Spatial Principles of Territories Selection for Priority Development of Agroforestry Complexes
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Mapping and Assessment of the Protective Forest Cover Sufficiency of the Territory
3.2. The Terrain as a Factor in Determining the Priority of Agroforestry Activities
3.3. Soil Cover as a Factor in Determining the Priority of Agroforestry Activities
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waldron, A.; Garrity, D.; Malhi, Y.; Girardin, C.; Miller, D.C.; Seddon, N. Agroforestry can enhance food security while meeting other sustainable development goals. Trop. Conserv. Sci. 2017, 10, 1940082917720667. [Google Scholar] [CrossRef]
- Montagnini, F. The Contribution of Agroforestry to Sustainable Development Goal 2: End Hunger, Achieve Food Security and Improved Nutrition, and Promote Sustainable Agriculture. In Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty; Montagnini, F., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Bobylev, S.N.; Solovyova, S.V. Sustainable development goals for the future of Russia. Probl. Forecast. 2017, 3, 26–33. [Google Scholar] [CrossRef]
- Bannikova, K.S.; Radchenko, T.A. The goals of sustainable development are included in Russia’s domestic policy. Russian newspaper. 2020, 211, 1–2. [Google Scholar]
- LD Initiative. The Rewards of Investing in Sustainable Land Management. Interim Report for the Economics of Land Degradation Initiative: A Global Strategy for Sustainable Land Management. 2013. Available online: https://www.eld-initiative.org (accessed on 17 April 2023).
- Pavlovsky, E.S. Protective forest plantations-a system-forming element of the landscape of the agro-territory. Vestn. Russ. Agric. Sci. 2002, 3, 17–18. [Google Scholar]
- Petrov, N.G. Landscape Agroforestry; Kolos: Moscow, Russia, 1996; 175p. [Google Scholar]
- Kulik, K.N. Protective forest plantations are the basis of the ecological framework of agricultural territories. Vestn. Russ. Agric. Sci. 2018, 1, 18–21. [Google Scholar]
- Pavlovsky, E.S.; Petrov, N.G.; Mattis, G.Y. Conceptual and Program Aspects of the Development of Agroforestry in Russia; RAAS: Moscow, Russia, 1995; 70p. [Google Scholar]
- Wilson, M.H.; Lovell, S.T. Agroforestry—The next step in sustainable and resilient agriculture. Sustainability 2016, 8, 574. [Google Scholar] [CrossRef]
- Brandle, J.; Hodges, L.; Wight, B. Windbreak practices. In North American Agroforestry: An Integrated Science and Practice; Garrett, H.E., Rietveld, W.J., Fisher, R.F., Eds.; American Society of Agronomy: Madison, WI, USA, 2000; pp. 79–118. [Google Scholar]
- Briggs, S. Agroforestry: A new approach to increasing farm production. In A Nuffield Farming Scholarships Trust Report by Stephen Briggs; NFU Mutual Charitable Trust: Nuffield, UK, 2012. [Google Scholar]
- Rulev, A.S.; Pugachova, A.M. Formation of a new agroforestry paradigm. Bull. Russ. Acad. Sci. 2019, 10, 1044–1051. [Google Scholar] [CrossRef]
- Bennett, B.M.; Barton, G.A. The enduring link between forest cover and rainfall: A historical perspective on science and policy discussions. For. Ecosyst. 2018, 5. [Google Scholar] [CrossRef]
- Zolotokrylin, A.N.; Cherenkova, E.A.; Titkova, E.B. Aridization of arid lands in the European part of Russia and the relationship with droughts. Izv. Ross. Akad. Nauk. Seriya Geogr. 2020, 84, 207–217. [Google Scholar]
- Potashkina, Y.N.; Koshelev, A.V. Impact of Field-Protective Forest Belts on the Microclimate of Agroforest Landscape in the Zone of Chestnut Soils of the Vol-gograd Region. Forests 2022, 13, 1892. [Google Scholar] [CrossRef]
- Hillbrand, A.; Borelli, S.; Conigliaro, M.; Olivier, A. Agroforestry for Landscape Restoration: Exploring the Potential of Agroforestry to Enhance the Sustainability and Resilience of Degraded Landscapes; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Available online: http://www.fao.org/3/b-i7374e.pdf (accessed on 5 August 2022).
- Sileshi, G.W.; Mafongoya, P.L.; Nath, A.J. Agroforestry systems for improving nutrient recycling and soil fertility on degraded lands. In Agroforestry for Degraded Landscapes; Dagar, J.C., Gupta, S.R., Teketay, D., Eds.; Springer: Singapore, 2020; pp. 225–254. [Google Scholar]
- Tribunskaya, V.M. Economic Efficiency of Protective Forest Plantations in the System of Soil Protection from Erosion; Agropromizdat: Moscow, Russia, 1990. [Google Scholar]
- Korneeva, E.A. Economic Evaluation of Ecological Restoration of Degraded Lands through Protective Afforestation in the South of the Russian Plain. Forests 2021, 12, 1317. [Google Scholar] [CrossRef]
- Korneeva, E.A. Economic Assessment and Management of Agroforestry Productivity from the Perspective of Sustainable Land Use in the South of the Russian Plain. Forests 2022, 13, 172. [Google Scholar] [CrossRef]
- Lehmann, L.; Smith, J.; Westaway, S.; Pisanelli, A. Productivity and economic evaluation of agroforestry systems for sustainable production of food and non-food products. Sustainability 2020, 12, 5429. [Google Scholar] [CrossRef]
- Stocking, M.; Bojo, J.; Abel, N. Financial and economic analysis of agroforestry: Key issues. In Agroforestry for Sustainable Production: Economic Implications; Prinsley, R.T., Ed.; The Commonwealth Secretariat: London, UK, 1990; pp. 13–119. [Google Scholar]
- Manaenkov, A.S.; Korneeva, E.A. Biogeographic aspects of assessing the effectiveness of protection of arable land by forest strips. Vestn. Mosk. Universiteta. Seriya 5 Geogr. 2021, 3, 48–54. [Google Scholar]
- Koch, R. The 80/20 Principl; Eksmo: Moscow, Russia, 2012; 443p. [Google Scholar]
- Kulik, K.N.; Barabanov, A.T.; Zhdanov, Y.M.; Kryuchkov, S.N.; Kulik, A.K.; Manaenskov, A.S.; Ostraya, T.I.; Pugacheva, A.M.; Rulev, A.S.; Semenyutina, A.V. Strategy for the Development of Protective Afforestation in the Volgograd Region for the Period Up to 2025; Federal Scientific Center of Agroecology RAS: Volgograd, Russia, 2017; 39p. [Google Scholar]
- Molchanov, A.A. Optimal Woodiness; Science: Moscow, Russia, 1966; 125p. [Google Scholar]
- Pavlovsky, E.S. Ecological and Social Problems of Agroforestry; Agropromizdat: Moscow, Russia, 1988; pp. 152–153. [Google Scholar]
- Ananiev, P.P.; Podkur, P.P.; Kuprina, N.F. Regulation of river flow with the help of forest plantations. In Ecology and Protective Afforestation; Ukrainian Research Institute of Forestry and Agroforestry: Kharkov, Ukraine, 1988; pp. 149–155. [Google Scholar]
- Paulukevicius, G.B. The Role of the Forest in the Ecological Stabilization of Landscapes; Science: Moscow, Russia, 1989; pp. 194–197. [Google Scholar]
- Paramonov, E.G.; Ishutin, Y.N.; Simonenko, A.P. Kulunda Steppe: The Problem of Desertification; Altai University Press: Barnaul, Russia, 2003; 138p. [Google Scholar]
- Kalinichenko, N.P.; Zykov, I.G. Anti-Erosion Forest Reclamation; Agropromizdat: Moscow, Russia, 1986; pp. 54–78. [Google Scholar]
- Design and Implementation of Eco-Landscape Farming Systems; Lopyrev, M.I., Ed.; Publishing House of the Voronezh State Agrarian University: Voronezh, Russia, 1999; 254p. [Google Scholar]
- Baranov, V.A.; Ivanov, A.V. Agroforest Landscapes of the Southeast of European Russia: Structure, Evolution, Optimization; Scientific book: Saratov, Russia, 2006; pp. 52–56. [Google Scholar]
- Lozovoi, A.D. Optimal forest cover as a bioindicator of the ecological and economic situation in the region. Econ. Effic. Organ. Prod. 2003, 2, 9–12. [Google Scholar]
- Levykin, S.V.; Kazachkov, G.V.; Yakovlev, I.G.; Grudinin, D.A. Agroecological indicators of optimization of the structure of steppe agricultural landscapes. Socio-Ecol. Technol. 2017, 2, 35–51. [Google Scholar]
- Solntsev, N.A. Doctrine of the Landscape: Selected Works; Moscow State University Publishing House: Moscow, Russia, 2001; 383p. [Google Scholar]
- Isachenko, A.G. Fundamentals of Landscape Science and Physical-Geographical Zoning. Science: Moscow, Russia, 1990; 330p. [Google Scholar]
- Zoning of the Territory of the USSR According to the Main Factors of Erosion; Armand, D.L., Ed.; Nauka: Moscow, Russia, 1965; 235p. [Google Scholar]
- Selezneva, A.V.; Dedova, I.S. Morphogenetic analysis of the erosion relief of the Volgograd right bank. Geomorphology 2019, 4, 88–101. [Google Scholar] [CrossRef]
- Zykov, I.G.; Dolgilevich, M.I.; Shvebs, G.I. Scientific Foundations of Forecasting and a System for Preventing Erosion Processes; VNIALMI: Volgograd, Russia, 1993; 146p. [Google Scholar]
- Chalov, R.S.; Chernov, A.V.; Mikhailova, N.M. Danger of channel processes on the rivers of Russia, regional analysis. Geogr. Bull. 2021, 1, 53–67. [Google Scholar]
- Kozmenko, A.S. Fundamentals of Erosion Control Melioration; Selkhozkhgiz: Moscow, Russia, 1954; 423p. [Google Scholar]
- Garshinev, E.A. Erosion-Hydrological Process and Forest Reclamation: Theory and Models; VNIALMI: Volgograd, Russia, 1999; 196p. [Google Scholar]
- Surmach, G.P. Relief Formation, Formation of the Forest-Steppe, Modern Erosion and Anti-Erosion Reclamation; VNIALMI: Volgograd, Russia, 1992; p. 174. [Google Scholar]
- Morgan, R.P.C. Soil Erosion and Conservation, 3rd ed.; Blacwell Science: Blackwell Publishing: Oxford, UK, 2005; pp. 11–261. [Google Scholar] [CrossRef]
- Armand, D.L. Landscape Science; Thought: Moscow, Russia, 1975; 286p. [Google Scholar]
- Vinogradov, B.V. Fundamentals of landscape ecology; GEOS: Moscow, Russia, 1998; 417p. [Google Scholar]
- Rakutin, M.N. Land Cadastre of the Volgograd Region; Nizhne-Volzhsky book publishing house: Volgograd, Russia, 1977; 160p. [Google Scholar]
- Kretinin, V.M. Forest suitability of soils in agroforestry regions. In Forest Reclamation and Landscape; VNIALMI: Volgograd, Russia, 1993; pp. 50–59. [Google Scholar]
- Kretinin, V.M.; Isupov, B.A. Principles of agroforestry division of the territory of the USSR. In Protective Afforestation in the Natural Regions of the USSR; VNIALMI: Volgograd, Russia, 1991; pp. 13–21. [Google Scholar]
- Berlyant, A.M. Electronic mapping in Russia. Soros Educ. J. 2000, 6, 1. [Google Scholar]
- Lurie, I.K. Geoinformation Mapping. Methods of Geoinformatics and Digital Processing of Space Images; Textbook; KDU: Moscow, Russia, 2008; 424p. [Google Scholar]
- Kulik, K.N.; Rulev, A.S. Geoinformation mapping in agroforestry. Rep. RAAS 2000, 1, 42–43. [Google Scholar]
- McLaughlin, J.D.; Nicholas, S.E. Parcel-Based Land Information Systems. Surv. Mapping 1987, 47, 11–29. [Google Scholar]
- Application of Aerospace Methods in Agroforestry: Methodological Recommendations; VASKHNIL: Moscow, Russia, 1991; 56p.
- Kulik, K.N. Methodological Manual on the Use of Information Technology in Agroforestry Mapping; VNIALMI: Volgograd, Russia, 2003; 46p. [Google Scholar]
- Kulik, K.N.; Koshelev, A.V. Methodological basis for agroforestry reclamation assessment of protective forest plantations according to remote monitoring data. For. Eng. J. 2017, 3, 7–114. [Google Scholar] [CrossRef]
- Kulik, K.N.; Vinogradov, B.V. Mapping of the dynamics of land desertification by repeated aerial and space images. Mapp. Sci. Remote Sens. 1996, 33, 259–271. [Google Scholar] [CrossRef]
- Pavlovsky, E.S.; Kulik, K.N. Aerospace monitoring of protective forest plantations. In Aerospace Monitoring of Forest Resources in the Zone of Intensive Management; Publishing house of the Institute of space research: Lvov, Ukraine, 1988; pp. 12–14. [Google Scholar]
- Petrov, V.I.; Kulik, K.N. Aerospace methods of forest reclamation assessment and monitoring of arid territories. In Forest Reclamation Methods for Increasing the Productivity of Agricultural Production and Nature Protection; VNIALMI: Volgograd, Russia, 1985; pp. 61–64. [Google Scholar]
- Kulik, K.N.; Rulev, A.S.; Yuferev, V.G. Geoinformational analysis of desertification dynamics in the Astrakhan region. Arid Ecosyst. 2015, 3, 23–32. [Google Scholar] [CrossRef]
- Kulik, K.N. Aerial and Satellite methods of research in agrosilvicultural amelioration. In Proceedings of the Third International Windbreaks, End Agroforestry Symposium, Ridgetown, ON, Canada, 2–7 June 1991; Ridgetown College: Chatham-Kent, Canada, 1991; pp. 55–59. [Google Scholar]
- Kulik, K.N.; Pavlovsky, E.S.; Rulev, A.S.; Yuferev, V.G.; Bakurova, K.B.; Dorokhina, Z.P.; Tubalov, A.A.; Koshelev, A.V.; Berezavikova, O.Y.; Dzugaev, A.A. Methodological Guidelines for Landscape-Ecological Profiling in Agroforestry Mapping; RAAS: Moscow, Russia, 2007; p. 41. [Google Scholar]
- Kulik, K.N.; Petrov, V.I.; Svintsov, I.P.; Rulev, A.S.; Yuferev, V.G.; Salugin, A.N.; Dzugaev, A.A. Application of Information Technologies in Agroforestry Mapping; RAAS: Moscow, Russia, 2003; p. 48. [Google Scholar]
- Vagizov, M.R.; Stepanov, S.Y.; Petrov, Y.A. Fundamentals of Geoinformatics: Workshop in QGIS; Sinel: St. Petersburg, Russia, 2020; 51p. [Google Scholar]
- Abakumova, L.I.; Averyanov, O.A.; Arkhangelskaya, G.P.; Barabanov, A.T.; Belitskaya, M.N.; Belitskaya, O.N.; Wart, V.A.; Wart, E.V.; Botman, K.S.; Buzun, V.A.; et al. Encyclopedia of Agroforestry; VNIALMI: Volgograd, Russia, 2004; 675p. [Google Scholar]
- Rulev, A.S. Landscape-Geographical Approach in Agroforestry; VNIALMI: Volgograd, Russia, 2007; 160p. [Google Scholar]
- Kulik, K.N.; Dzugaev, A.A.; Pavlovsky, E.S.; Petrov, V.I.; Rulev, A.S.; Bakurova, K.B.; Barabanov, A.T.; Belitskaya, O.N.; Vasiliev, Y.I.; Dorokhin, Z.P.; et al. Atlas of Thematic Maps for Agroforestry and Protective Afforestation; VNIALMI: Volgograd, Russia, 2007; 150p. [Google Scholar]
- Zhulidova, A.N.; Ivashkova, N.I.; Chursin, B.P.; Tsvylev, E.I.; Rodin, A.Z.; Mironov, M.I.; Zhirov, A.A.; Komov, A.A.; Kulikov, E.P.; Sotnikov, V.P.; et al. Soil Map of the Volgograd Region, Scale 1: 400000; Southern State Design Institute for Land Management: Volgograd, Russia, 1985. [Google Scholar]
- Brylev, V.A.; Abalkhin, B.S.; Kostornichenko, N.N. Atlas of the Volgograd Region; Ukrgeodescartography: Vinnitsa, Ukraine, 1993; 40p. [Google Scholar]
- Monnikov, S.N.; Kravchenko, E.I.; Brylev, V.A. Volgograd Region: Natural Conditions, Resources, Economy, Population, Geoecological State; Change: Volgograd, Russia, 2011; 528p. [Google Scholar]
- Schad, P.; Llobet, J.B.; Deckers, S.; Dondeyne, S.; Eberhardt, E.; Gerasimova, M.; Harms, B.; Kabala, C.; Mantel, S.; Michéli, E.; et al. IUSS Working Group WRB: World Reference Base for Soil Resources, Fourth Ed.; International Union of Soil Sciences: Vienna, Austria, 2022; 236p. [Google Scholar]
- Pavlovsky, E.S.; Babenko, D.K.; Labaznikov, B.V. Housekeeping in Field-Protective Forest Belts: Guidelines; Timber industry: Krasnodar, Russia, 1981; 40p. [Google Scholar]
- Mattis, G.Y.; Pavlovsky, E.S.; Kalashnikov, A.F.; Savelieva, L.S.; Torokhtun, I.M. Handbook of Agroforestry; Timber industry: Moscow, Russia, 1984; 248p. [Google Scholar]
- Blumenau, D.I. Information analysis and Synthesis for the Formation of a Secondary Flow of Documents; Profession: St. Petersburg, Russia, 2002; 240p. [Google Scholar]
- Barabanov, A.T. Standards for the Formation of Optimal Forest Reclamation Complexes on Arable Land Taking into Account the Factors of Degradation of Agricultural Landscapes in Farms of Different Ownership Forms; Russian Agricultural Academy: Moscow, Russia, 2002. [Google Scholar]
- Kushnarenko, N.N.; Udalova, V.K. Scientific Processing of Documents; Knowledge: Moscow, Russia, 2006; 334p. [Google Scholar]
- Gendina, N.I.; Ponomareva, N.V.; Serebryannikova, T.O. Analytical and Synthetic Processing of Information; Profession: St. Petersburg, Russia, 2017; 336p. [Google Scholar]
- Lavrik, O.L.; Kalyuzhnaya, T.A.; Pleshakova, M.A. Systematic review as a type of review and analytical products. Bibliosphere 2019, 2, 33–51. [Google Scholar] [CrossRef]
- Baranov, V.A.; Byaly, A.M.; Dolgilevich, M.I. Methods of Systematic Research of Forest-Agrarian Landscapes; All-Union Academy of Agricultural Sciences named after V. I. Lenin: Moscow, Russia, 1985. [Google Scholar]
No | Academic Institution, Authors, Year | Indicators of Optimal Forest Cover |
---|---|---|
1 | Academy of Sciences, Laboratory of Forestry, Molchanov, 1966 [27]. | Slightly hilly area 5%–10%; medium and high hilly areas 12%–20%; 25%–30% water protection forests. |
2 | All-Russian Research Institurte of Agroforestry, Pavlovskiy, 1988 [28]. | Forest cover of arable land: 2.5%–4% in the plain conditions; 10%–12% in areas with rugged terrain. |
3 | Ukrainian Research Institute of Forestry and Agroforestry, Ananyev, Podkur, Kuprina, 1988 [29]. | Water protection forests: steppe 16%–19%; forest-steppe 19%–23% |
4 | Academy of Sciences of the Lithuanian SSR, Paulukevičius,1989 [30]. | Forest cover necessary for the ecological stability of landscapes: hilly plains 25%–40%; plains 10%–30%; areas with eolian deposits over 40%. |
5 | Altai University, Paramonov, Ishutin, Simonenko, 2003 [31]. | Share of PFP in the area of arable land: minimum 4%–5%; optimum 7%–10%. Share of forest area: minimum 10%–15%; optimum 15%–20%. |
6 | All-Russian Research Institute of Forestry and Mechanization, All-Russian Research Institute of Agroforestry, Kalinichenko, Zykov, 1986 [32]. | Anti-erosion afforestation of catchments from 3.69% to 16.8%, averaged 10.34% (flow regulating—1.5%, near-ravine and near-gulley 1.46%; on the ravine-gulley network 6.98; on valley and channel banks of small rivers 0.4%) |
7 | Voronezh State Agrarian University, Lopyrev, 1999 [33]. | 6% |
8 | All-Russian Research Institute of Agroforestry, Saratov State University, Baranov, Ivanov, 2005 [34]. | Afforestation of arable land: forest-steppe 2.0%–2.5%; steppe 3.0%–4.0%; light soils and slopes 5%–7%. |
9 | Voronezh State Forest Engineering Academy, Lozovoy, 2003 [35]. | Types of forest cover: arable—3%; protective—5%; agricultural—8%; water protective—24%; landscape—10%; resource and raw materials—22%; ecological—18%. |
10 | Steppe Institute of the Ural Branch of the Russian Academy of Sciences, Levykin, Kazachkov, Yakovlev, Grudinin, 2017 [36]. | Optimum forest cover depending on the type of terrain: valley-upland—2%; watershed upland and hilly on sands and gravel—22%;watershed upland and hilly on clays and marls—4%;watershed upland and steeply-sloping—6%; floodplain terraced—4%; floodplain with a short period of flooding—15%; floodplain with a long period of flooding—50%; hilly-sandy—50%; valley-gulley—60%. |
Landscape Areas | Ravine Dissection, km/km2 | Density of Ravine Tops, pcs/km2 | Protective Forest Cover, % |
---|---|---|---|
Pridonsky | 0.84 | 0.96 | 0.6 |
Archedino–Don | 0.06 | 0.09 | 2.7 |
Ilovlinsko–Medveditsky | 0.42 | 0.6 | 1.1 |
Ilovlinsko–Volzhsky | 0.05 | 0.1 | 1.6 |
Ilovlinsky floodplain | - | - | 0.9 |
Middle Don floodplain | - | - | 0.9 |
In general | 0.28 | 0.36 | 0.8 |
Landscape Areas | Share I, % | Share II, % | Share III, % | Share IV, % |
---|---|---|---|---|
Pridonsky | - | 4.4 | 72 | 23.6 |
Archedino–Don | 19.3 | 26.9 | 41.8 | 12 |
Ilovlinsko–Medveditsky | - | 31.8 | 68.2 | - |
Ilovlinsko–Volzhsky | 4.8 | 13.4 | 81.8 | - |
Ilovlinsky floodplain | 46.5 | 5.3 | 42.4 | 5.8 |
Middle Don floodplain | 69.3 | - | 16.5 | 14.2 |
In general | 17.7 | 14.5 | 55.8 | 12 |
Landscape Areas | I, % | II, % | III, % | IV, % |
---|---|---|---|---|
Pridonsky | - | 0.12 | 0.5 | 0.26 |
Archedino–Don | 2.2 | 3 | 1.3 | 0.01 |
Ilovlinsko–Medveditsky | - | 0.2 | 0.1 | - |
Ilovlinsko–Volzhsky | - | 2.4 | 0.04 | - |
Ilovlinsky floodplain | 0.3 | - | 0.8 | - |
Middle Don floodplain | 0.1 | - | 1.2 | 0.4 |
In general | 0.8 | 2.04 | 0.7 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tubalov, A.A. Spatial Principles of Territories Selection for Priority Development of Agroforestry Complexes. Forests 2023, 14, 1225. https://doi.org/10.3390/f14061225
Tubalov AA. Spatial Principles of Territories Selection for Priority Development of Agroforestry Complexes. Forests. 2023; 14(6):1225. https://doi.org/10.3390/f14061225
Chicago/Turabian StyleTubalov, Alexey A. 2023. "Spatial Principles of Territories Selection for Priority Development of Agroforestry Complexes" Forests 14, no. 6: 1225. https://doi.org/10.3390/f14061225
APA StyleTubalov, A. A. (2023). Spatial Principles of Territories Selection for Priority Development of Agroforestry Complexes. Forests, 14(6), 1225. https://doi.org/10.3390/f14061225