Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (805)

Search Parameters:
Keywords = protective forest cover

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5546 KiB  
Article
Modification of Vegetation Structure and Composition to Reduce Wildfire Risk on a High Voltage Transmission Line
by Tom Lewis, Stephen Martin and Joel James
Fire 2025, 8(8), 309; https://doi.org/10.3390/fire8080309 - 5 Aug 2025
Abstract
The Mapleton Falls National Park transmission line corridor in Queensland, Australia, has received a number of vegetation management treatments over the last decade to maintain and protect the infrastructure and to ensure continuous electricity supply. Recent treatments have included ‘mega-mulching’ (mechanical mastication of [...] Read more.
The Mapleton Falls National Park transmission line corridor in Queensland, Australia, has received a number of vegetation management treatments over the last decade to maintain and protect the infrastructure and to ensure continuous electricity supply. Recent treatments have included ‘mega-mulching’ (mechanical mastication of vegetation to a mulch layer) in 2020 and targeted herbicide treatment of woody vegetation, with the aim of reducing vegetation height by encouraging a native herbaceous groundcover beneath the transmission lines. We measured vegetation structure (cover and height) and composition (species presence in 15 × 2 m plots), at 12 transects, 90 m in length on the transmission line corridor, to determine if management goals were being achieved and to determine how the vegetation and fire hazard (based on the overall fuel hazard assessment method) varied among the treated corridor, the forest edge environment, and the natural forest. The results showed that vegetation structure and composition in the treated zones had been modified to a state where herbaceous plant species were dominant; there was a significantly (p < 0.05) higher native grass cover and cover of herbs, sedges, and ferns in the treated zones, and a lower cover of trees and tall woody plants (>1 m in height) in these areas. For example, mean native grass cover and the cover of herbs and sedges in the treated areas was 10.2 and 2.8 times higher, respectively, than in the natural forest. The changes in the vegetation structure (particularly removal of tall woody vegetation) resulted in a lower overall fuel hazard in the treated zones, relative to the edge zones and natural forest. The overall fuel hazard was classified as ‘high’ in 83% of the transects in the treated areas, but it was classified as ‘extreme’ in 75% of the transects in the adjacent forest zone. Importantly, there were few introduced species recorded. The results suggest that fuel management has been successful in reducing wildfire risk in the transmission corridor. Temporal monitoring is recommended to determine the frequency of ongoing fuel management. Full article
Show Figures

Figure 1

21 pages, 6621 KiB  
Article
Ecological Restoration Reshapes Ecosystem Service Interactions: A 30-Year Study from China’s Southern Red-Soil Critical Zone
by Gaigai Zhang, Lijun Yang, Jianjun Zhang, Chongjun Tang, Yuanyuan Li and Cong Wang
Forests 2025, 16(8), 1263; https://doi.org/10.3390/f16081263 - 2 Aug 2025
Viewed by 199
Abstract
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. [...] Read more.
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. Consequently, multiple restoration initiatives have been implemented in the region over recent decades. However, it remains unclear how relationships among ecosystem services have evolved under these interventions and how future ecosystem management should be optimized based on these changes. Thus, in this study, we simulated and assessed the spatiotemporal dynamics of five key ESs in Gannan region from 1990 to 2020. Through integrated correlation, clustering, and redundancy analyses, we quantified ES interactions, tracked the evolution of ecosystem service bundles (ESBs), and identified their socio-ecological drivers. Despite a 31% decline in water yield, ecological restoration initiatives drove substantial improvements in key regulating services: carbon storage increased by 6.9 × 1012 gC while soil conservation rose by 4.8 × 108 t. Concurrently, regional habitat quality surged by 45% in mean scores, and food production increased by 2.1 × 105 t. Critically, synergistic relationships between habitat quality, soil retention, and carbon storage were progressively strengthened, whereas trade-offs between food production and habitat quality intensified. Further analysis revealed that four distinct ESBs—the Agricultural Production Bundle (APB), Urban Development Bundle (UDB), Eco-Agriculture Transition Bundle (ETB), and Ecological Protection Bundle (EPB)—were shaped by slope, forest cover ratio, population density, and GDP. Notably, 38% of the ETB transformed into the EPB, with frequent spatial interactions observed between the APB and UDB. These findings underscore that future ecological restoration and conservation efforts should implement coordinated, multi-service management mechanisms. Full article
Show Figures

Figure 1

18 pages, 4332 KiB  
Article
Soils of the Settlements of the Yamal Region (Russia): Morphology, Diversity, and Their Environmental Role
by Evgeny Abakumov, Alexandr Pechkin, Sergey Kouzov and Anna Kravchuk
Appl. Sci. 2025, 15(15), 8569; https://doi.org/10.3390/app15158569 (registering DOI) - 1 Aug 2025
Viewed by 113
Abstract
The landscapes of the Arctic seem endless. But they are also subject to anthropogenic impact, especially in urbanized and industrial ecosystems. The population of the Arctic zone of Russia is extremely urbanized, and up to 84% of the population lives in cities and [...] Read more.
The landscapes of the Arctic seem endless. But they are also subject to anthropogenic impact, especially in urbanized and industrial ecosystems. The population of the Arctic zone of Russia is extremely urbanized, and up to 84% of the population lives in cities and industrial settlements. In this regard, we studied the background soils of forests and tundras and the soils of settlements. The main signs of the urbanogenic morphogenesis of soils associated with the transportation of material for urban construction are revealed. The peculiarities of soils of recreational, residential, and industrial zones of urbanized ecosystems are described. The questions of diversity and the classification of soils are discussed. The specificity of bulk soils used in the construction of industrial structures in the context of the initial stage of soil formation is considered. For the first time, soils and soil cover of settlements in the central and southern parts of the Yamal region are described in the context of traditional pedology. It is shown that the construction of new soils and grounds can lead to both decreases and increases in biodiversity, including the appearance of protected species. Surprisingly, the forms of urban soil formation in the Arctic are very diversified in terms of morphology, as well as in the ecological functions performed by soils. The urbanization of past decades has drastically changed the local soil cover. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

24 pages, 10342 KiB  
Article
Land-Use Evolution and Driving Forces in Urban Fringe Archaeological Sites: A Case Study of the Western Han Imperial Mausoleums
by Huihui Liu, Boxiang Zhao, Junmin Liu and Yingning Shen
Land 2025, 14(8), 1554; https://doi.org/10.3390/land14081554 - 29 Jul 2025
Viewed by 337
Abstract
Archaeological sites located on the edge of growing cities often struggle to reconcile heritage protection with rapid development. To understand this tension, we examined a 50.83 km2 zone around the Western Han Imperial Mausoleums in the Qin-Han New District. Using Landsat images [...] Read more.
Archaeological sites located on the edge of growing cities often struggle to reconcile heritage protection with rapid development. To understand this tension, we examined a 50.83 km2 zone around the Western Han Imperial Mausoleums in the Qin-Han New District. Using Landsat images from 1992, 2002, 2012, and 2022, this study applied supervised classification, land-use transfer matrices, and dynamic-degree analysis to trace three decades of land-use change. From 1992 to 2022, built-up land expanded by 29.85 percentage points, largely replacing farmland, which shrank by 35.64 percentage points and became fragmented. Forest cover gained a modest 5.78 percentage points and migrated eastward toward the mausoleums. Overall, urban growth followed a “spread–integrate–connect” pattern along major roads. This study interprets these trends through five interrelated drivers, including policy, planning, economy, population, and heritage protection, and proposes an integrated management model. The model links archaeological pre-assessment with land-use compatibility zoning and active community participation. Together, these measures offer a practical roadmap for balancing conservation and sustainable land management at imperial burial complexes and similar urban fringe heritage sites. Full article
Show Figures

Figure 1

20 pages, 8154 KiB  
Article
Strategies for Soil Salinity Mapping Using Remote Sensing and Machine Learning in the Yellow River Delta
by Junyong Zhang, Xianghe Ge, Xuehui Hou, Lijing Han, Zhuoran Zhang, Wenjie Feng, Zihan Zhou and Xiubin Luo
Remote Sens. 2025, 17(15), 2619; https://doi.org/10.3390/rs17152619 - 28 Jul 2025
Viewed by 374
Abstract
In response to the global ecological and agricultural challenges posed by coastal saline-alkali areas, this study focuses on Dongying City as a representative region, aiming to develop a high-precision soil salinity prediction mapping method that integrates multi-source remote sensing data with machine learning [...] Read more.
In response to the global ecological and agricultural challenges posed by coastal saline-alkali areas, this study focuses on Dongying City as a representative region, aiming to develop a high-precision soil salinity prediction mapping method that integrates multi-source remote sensing data with machine learning techniques. Utilizing the SCORPAN model framework, we systematically combined diverse remote sensing datasets and innovatively established nine distinct strategies for soil salinity prediction. We employed four machine learning models—Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Geographical Gaussian Process Regression (GGPR) for modeling, prediction, and accuracy comparison, with the objective of achieving high-precision salinity mapping under complex vegetation cover conditions. The results reveal that among the models evaluated across the nine strategies, the SVR model demonstrated the highest accuracy, followed by RF. Notably, under Strategy IX, the SVR model achieved the best predictive performance, with a coefficient of determination (R2) of 0.62 and a root mean square error (RMSE) of 0.38 g/kg. Analysis based on SHapley Additive exPlanations (SHAP) values and feature importance indicated that Vegetation Type Factors contributed significantly and consistently to the model’s performance, maintaining higher importance than traditional salinity indices and playing a dominant role. In summary, this research successfully developed a comprehensive, high-resolution soil salinity mapping framework for the Dongying region by integrating multi-source remote sensing data and employing diverse predictive strategies alongside machine learning models. The findings highlight the potential of Vegetation Type Factors to enhance large-scale soil salinity monitoring, providing robust scientific evidence and technical support for sustainable land resource management, agricultural optimization, ecological protection, efficient water resource utilization, and policy formulation. Full article
Show Figures

Figure 1

29 pages, 6638 KiB  
Article
Forest Fragmentation in Bavaria: A First-Time Quantitative Analysis Based on Earth Observation Data
by Kjirsten Coleman and Claudia Kuenzer
Remote Sens. 2025, 17(15), 2558; https://doi.org/10.3390/rs17152558 - 23 Jul 2025
Viewed by 388
Abstract
Anthropogenic and climatic pressures can transform contiguous forests into smaller, less connected fragments. Forest biodiversity and ecosystem functioning can furthermore be compromised or enhanced. We present a descriptive analysis of forest fragmentation in Bavaria, the largest federal state in Germany. We calculated 22 [...] Read more.
Anthropogenic and climatic pressures can transform contiguous forests into smaller, less connected fragments. Forest biodiversity and ecosystem functioning can furthermore be compromised or enhanced. We present a descriptive analysis of forest fragmentation in Bavaria, the largest federal state in Germany. We calculated 22 metrics of fragmentation using forest polygons, aggregated within administrative units and with respect to both elevation and aspect orientation. Using a forest mask from September 2024, we found 2.384 million hectares of forest across Bavaria, distributed amongst 83,253 forest polygons 0.1 hectare and larger. The smallest patch category (XS, <25 ha) outnumbered all other size classes by nearly 13 to 1. Edge zones accounted for more than 1.68 million hectares, leaving less than 703,000 hectares as core forest. Although south-facing slopes dominated the state, the highest forest cover (~36%) was found on the least abundant east-oriented slopes. Most of the area is located at 400–600 m.a.s.l., with around 30% of this area covered by forests; however, XL forest patches (>3594 ha) dominated higher elevations, covering 30–60% of land surface area between 600 and 1400 m.a.s.l. The distribution of the largest patches follows the higher terrain and corresponds well to protected areas. K-Means clustering delineated 3 clusters, which corresponded well with the predominance of patchiness, aggregation, and edginess within districts. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Graphical abstract

20 pages, 25345 KiB  
Article
Mangrove Damage and Early-Stage Canopy Recovery Following Hurricane Roslyn in Marismas Nacionales, Mexico
by Samuel Velázquez-Salazar, Luis Valderrama-Landeros, Edgar Villeda-Chávez, Cecilia G. Cervantes-Rodríguez, Carlos Troche-Souza, José A. Alcántara-Maya, Berenice Vázquez-Balderas, María T. Rodríguez-Zúñiga, María I. Cruz-López and Francisco Flores-de-Santiago
Forests 2025, 16(8), 1207; https://doi.org/10.3390/f16081207 - 22 Jul 2025
Viewed by 1270
Abstract
Hurricanes are powerful tropical storms that can severely damage mangrove forests through uprooting trees, sediment erosion, and saltwater intrusion, disrupting their critical role in coastal protection and biodiversity. After a hurricane, evaluating mangrove damage helps prioritize rehabilitation efforts, as these ecosystems play a [...] Read more.
Hurricanes are powerful tropical storms that can severely damage mangrove forests through uprooting trees, sediment erosion, and saltwater intrusion, disrupting their critical role in coastal protection and biodiversity. After a hurricane, evaluating mangrove damage helps prioritize rehabilitation efforts, as these ecosystems play a key ecological role in coastal regions. Thus, we analyzed the defoliation of mangrove forest canopies and their early recovery, approximately 2.5 years after the landfall of Category 3 Hurricane Roslyn in October 2002 in Marismas Nacionales, Mexico. The following mangrove traits were analyzed: (1) the yearly time series of the Combined Mangrove Recognition Index (CMRI) standard deviation from 2020 to 2025, (2) the CMRI rate of change (slope) following the hurricane’s impact, and (3) the canopy height model (CHM) before and after the hurricane using satellite and UAV-LiDAR data. Hurricane Roslyn caused a substantial decrease in canopy cover, resulting in a loss of 47,202 ha, which represents 82.8% of the total area of 57,037 ha. The CMRI standard deviation indicated early signs of canopy recovery in one-third of the mangrove-damaged areas 2.5 years post-impact. The CMRI slope indicated that areas near the undammed rivers had a maximum recovery rate of 0.05 CMRI units per month, indicating a predicted canopy recovery of ~2.5 years. However, most mangrove areas exhibited CMRI rates between 0.01 and 0.03 CMRI units per month, anticipating a recovery time between 40 months (approximately 3.4 years) and 122 months (roughly 10 years). Unfortunately, most of the already degraded Laguncularia racemosa forests displayed a negative CMRI slope, suggesting a lack of canopy recovery so far. Additionally, the CHM showed a median significant difference of 3.3 m in the canopy height of fringe-type Rhizophora mangle and Laguncularia racemosa forests after the hurricane’s landfall. Full article
Show Figures

Figure 1

20 pages, 2546 KiB  
Article
Positive Relationships Between Soil Organic Carbon and Tree Physical Structure Highlights Significant Carbon Co-Benefits of Beijing’s Urban Forests
by Rentian Xie, Syed M. H. Shah, Chengyang Xu, Xianwen Li, Suyan Li and Bingqian Ma
Forests 2025, 16(8), 1206; https://doi.org/10.3390/f16081206 - 22 Jul 2025
Viewed by 332
Abstract
Increasing soil carbon storage is an important strategy for achieving sustainable development. Enhancing soil carbon sequestration capacity can effectively reduce the concentration of atmospheric carbon dioxide, which not only contributes to the carbon neutrality goal but also helps maintain ecosystem stability. Based on [...] Read more.
Increasing soil carbon storage is an important strategy for achieving sustainable development. Enhancing soil carbon sequestration capacity can effectively reduce the concentration of atmospheric carbon dioxide, which not only contributes to the carbon neutrality goal but also helps maintain ecosystem stability. Based on 146 soil samples collected at plot locations selected across Beijing, we examined relationships between soil organic carbon (SOC) and key characteristics of urban forests, including their spatial structure and species complexity. The results showed that SOC in the topsoil with a depth of 20 cm was highest over forested plots (6.384 g/kg–20.349 g/kg) and lowest in soils without any vegetation cover (5.586 g/kg–6.783 g/kg). The plots with herbaceous/shrub vegetation but no tree cover had SOC values in between (5.586 g/kg–15.162 g/kg). The plot data revealed that SOC was better correlated with the physical structure than the species diversity of Beijing’s urban trees. The correlation coefficients (r) between SOC and five physical structure indicators, including average diameter at breast height (DBH), average tree height, basal area density, and the diversity of DBH and tree height, ranged from 0.32 to 0.52, whereas the r values for four species diversity indicators ranged from 0.10 to 0.25, two of which were not statistically different from 0. Stepwise linear regression analyses revealed that the species diversity indicators were not very sensitive to SOC variations among a large portion of the plots and were about half as effective as the physical structure indicators for explaining the total variance of SOC. These results suggest that urban planning and greenspace management policies could be tailored to maximize the carbon co-benefits of urban land. Specifically, trees should be planted in urban areas wherever possible, preferably as densely as what can be allowed given other urban planning considerations. Protection of large, old trees should be encouraged, as these trees will continue to sequester and store large quantities of carbon in above- and belowground biomass as well as in soil. Such policies will enhance the contribution of urban land, especially urban forests and other greenspaces, to nature-based solutions (NBS) to climate change. Full article
(This article belongs to the Special Issue Ecosystem Services of Urban Forest)
Show Figures

Figure 1

22 pages, 4848 KiB  
Article
Characterization and Mapping of Conservation Hotspots for the Climate-Vulnerable Conifers Abies nephrolepis and Picea jezoensis in Northeast Asia
by Seung-Jae Lee, Dong-Bin Shin, Jun-Gi Byeon, Sang-Hyun Lee, Dong-Hyoung Lee, Sang Hoon Che, Kwan Ho Bae and Seung-Hwan Oh
Forests 2025, 16(7), 1183; https://doi.org/10.3390/f16071183 - 18 Jul 2025
Viewed by 348
Abstract
Abies nephrolepis and Picea jezoensis are native Pinaceae trees distributed in high mountainous regions of Northeast Asia (typically above ~1000 m a.s.l. on the Korean peninsula, northeastern China, Sakhalin, and the Russian Far East) and southern boreal forests, vulnerable to climate change and [...] Read more.
Abies nephrolepis and Picea jezoensis are native Pinaceae trees distributed in high mountainous regions of Northeast Asia (typically above ~1000 m a.s.l. on the Korean peninsula, northeastern China, Sakhalin, and the Russian Far East) and southern boreal forests, vulnerable to climate change and human disturbances, necessitating accurate habitat identification for effective conservation. While protected areas (PAs) are essential, merely expanding existing ones often fail to protect populations under human pressure and climate change. Using species distribution models with current and projected climate data, we mapped potential habitats across Northeast Asia. Spatial clustering analyses integrated with PA and land cover data helped identify optimal sites and priorities for new conservation areas. Ensemble species distribution models indicated extensive suitable habitats, especially in southern Sikhote-Alin, influenced by maritime-continental climates. Specific climate variables strongly affected habitat suitability for both species. The Kamchatka peninsula consistently emerged as an optimal habitat under future climate scenarios. Our study highlights essential environmental characteristics shaping the habitats of these species, reinforcing the importance of strategically enhancing existing PAs, and establishing new ones. These insights inform proactive conservation strategies for current and future challenges, by focusing on climate refugia and future habitat stability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 2287 KiB  
Article
Bird Community Structure Changes as Araucaria Forest Cover Increases in the Highlands of Southeastern Brazil
by Carla Suertegaray Fontana, Lucilene Inês Jacoboski, Jonas Rafael Rodrigues Rosoni, Juliana Lopes da Silva, Filipe Augusto Pasa Bernardi, Pamela Eliana Malmoria, Christian Beier and Sandra Maria Hartz
Birds 2025, 6(3), 37; https://doi.org/10.3390/birds6030037 - 16 Jul 2025
Viewed by 856
Abstract
The Brazilian Araucaria Forest (AF) now covers only 1% of its original extent due to significant degradation, making conservation a challenge. The AF occurs in a mosaic alongside grassland and Atlantic Forest ecosystems, influencing bird species’ distribution through ecological processes. We compared the [...] Read more.
The Brazilian Araucaria Forest (AF) now covers only 1% of its original extent due to significant degradation, making conservation a challenge. The AF occurs in a mosaic alongside grassland and Atlantic Forest ecosystems, influencing bird species’ distribution through ecological processes. We compared the composition and functional diversity of the bird community along a gradient of AF cover in a protected area (Pró-Mata Private Natural Heritage Reserve) in southern Brazil. Bird sampling was conducted using MacKinnon lists along five trails with different histories of vegetation suppression, based on forest cover estimates from landscape imagery. Birds were functionally classified based on morphological and ecological traits. We recorded 191 bird species in total. We found higher bird richness in trails with less forest cover, while functional diversity responded inversely to vegetation cover. Bird species composition shifted from more open-habitat specialists to more forest specialists with the increasing forest cover and vegetation structural complexity. These findings highlight the ecological importance of maintaining vegetation heterogeneity, as vegetation mosaics enhance avian species richness and support a broader range of functional traits and ecosystem processes. We recommend the conservation of Araucaria Forest–grassland mosaics as a strategic approach to support multidimensional biodiversity and sustain key ecological functions in southern Brazil. Full article
Show Figures

Figure 1

28 pages, 10262 KiB  
Article
Driving Forces and Future Scenario Simulation of Urban Agglomeration Expansion in China: A Case Study of the Pearl River Delta Urban Agglomeration
by Zeduo Zou, Xiuyan Zhao, Shuyuan Liu and Chunshan Zhou
Remote Sens. 2025, 17(14), 2455; https://doi.org/10.3390/rs17142455 - 15 Jul 2025
Viewed by 576
Abstract
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the [...] Read more.
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the spatiotemporal trajectories and driving forces of land use changes in the Pearl River Delta urban agglomeration (PRD) from 1990 to 2020 and further simulates the spatial patterns of urban land use under diverse development scenarios from 2025 to 2035. The results indicate the following: (1) During 1990–2020, urban expansion in the Pearl River Delta urban agglomeration exhibited a “stepwise growth” pattern, with an annual expansion rate of 3.7%. Regional land use remained dominated by forest (accounting for over 50%), while construction land surged from 6.5% to 21.8% of total land cover. The gravity center trajectory shifted southeastward. Concurrently, cropland fragmentation has intensified, accompanied by deteriorating connectivity of ecological lands. (2) Urban expansion in the PRD arises from synergistic interactions between natural and socioeconomic drivers. The Geographically and Temporally Weighted Regression (GTWR) model revealed that natural constraints—elevation (regression coefficients ranging −0.35 to −0.05) and river network density (−0.47 to −0.15)—exhibited significant spatial heterogeneity. Socioeconomic drivers dominated by year-end paved road area (0.26–0.28) and foreign direct investment (0.03–0.11) emerged as core expansion catalysts. Geographic detector analysis demonstrated pronounced interaction effects: all factor pairs exhibited either two-factor enhancement or nonlinear enhancement effects, with interaction explanatory power surpassing individual factors. (3) Validation of the Patch-generating Land Use Simulation (PLUS) model showed high reliability (Kappa coefficient = 0.9205, overall accuracy = 95.9%). Under the Natural Development Scenario, construction land would exceed the ecological security baseline, causing 408.60 km2 of ecological space loss; Under the Ecological Protection Scenario, mandatory control boundaries could reduce cropland and forest loss by 3.04%, albeit with unused land development intensity rising to 24.09%; Under the Economic Development Scenario, cross-city contiguous development zones along the Pearl River Estuary would emerge, with land development intensity peaking in Guangzhou–Foshan and Shenzhen–Dongguan border areas. This study deciphers the spatiotemporal dynamics, driving mechanisms, and scenario outcomes of urban agglomeration expansion, providing critical insights for formulating regionally differentiated policies. Full article
Show Figures

Figure 1

13 pages, 3118 KiB  
Article
Landscape Composition and Forest Structure Shape Phyllostomid Bat Assemblages in the Atlantic Forest Remnants
by Ricardo Bovendorp, Eduardo Mariano-Neto, Albérico Queiroz and Deborah Faria
Animals 2025, 15(14), 2082; https://doi.org/10.3390/ani15142082 - 15 Jul 2025
Viewed by 1020
Abstract
Habitat loss and land-use intensification are major threats to biodiversity in the Brazilian Atlantic Forest, particularly for bat assemblages that provide key ecosystem services. In this study, we examined how landscape composition (forest and pasture cover) and local forest structure influence the richness [...] Read more.
Habitat loss and land-use intensification are major threats to biodiversity in the Brazilian Atlantic Forest, particularly for bat assemblages that provide key ecosystem services. In this study, we examined how landscape composition (forest and pasture cover) and local forest structure influence the richness and abundance of phyllostomid bats across 20 forest fragments in southern Bahia. Bat sampling was conducted using mist nets, and forest structure was quantified using tree measurements and vertical foliage stratification. We applied structural equation modeling to test the direct and indirect effects of landscape and local variables. Our results show that forest cover has both direct and indirect positive effects on bat diversity, mediated by improved forest structure. In contrast, increased pasture cover negatively affected forest structure and was weakly associated with bat diversity. The most abundant species were generalist frugivores, such as Carollia perspicillata and Rhinophylla pumilio. These findings highlight the importance of maintaining forest cover and structural complexity to support bat diversity in agroforestry-dominated landscapes. Conservation strategies that integrate habitat protection with sustainable land-use practices are crucial to maintaining biodiversity and the ecological functions provided by bats in this globally threatened biome. Full article
(This article belongs to the Special Issue Conservation, Ecology and Health Issues of Forest Bats)
Show Figures

Figure 1

19 pages, 9752 KiB  
Article
Grasslands in Flux: A Multi-Decadal Analysis of Land Cover Dynamics in the Riverine Dibru-Saikhowa National Park Nested Within the Brahmaputra Floodplains
by Imon Abedin, Tanoy Mukherjee, Shantanu Kundu, Sanjib Baruah, Pralip Kumar Narzary, Joynal Abedin and Hilloljyoti Singha
Earth 2025, 6(3), 78; https://doi.org/10.3390/earth6030078 - 12 Jul 2025
Viewed by 308
Abstract
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from [...] Read more.
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from its designation as a national park in 2000 through 2024. The satellite imagery was used to classify LULC types and track landscape changes over time. In 2000, grasslands were the dominant land cover (28.78%), followed by semi-evergreen forests (25.58%). By 2013, shrubland became the most prominent class (81.31 km2), and degraded forest expanded to 75.56 km2. During this period, substantial areas of grassland (29.94 km2), degraded forest (10.87 km2), semi-evergreen forest (12.33 km2), and bareland (10.50 km2) were converted to shrubland. In 2024, degraded forest further increased, covering 80.52 km2 (23.47%). This change resulted since numerous areas of shrubland (11.46 km2) and semi-evergreen forest (27.48 km2) were converted into degraded forest. Furthermore, significant shifts were observed in grassland, shrubland, and degraded forest, indicating a substantial and consistent decline in grassland. These changes are largely attributed to recurring Brahmaputra River floods and increasing anthropogenic pressures. This study recommends a targeted Grassland Recovery Project, control of invasive species, improved surveillance, increased staffing, and the relocation of forest villages to reduce human impact and support community-based conservation efforts. Hence, protecting the landscape through informed LULC-based management can help maintain critical habitat patches, mitigate anthropogenic degradation, and enhance the survival prospects of native floral and faunal assemblages in DSNP. Full article
Show Figures

Figure 1

29 pages, 4104 KiB  
Article
Understanding Local Perspectives on the Trajectory and Drivers of Gazetted Forest Reserve Change in Nasarawa State, North Central Nigeria
by Banki T. Chunwate, Robert A. Marchant, Eleanor K. K. Jew and Lindsay C. Stringer
Land 2025, 14(7), 1450; https://doi.org/10.3390/land14071450 - 11 Jul 2025
Cited by 1 | Viewed by 284
Abstract
Understanding forest-cover change and its drivers is vital for global forest management and policy development. This study analyzed perceptions of historical drivers behind land-use/land-cover change (LULCC) and forest change in gazetted forests from 1966 to 2022 to evaluate the impact of human activities [...] Read more.
Understanding forest-cover change and its drivers is vital for global forest management and policy development. This study analyzed perceptions of historical drivers behind land-use/land-cover change (LULCC) and forest change in gazetted forests from 1966 to 2022 to evaluate the impact of human activities around the gazetted forest reserves, comparing three forests in Nasarawa State, North Central Nigeria. Data were collected through questionnaires, interviews, and focus group discussions. Three gazetted forests (Doma, Risha, and Odu) were sampled to represent the three geopolitical zones of the state. SPSS IBM version 29, NVivo 1.7, and Python 3 were used for data analyses to generate statistics and identify coherent themes across the forests. Results show that changes were perceived to be triggered by sixteen drivers (direct and indirect) related to social, economic, environmental, policy/institutional, and technological elements. Agricultural expansion, lumbering, and charcoal production were the most reported direct drivers, while population growth, poverty, and government policies were the most perceived indirect drivers. The results showed variations in human activities across forest sites. For example, agricultural expansion, lumbering, and grazing were more widespread, while construction and settlement activities differed between forests. The Risha forest community saw agriculture expansion ahead of other drivers, Doma forest people saw population growth above other drivers, and the Odu forest community saw lumbering aiding other drivers that led to change. Implementation of policies focusing on these key drivers must match local perceptions and priorities to engage people in forest conservation. These efforts could ensure effective forest protection that is vital for achieving global biodiversity and climate targets and safeguarding local livelihoods. The specific drivers of changes in each forest need to be targeted in conservation efforts. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

17 pages, 2473 KiB  
Article
Forests, Nature Protection, and Wild Forested Areas: Premises for Maintaining Nursery Populations and Habitats in Poland
by Damian Łowicki and Katarzyna Fagiewicz
Forests 2025, 16(7), 1121; https://doi.org/10.3390/f16071121 - 7 Jul 2025
Viewed by 307
Abstract
Habitat fragmentation is one of the most pressing issues impacting biodiversity. This concern is highlighted in various regional documents, including, i.a., the Convention on Biological Diversity and Polish Program for the Protection and Sustainable Use of Biological Diversity. Despite the critical importance of [...] Read more.
Habitat fragmentation is one of the most pressing issues impacting biodiversity. This concern is highlighted in various regional documents, including, i.a., the Convention on Biological Diversity and Polish Program for the Protection and Sustainable Use of Biological Diversity. Despite the critical importance of biodiversity, large forested areas with natural vegetation are often neither recognized nor protected. In this article, we introduce the concept of wilderness areas for forested regions in Poland, which we refer to as wild forested areas (WFAs). The designation of WFAs is based on three criteria: undisturbedness, naturalness, and size. A total of 34 WFAs have been identified in Poland, covering 0.8% of the country’s territory and accounting for 2.7% of its forest area. The findings reveal that all WFAs are located within Natura 2000 areas; however, only half are part of national parks, and just 2.5% are protected by nature reserves. The results suggest that some forest complexes in Poland possess significant potential for biodiversity protection and can serve as a foundation for establishing effective conservation measures. While this study is specific to Poland, the proposed methodology can be applied globally. Full article
(This article belongs to the Special Issue Wildlife in Forest Ecosystems: Game Damage vs. Conservation)
Show Figures

Figure 1

Back to TopTop