although these studies
performed a simple validation of their methods, none of them presented uncertainties in
the estimates. Furthermore, even in applications validated under very localized or very
experimental conditions, care must be taken with overfitting problems and site-specificity
and genetic-specificity biases when planning any extrapolation [74–76].
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Figure 7. Validation of decision-tree model via comparison of the simulated average Eucalyptus total
wood volume at 6 years old of each leaf node against testing dataset independent data (top plot). See
Section 2.4 for statistical analysis application. Each leaf node had equivalent data proportion between
training and testing datasets, showing random division was complete (bottom plot). For example,
for the leaf node 267 (Zone 29), 6.9% of the training set is 549 forest inventory plots, and 6.8% of the
testing set is 132 forest inventory plots (see the gray arrow on the bottom plot). The accumulated
percentages add up to 100% for both training and testing datasets.

3.3. Innovations in Decision-Tree Use

Our study also allows for exploring the production capabilities of each productivity
zone once the data and approaches support these breakthrough deliveries. By retro-



Forests 2023, 14, 1334 16 of 24

applying the DT rules to the training data and classifying it at each productivity zone,
we were able to prospect the distribution and productivity probabilities in each of them.
The observed productivities of each zone were adjusted to the normal distribution and
the percentiles 15th, 50th, and 85th were identified in the sophisticated ridgeline plot
(Figure 8). We noted that the productivity outcomes from the DT identifying the leaf
node is an average value generated via the recursive partitioning and regression trees
method and, therefore, slightly differs from the median values (50th percentile) found
for each productivity zone in Table 1. While Zone 01 has 85% (15th percentile) and 15%
(85th percentile) probabilities of productivity exceeding 308 and 462 m3 ha−1, respectively,
for Zone 35, the expected productivities in these same probability levels are 187 and 268
m3 ha−1 (Figure 8 and Table 1). Such results and their presentation format represent a
powerful tool that empowers readers to know the true productivity levels of the forest zone
of interest, largely reducing uncertainty and leaning on ground-true forest data in decision
making.
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Figure 8. Distribution of Eucalyptus total wood volume at 6 years old from the training dataset for
each leaf node (Eucalyptus forest zone). Bars within density plots identify the percentiles 15th, 50th,
and 85th. The color ramp corresponds with the previous figures, but the ridgeline plot’s aesthetic
required an opacity of 0.8. The percentiles values for each Eucalyptus forest zone are in Table 1.
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There are many other important and never-before-answered questions in the literature
that we can still respond to using the productivity distributions in Figure 8. For example,
a stakeholder prospecting for lands to lease a growing eucalypt forest with a baseline
production planned to reach 300 m3 ha−1 in 6 years (50 m3 ha−1 y−1) has the following
question: What is the probability that the threshold will be reached at each zone? The
answers with the probabilities are outlined in Figure 9, and this is one of the significant leap
forwards provided by our study. Zones 01, 02, 03, and 04 have more than an 80% probability
of productivity reaching the threshold of 300 m3 ha−1, while for Zones 32, 33, 34, and 35, the
probability dropped to less than 15% (Figure 9). These distinguished data visualizations are
a major contribution to both forest science and the sector when providing unedited insights
and consistent results and reducing the uncertainty of Eucalyptus productivity in the study
area. Once most scientists use many tools in creating ideas and communicating new
insights to peers and the public, the communication tools are fundamental and strategic
because, without clear, understandable communication, brilliant insights remain weak and
ineffective [77].
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zone. The probabilities were determined based on distribution of Eucalyptus total wood volume from
the training dataset for each leaf node (Figure 8).
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Table 1. Environmental rule interpretation and reading of the predictor variables forming each leaf node (Eucalyptus forest zone) outcome using the decision-tree
model. Leaf nodes were ranked in decreasing order (from highest to lowest productivity), named Zone 01 to 35. The score percentiles 15th, 50th, and 85th are also
provided for each leaf node as a proxy for Eucalyptus production probabilities of each forest zone.

Forest
Zone Leaf Node (m3 ha−1) Aridity (PET/R) Altitude (m) Soil Order Soil Texture 15th (m3 ha−1) 50th (m3 ha−1) 85th (m3 ha−1)

Zone 01 386 when is 0.59 to 0.64 and >= 900 and is C, G, L, or T and is a 308 395 462
Zone 02 369 when is 0.62 to 0.65 and is 720 to 760 and is C, G, L, or T 307 368 419
Zone 03 358 when is 0.59 to 0.64 and is 800 to 900 and is L 300 364 412
Zone 04 354 when is 0.59 to 0.64 and >= 900 and is C, G, L, or T and is m 291 351 418
Zone 05 353 when < 0.46 and >= 980 and is C, G, L, or T 275 362 420
Zone 06 349 when is 0.61 to 0.73 and < 720 and is A, M, or N and is m 292 354 410
Zone 07 346 when is 0.62 to 0.70 and is 780 to 800 and is C, G, L, or T 302 344 397
Zone 08 345 when is 0.67 to 0.74 and < 720 and is C, G, L, or T and is a 290 348 397
Zone 09 341 when is 0.65 to 0.74 and is 720 to 760 and is C, G, L, or T 272 342 396
Zone 10 338 when is 0.67 to 0.74 and < 620 and is C, G, L, or T and is m or r 288 338 389
Zone 11 337 when is 0.64 to 0.74 and is 800 to 900 and is C, G, L, or T 270 346 393
Zone 12 334 when is 0.46 to 0.59 and >= 980 and is C, G, L, or T 261 349 405
Zone 13 333 when is 0.59 to 0.64 and is 800 to 900 and is C 266 335 402
Zone 14 331 when < 0.47 and < 980 and is C, G, L, or T 256 336 403
Zone 15 328 when < 0.74 and is 720 to 800 and is A, M, or N and is a or m 246 324 404
Zone 16 327 when is 0.61 to 0.73 and < 720 and is A, M, or N and is a or r 277 324 377
Zone 17 326 when is 0.67 to 0.74 and is 620 to 720 and is C, G, L, or T and is m or r 281 324 370
Zone 18 324 when is 0.62 to 0.70 and is 760 to 780 and is C, G, L, or T 264 322 373
Zone 19 315 when is 0.62 to 0.67 and < 720 and is C, G, L, or T 229 332 420
Zone 20 308 when is 0.64 to 0.74 and >= 900 and is C, G, L, or T 260 308 351
Zone 21 299 when is 0.50 to 0.59 and is 800 to 980 and is C, G, L, or T 245 298 359
Zone 22 297 when is 0.73 to 0.74 and < 720 and is A, M, or N 227 285 341
Zone 23 294 when is 0.74 to 0.77 and is m 254 298 336
Zone 24 290 when < 0.74 and >= 800 and is A, M, or N and is a or m 235 295 358
Zone 25 277 when is 0.50 to 0.59 and < 800 and is C, G, L, or T 215 286 340
Zone 26 276 when is 0.77 to 0.82 and is m 232 274 321
Zone 27 273 when is 0.70 to 0.74 and is 760 to 800 and is C, G, L, or T 238 277 312
Zone 28 269 when < 0.74 and >= 720 and is A, M, or N and is r 204 272 326
Zone 29 267 when is 0.74 to 0.82 and < 640 and is a or r 230 264 307
Zone 30 265 when < 0.61 and < 720 and is A, M, or N 206 275 334
Zone 31 263 when is 0.47 to 0.50 and < 980 and is C, G, L, or T 200 264 326
Zone 32 245 when >= 0.82 and < 520 210 241 284
Zone 33 242 when is 0.74 to 0.82 and >= 640 and is a or r 199 244 288
Zone 34 240 when is 0.59 to 0.62 and < 800 and is C, G, L, or T 194 238 289
Zone 35 228 when >= 0.82 and >= 520 187 226 268
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Although the DT design is of low complexity for reading, a user-friendly table was
prepared to classify any location within the study area in each 1 of the 35 productiv-
ity zones based on required environment variables and rules defined via the machine-
learning algorithm (Table 1). As described above, the total wood volume indicated in
the leaf node is an average value outcome from the DT regression, close to 50% proba-
bility (50th percentile or median). Thus, it should not assume that the production of a
forest zone will be the value read in the DT. The interpretation must always observe the
probability of the estimates. Then, we will introduce how to read the DT and interpret
the results. Suppose a reader is interested in inferring the productivity levels at location
22.7168 South latitude and 47.6113 West longitude (within Agricultural College Luiz de
Queiroz—ESALQ’s facilities). Previously, the reader should have a minimum knowledge
of the area of interest but enough to have, on hand, the aridity index, altitude, soil order,
and soil texture of the zone to interpret Table 1. The location of interest has an aridity index
of 0.75, and this PET/R ratio meets the requirements of Zones 23, 29, and 33. Considering
only this input, the reader already has important information, including which the area of
interest would, at most, be in position 23 of the productivity zones ranking and that the
expected average production is between 242 and 294 m3 ha−1 at 6 years of age. However,
the reader knows that the average altitude of the interest location is 590 m, and this rule
eliminates Zone 33. For the remaining two zones, and especially in this case, only the
soil texture is necessary. However, it was informed that it is a medium texture Latossolo
(Oxisol), thus completing the DT interpretation and converging to Zone 23. For Zone 23, the
reader will find an average production of 294 m3 ha−1 and 254 m3 ha−1, 298 m3 ha−1, and
336 m3 ha−1 for the percentiles 15th (85% probability of reaching production), 50th (50%
probability), and 85th (15% probability), respectively (Table 1), and also 44.5% probability
of production reaching 300 m3 ha−1 (Figure 9). We noted that, so far, these approaches
are very innovative, incorporating data science and machine learning, dosed with a de-
gree of forester empiricism, and delivering tools with probabilistic results to improve the
Eucalyptus productivity zoning.

3.4. Decision-Tree Spatialization

The outputs from the DT were spatialized for the study area providing a reliable
cartographic visualization of probability levels of the truly Eucalyptus productivity for
a huge region of forest-based industries in Brazil (Figure 10). The ten most productive
zones are summarized at 2,380,000 ha and are located in the wetter and higher altitude
landscapes of the study area, such as a few mountain ranges in both the northern and
southern coastal region and most widely represented in the southwest region of the study
area. The ten lowest productivity zones totaled 4,289,007 ha and are mostly spread in
the center and northern regions of the study area, where the aridity index is higher due
to the combination of the lower rain amount and the higher annual temperature. Low
productivity zones are well characterized in the west of the study area, mainly in the
Cerrado biome, which also is observed crossing the Paraiba Valley region (Figure 10).
Based on more realistic productivity numbers, we hope that our results can foster and
improve fair business between the parties, providing knowledge to small rural producers,
forest beekeepers, and participants interested in forest outgrower schemes. On the other
hand, our study provided deeper analysis and reproducible tools for extension technicians,
forestry consultants, crop and forestry companies’ engineers, and researchers to manage
their forest assets in a sustainable way.
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Figure 10. Decision-tree outputs spatialized for the study area. To learn how environmental variables
were used on this map, see Table 1, which shows a straightforward form of how interpretation of
decision tree must be performed. Leaf nodes were ranked in decreasing order (from highest to lowest
productivity), named Zone 01 to 35, and their values represent the average Eucalyptus total wood
volume (m3 ha−1) at 6 years old. The horizontal bar chart shows the area (km2) of each Eucalyptus
forest zone spatialized in study area. Blank polygons refer to urban areas, rivers, and dams.

3.5. Yield Gap Approach

A reliable estimate of the Eucalyptus wood stock in most of the State of São Paulo
was another significant leap forward supported by the approaches presented. We assume
that all current 781,654 ha of Eucalyptus plantations (Figure 1) within the study area were
6 years old. The trade secret here was applying the DT for every hectare to predict by
classifying it as each one of the productivity zones. We estimated the Eucalyptus wood stock
in the study region was approximately 2.44 × 108 m3 for a 50% probability, i.e., considering
the median productivity of each zone. Based on the 15th percentiles, there was an 85%
probability that the wood stock was greater than 1.99 × 108 m3. Considering the 85th
percentile threshold as a proxy for attainable Eucalyptus productivity at each zone, we
calculated that current Eucalyptus plantations across the study area would have a potential
wood stock at this productivity level by amounting to 2.86 × 108 m3. Other studies have
already quantified the Eucalyptus yield gap in Brazil, such as Elli et al. ([11]), but were
based on an ecophysiological yield gap perspective, lacking a probabilistic and realistic
view of higher productivity levels. The difference between the attainable and average
productivities of wood stocks of current Eucalyptus plantations can be considered the yield
gap, as that huge amount seems like 4.2 × 107 m3. The sum of each zone’s yield gap ratios
by its attainable productivity (85th percentile) is a few more than 113,000 ha or 15% of the
current forest base. This is the amount of avoided area expansion in the current Eucalyptus
forest base in the study area to accumulate the same wood stock in case the productivity of
the zones was raised to the attainable level in each zone. The yield gaps were quantified
for each zone, but the results of each one were not shown here. Obviously, there is a great
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interest in knowing and exploring opportunities for genetics and management to increase
productivity in each region of the State of São Paulo. This is a topic that will continue to be
addressed in the future in other studies dedicated to these purposes.

Finally, the developed tools and fully applicable results are extremely dependent on
large environmental and tree growth databases. It is important to address the potential
constraints of our study by other researchers and end users. Thus, it is clear that data-
science insights and machine-learning predictions depend on well-collected data, sampling
methodological reliability, and databases in reliable quantity and quality. Limitations can
arise due to insufficient data, imbalanced data, noise in the data, or a lack of representative-
ness in certain subgroups. For example, if we use another climatic period, we will have
a result of productivity zones different from the one presented here. ML algorithms can
reflect and amplify biases present in the training data. For example, in this study, we used
representative field data from high-tech forestry; thus, we have high levels of productivity
that could not be achieved using forest outgrower schemes or small rural tree growers.
The ML models may struggle to generalize new data that falls outside the scope of the
training data. Therefore, it should be mentioned that the tools presented here should not be
applied outside the study area. Above all, these integrated approaches will mainly require
forest professionals with the skills to put it all together and produce insights, applied
and reproducible tools, and conclusive results supporting the sustainability of the forestry
business in an increasingly rapidly changing world.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/f14071334/s1, Figure S1: Relationship between basal area
and total wood volume (class center of 6 years old) for the 9953 forest inventory plots of Eucalyptus
plantations used in this study; Table S1: Coefficients of the monthly and annual air temperatures
models and statistical indices. Missing values of coefficients were not significant at 5%.; Figure S2:
Average monthly temperature (◦C) obtained by multivariate nonlinear regression model based on
a network of 48 meteorological stations distributed in the study area. These air temperature maps
were used to calculate the monthly potential evapotranspiration by the method of Thornthwaite [51];
Figure S3: Relationship between RMSE (root mean squared error) and leaf (terminal) nodes for the
450 decision-tree models obtained by tuning hyperparameters such as minsplit, minbucket, and cost-
complexity factor (cp). Circle size represents the five-cp factor (rpart) used in the tuning modeling.
Color ramp denotes the number of leaf nodes found in the complete (minsplit ×minbucket × cp)
model tuning. Decision-tree setup selected has the following hyperparameters: minbucket = 79,
minsplit = 158, cp = 0.0005, leaf node = 35, and RMSE = 53.5 m3 ha−1 (see the gray arrow on the
plot indicating the rpart hyperparameters setup selected); Figure S4: RMSE (root mean squared
error) visualization of the decision-tree modeling by tuning hyperparameters such as minsplit and
minbucket, and for the complexity parameter = 0.0005. Color ramp denotes the number of leaf nodes
found in the model tuning. The rpart setup selected for the Eucalyptus forest zones productivity
zoning has minbucket = 79, minsplit = 158, cp = 0.0005, resulting in 35 leaf nodes, and RMSE of
53.5 m3 ha−1 (see the gray arrow on the plot indicating the rpart hyperparameters setup selected).
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