Detecting Spatiotemporal Dynamics and Driving Patterns in Forest Fragmentation with a Forest Fragmentation Comprehensive Index (FFCI): Taking an Area with Active Forest Cover Change as a Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Land-Use Data
2.2.2. Driving Factor Data
2.3. Calculation of Forest Fragmentation Comprehensive Index
2.3.1. Selection of Landscape Metrics
2.3.2. Construction of Forest Fragmentation Comprehensive Index
2.4. Moving Window and Semivariogram Method
2.5. Spatial Autocorrelation Analysis
2.6. Geographical Detector
3. Results
3.1. Scale Effects of Semivariogram Analysis
3.2. Principal Component Analysis
3.3. Spatiotemporal Characteristics of FFCI
3.4. Analysis of Spatial Cluster of FFCI
3.5. Driving Patterns of Forest Fragmentation Change
3.5.1. Factor Detector
3.5.2. Interactive Detector
4. Discussion
4.1. Validation of FFCI
4.2. The Spatial Patterns of Forest Fragmentation
4.3. The Driving Pattern of Forest Fragmentation Dynamics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kondo, M.; Saitoh, T.M.; Sato, H.; Ichii, K. Comprehensive synthesis of spatial variability in carbon flux across monsoon Asian forests. Agric. For. Meteorol. 2017, 232, 623–634. [Google Scholar] [CrossRef]
- Fischer, R.; Taubert, F.; Müller, M.S.; Groeneveld, J.; Lehmann, S.; Wiegand, T.; Huth, A. Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Sci. Adv. 2021, 7, g7012. [Google Scholar] [CrossRef] [PubMed]
- FAO. Global Forest Resources Assessments, 2020; Food and Agriculture Organization of the United Nations: Roma, Italy, 2020; Available online: https://www.fao.org/forest-resources-assessment/en/ (accessed on 7 January 2023).
- Abdullah, S.A.; Nakagoshi, N. Forest fragmentation and its correlation to human land use change in the state of Selangor, peninsular Malaysia. For. Ecol. Manag. 2007, 241, 39–48. [Google Scholar] [CrossRef]
- Hansen, M.C.; Wang, L.; Song, X.; Tyukavina, A.; Turubanova, S.; Potapov, P.V.; Stehman, S.V. The fate of tropical forest fragments. Sci. Adv. 2020, 6, x8574. [Google Scholar] [CrossRef]
- Marjakangas, E.; Abrego, N.; Grøtan, V.; de Lima, R.A.F.; Bello, C.; Bovendorp, R.S.; Culot, L.; Hasui, É.; Lima, F.; Muylaert, R.L.; et al. Fragmented tropical forests lose mutualistic plant–animal interactions. Divers. Distrib. 2020, 26, 154–168. [Google Scholar] [CrossRef]
- Putz, S.; Groeneveld, J.; Henle, K.; Knogge, C.; Martensen, A.C.; Metz, M.; Metzger, J.P.; Ribeiro, M.C.; de Paula, M.D.; Huth, A. Long-term carbon loss in fragmented Neotropical forests. Nat. Commun. 2014, 5, 5037. [Google Scholar] [CrossRef]
- Taubert, F.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Müller, M.S.; Rödig, E.; Wiegand, T.; Huth, A. Global patterns of tropical forest fragmentation. Nature 2018, 554, 519–522. [Google Scholar] [CrossRef]
- Rogan, J.; Wright, T.M.; Cardille, J.; Pearsall, H.; Ogneva-Himmelberger, Y.; Riemann, R.; Riitters, K.; Partington, K. Forest fragmentation in Massachusetts, USA: A town-level assessment using Morphological spatial pattern analysis and affinity propagation. GIScience Remote Sens. 2016, 53, 506–519. [Google Scholar] [CrossRef]
- TV, R.; Setturu, B.; Chandran, S. Geospatial analysis of forest fragmentation in Uttara Kannada District, India. For. Ecosyst. 2016, 3, 206–220. [Google Scholar] [CrossRef]
- Clay, E.; Moreno-Sanchez, R.; Torres-Rojo, J.; Moreno-Sanchez, F. National Assessment of the Fragmentation Levels and Fragmentation-Class Transitions of the Forests in Mexico for 2002, 2008 and 2013. Forests 2016, 7, 48. [Google Scholar] [CrossRef]
- Sharma, M.; Chakraborty, A.; Garg, J.K.; Joshi, P.K. Assessing forest fragmentation in north-western Himalaya: A case study from Ranikhet forest range, Uttarakhand, India. J. For. Res. 2017, 28, 319–327. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical Maps; University of Massachusetts: Amherst, MA, USA, 2012; Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 6 September 2020).
- Ojoyi, M.M.; Odindi, J.; Mutanga, O.; Abdel-Rahman, E.M. Analysing fragmentation in vulnerable biodiversity hotspots in Tanzania from 1975 to 2012 using remote sensing and fragstats. Nat. Conserv. 2016, 16, 19–37. [Google Scholar] [CrossRef]
- Wang, X.; Blanchet, F.G.; Koper, N.; Tatem, A.; Tatem, A. Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods Ecol. Evol. 2014, 5, 634–646. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Midha, N.; Mathur, P.K. Assessment of forest fragmentation in the conservation priority Dudhwa landscape, India using FRAGSTATS computed class level metrics. J. Indian Soc. Remote Sens. 2010, 38, 487–500. [Google Scholar] [CrossRef]
- Neel, M.C.; McGarigal, K.; Cushman, S.A. Behavior of class-level landscape metrics across gradients of class aggregation and area. Landsc. Ecol. 2004, 19, 435–455. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995.
- Reddy, C.S.; Sreelekshmi, S.; Jha, C.S.; Dadhwal, V.K. National assessment of forest fragmentation in India: Landscape indices as measures of the effects of fragmentation and forest cover change. Ecol. Eng. 2013, 60, 453–464. [Google Scholar] [CrossRef]
- Liu, S.; Dong, Y.; Deng, L.; Liu, Q.; Zhao, H.; Dong, S. Forest fragmentation and landscape connectivity change associated with road network extension and city expansion: A case study in the Lancang River Valley. Ecol. Indic. 2014, 36, 160–168. [Google Scholar] [CrossRef]
- Gestich, C.C.; Arroyo-Rodríguez, V.; Saranholi, B.H.; Da Cunha, R.G.T.; Setz, E.Z.F.; Ribeiro, M.C. Forest loss and fragmentation can promote the crowding effect in a forest-specialist primate. Landsc. Ecol. 2022, 37, 147–157. [Google Scholar] [CrossRef]
- Han, Z.Q.; Ye, J.; Wang, Z.; Liu, J.; Yu, S.X. Analysis on Evolution of Landscape Pattern in Dianchi Basin Based on RS and GIS. Adv. Mater. Res. 2011, 291–294, 3419–3423. [Google Scholar] [CrossRef]
- Buzzi, M.; Rueter, B.; Ghermandi, L.; Lasaponara, R. The Extent of Infrastructure Causing Fragmentation in the Hydrocarbon Basin in the Arid and Semi-Arid Zones of Patagonia (Argentina). Sustainability 2019, 11, 5956. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y.; Zhao, Z.; Zhang, Q.; Su, S. Socioeconomic drivers of forest loss and fragmentation: A comparison between different land use planning schemes and policy implications. Land Use Policy 2016, 54, 58–68. [Google Scholar] [CrossRef]
- Gong, C.; Yu, S.; Joesting, H.; Chen, J. Determining socioeconomic drivers of urban forest fragmentation with historical remote sensing images. Landsc. Urban Plan. 2013, 117, 57–65. [Google Scholar] [CrossRef]
- Rojas, I.; Becerra, P.; Galvez, N.; Laker, J.; Bonacic, C.; Hester, A. Relationship between fragmentation, degradation and native and exotic species richness in an Andean temperate forest of Chile. Gayana Botánica 2011, 68, 163–175. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, J.; He, G.; Zhang, X.; Wang, H.; Long, T.; Zhang, Z.; Wang, W.; Yin, R.; Guo, Y.; et al. Data-Driven Forest Cover Change and Its Driving Factors Analysis in Africa. Front. Environ. Sci. 2022, 9, 660. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Ren, Y.; Wei, X.; Wei, X.; Pan, J.; Xie, P.; Song, X.; Peng, D.; Zhao, J. Relationship between vegetation carbon storage and urbanization: A case study of Xiamen, China. For. Ecol. Manag. 2011, 261, 1214–1223. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, W.; Li, M.; Lv, Y. Assessing spatio-temporal changes in forest cover and fragmentation under urban expansion in Nanjing, eastern China, from long-term Landsat observations (1987–2017). Appl. Geogr. 2020, 117, 102190. [Google Scholar] [CrossRef]
- Li, L.; Gou, M.; Wang, N.; La, L.; Liu, C. Do ecological restoration programs reduce forest fragmentation? Case study of the Three Gorges Reservoir Area, China. Ecol. Eng. 2021, 172, 106410. [Google Scholar] [CrossRef]
- Kozak, J.; Ziółkowska, E.; Vogt, P.; Dobosz, M.; Kaim, D.; Kolecka, N.; Ostafin, K. Forest-Cover Increase Does Not Trigger Forest-Fragmentation Decrease: Case Study from the Polish Carpathians. Sustainability 2018, 10, 1472. [Google Scholar] [CrossRef]
- Hu, X.; Wu, Z.; Wu, C.; Ye, L.; Lan, C.; Tang, K.; Xu, L.; Qiu, R. Effects of road network on diversiform forest cover changes in the highest coverage region in China: An analysis of sampling strategies. Sci. Total Environ. 2016, 565, 28–39. [Google Scholar] [CrossRef]
- Wang, H.; Lü, Z.; Gu, L.; Wen, C. Observations of China’s forest change (2000–2013) based on Global Forest Watch dataset. Biodivers. Sci. 2015, 23, 575–582. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Larson, B.C. The Fragmented Forest: Island Biogeography Theory and the Preservation of Biotic Diversity. For. Sci. 1985, 31, 630. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Z.; Lu, H.; Xu, D.; Liu, A.; Peng, S. Assessment of forest geospatial patterns over the three giant forest areas of China. J. For. Res. 2008, 19, 25–31. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, S.; Yu, W.; Wang, J.; Wang, W. Effects of Urban Expansion on Forest Loss and Fragmentation in Six Megaregions, China. Remote Sens. 2017, 9, 991. [Google Scholar] [CrossRef]
- Ai, J.; Yang, L.; Liu, Y.; Yu, K.; Liu, J. Dynamic Landscape Fragmentation and the Driving Forces on Haitan Island, China. Land 2022, 11, 136. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, Y.; Xu, X.; Zhang, B.; Li, W. Identifying Terrestrial Landscape Character Types in China. Land 2022, 11, 1014. [Google Scholar] [CrossRef]
- Li, L.; Tang, H.; Lei, J.; Song, X. Spatial autocorrelation in land use type and ecosystem service value in Hainan Tropical Rain Forest National Park. Ecol. Indic. 2022, 137, 108727. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing index based on the pressure-state-response framework to assess regional ecological change. Environ. Sci. Pollut. Res. 2019, 26, 5381–5393. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Xu, C.; Chen, J.; Lin, Y.; Lin, S.; Wu, Z.; Qiu, R. A Synthetic Landscape Metric to Evaluate Urban Vegetation Quality: A Case of Fuzhou City in China. Forests 2022, 13, 1002. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI) Produced Time Series and Change Vector Analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef]
- Tripathi, M.; Singal, S.K. Use of Principal Component Analysis for parameter selection for development of a novel Water Quality Index: A case study of river Ganga India. Ecol. Indic. 2019, 96, 430–436. [Google Scholar] [CrossRef]
- Li, M.; Mao, L.; Zhou, C.; Vogelmann, J.E.; Zhu, Z. Comparing forest fragmentation and its drivers in China and the USA with Globcover v2.2. J. Environ. Manag. 2010, 91, 2572–2580. [Google Scholar] [CrossRef]
- Lv, H.; Wang, W.; He, X.; Wei, C.; Xiao, L.; Zhang, B.; Zhou, W. Association of urban forest landscape characteristics with biomass and soil carbon stocks in Harbin City, Northeastern China. PeerJ 2018, 6, e5825. [Google Scholar] [CrossRef]
- Weng, Y. Spatiotemporal changes of landscape pattern in response to urbanization. Landsc. Urban Plan. 2007, 81, 341–353. [Google Scholar] [CrossRef]
- Liu, J.; Coomes, D.A.; Gibson, L.; Hu, G.; Liu, J.; Luo, Y.; Wu, C.; Yu, M. Forest fragmentation in China and its effect on biodiversity. Biol. Rev. 2019, 94, 1636–1657. [Google Scholar] [CrossRef]
- Xiao, L.; Cui, L.; Jiang, Q.O.; Wang, M.; Xu, L.; Yan, H. Spatial Structure of a Potential Ecological Network in Nanping, China, Based on Ecosystem Service Functions. Land 2020, 9, 376. [Google Scholar] [CrossRef]
- Ascensão, F.; Fahrig, L.; Clevenger, A.P.; Corlett, R.T.; Jaeger, J.A.G.; Laurance, W.F.; Pereira, H.M. Environmental challenges for the Belt and Road Initiative. Nat. Sustain. 2018, 1, 206–209. [Google Scholar] [CrossRef]
- Gong, Y.; You, G.; Chen, T.; Wang, L.; Hu, Y. Rural Landscape Change: The Driving Forces of Land Use Transformation from 1980 to 2020 in Southern Henan, China. Sustainability 2023, 15, 2565. [Google Scholar] [CrossRef]
- Yi, K.; Tani, H.; Li, Q.; Zhang, J.; Guo, M.; Bao, Y.; Wang, X.; Li, J. Mapping and evaluating the urbanization process in Northeast China using DMSP/OLS nighttime light data. Sensors 2014, 14, 3207–3226. [Google Scholar] [CrossRef]
- Li, F.; Zheng, W.; Wang, Y.; Liang, J.; Xie, S.; Guo, S.; Li, X.; Yu, C. Urban Green Space Fragmentation and Urbanization: A Spatiotemporal Perspective. Forests 2019, 10, 333. [Google Scholar] [CrossRef]
- Chen, J.; Xu, C.; Lin, S.; Wu, Z.; Qiu, R.; Hu, X. Is There Spatial Dependence or Spatial Heterogeneity in the Distribution of Vegetation Greening and Browning in Southeastern China? Forests 2022, 13, 840. [Google Scholar] [CrossRef]
Type | Data | Variable |
---|---|---|
Geomorphic factors | DEM | Elevation Slope |
Meteorological factors | Monthly average temperature Monthly precipitation | Annual mean temperature variation (AMTV) Annual precipitation variation (APV) |
Socioeconomic factors | Population density Nighttime light intensity | Population density variation (PDV) Nighttime light intensity variation (NLIV) |
Judge Basis | Interaction Types |
---|---|
Nonlinear weakening | |
Single-factor nonlinear weakening | |
Double-factor enhancement | |
Independence | |
Nonlinear enhancement |
Year | Index | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|---|
2000 | AI | 0.599 | −0.300 | 0.128 | 0.731 | 0.014 |
LPI | 0.569 | −0.479 | −0.001 | −0.661 | −0.101 | |
MPA | 0.175 | 0.125 | −0.966 | 0.079 | −0.124 | |
Division | 0.070 | −0.031 | −0.123 | −0.068 | 0.987 | |
PD | 0.531 | 0.815 | 0.190 | −0.134 | 0.003 | |
Eigenvalue | 0.091 | 0.011 | 0.002 | 0.0001 | 0.0002 | |
Percentage variance (%) | 86.7 | 10.1 | 2.3 | 0.7 | 0.2 | |
2010 | AI | 0.600 | −0.293 | 0.122 | 0.734 | 0.026 |
LPI | 0.526 | 0.819 | 0.188 | −0.134 | 0.001 | |
MPA | 0.170 | 0.125 | −0.966 | 0.076 | −0.125 | |
Division | 0.071 | −0.032 | −0.125 | −0.085 | 0.985 | |
PD | 0.574 | −0.477 | 0.003 | −0.656 | −0.113 | |
Eigenvalue | 0.089 | 0.010 | 0.002 | 0.0007 | 0.0002 | |
Percentage variance (%) | 86.7 | 10.1 | 2.2 | 0.7 | 0.2 | |
2020 | AI | 0.601 | −0.290 | 0.124 | 0.734 | 0.024 |
LPI | 0.525 | 0.822 | 0.175 | −0.135 | 0.002 | |
MPA | 0.160 | 0.118 | −0.967 | 0.084 | −0.138 | |
Division | 0.577 | −0.475 | −0.003 | −0.656 | −0.110 | |
PD | 0.071 | −0.031 | −0.139 | −0.080 | 0.984 | |
Eigenvalue | 0.089 | 0.010 | 0.002 | 0.0007 | 0.0002 | |
Percentage variance (%) | 86.9 | 10.2 | 2.0 | 0.7 | 0.2 |
Fragmentation Type | 2000 (%) | 2010 (%) | 2020 (%) |
---|---|---|---|
Very low | 9.1 | 8.6 | 8.3 |
Low | 17.8 | 17.5 | 16.9 |
Medium | 27.4 | 27.6 | 27.1 |
High | 27.7 | 28.0 | 27.7 |
Very high | 18.0 | 18.3 | 20.0 |
Period | Decrease (%) | Unchanged (%) | Increase (%) |
---|---|---|---|
2000–2010 | 2.7 | 92.5 | 4.8 |
2010–2020 | 2.8 | 90.5 | 6.7 |
Type | 2000 (%) | 2010 (%) | 2020 (%) |
---|---|---|---|
High–high clusters | 27.2 | 27.0 | 27.0 |
Low–low clusters | 24.4 | 24.3 | 24.3 |
High–low clusters | 0.04 | 0.1 | 0.01 |
Low–high clusters | 0.06 | 0.1 | 0.09 |
Nonsignificant | 48.3 | 48.5 | 48.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhen, S.; Zhao, Q.; Liu, S.; Wu, Z.; Lin, S.; Li, J.; Hu, X. Detecting Spatiotemporal Dynamics and Driving Patterns in Forest Fragmentation with a Forest Fragmentation Comprehensive Index (FFCI): Taking an Area with Active Forest Cover Change as a Case Study. Forests 2023, 14, 1135. https://doi.org/10.3390/f14061135
Zhen S, Zhao Q, Liu S, Wu Z, Lin S, Li J, Hu X. Detecting Spatiotemporal Dynamics and Driving Patterns in Forest Fragmentation with a Forest Fragmentation Comprehensive Index (FFCI): Taking an Area with Active Forest Cover Change as a Case Study. Forests. 2023; 14(6):1135. https://doi.org/10.3390/f14061135
Chicago/Turabian StyleZhen, Shiyong, Qing Zhao, Shuang Liu, Zhilong Wu, Sen Lin, Jian Li, and Xisheng Hu. 2023. "Detecting Spatiotemporal Dynamics and Driving Patterns in Forest Fragmentation with a Forest Fragmentation Comprehensive Index (FFCI): Taking an Area with Active Forest Cover Change as a Case Study" Forests 14, no. 6: 1135. https://doi.org/10.3390/f14061135
APA StyleZhen, S., Zhao, Q., Liu, S., Wu, Z., Lin, S., Li, J., & Hu, X. (2023). Detecting Spatiotemporal Dynamics and Driving Patterns in Forest Fragmentation with a Forest Fragmentation Comprehensive Index (FFCI): Taking an Area with Active Forest Cover Change as a Case Study. Forests, 14(6), 1135. https://doi.org/10.3390/f14061135