Heat Mitigation Benefits of Urban Trees: A Review of Mechanisms, Modeling, Validation and Simulation
Abstract
:1. Introduction
2. Data and Methodology
3. Impact Mechanisms of Urban Trees on the Urban Thermal Environment
3.1. Shade Creation and Radiation Modification
3.2. Transpiration and Its Cooling Effects
3.3. Wind Flow Modification and Blocking Effects
4. Heat and Moisture Exchange Mechanisms and Their Mathematical Modeling
4.1. Transpiration Mechanism and Model
4.2. Mechanisms and Modeling of Shade Creation and Radiative Properties Modification
4.3. Mechanism and Modeling of Canopy Flow
5. Review and Analysis of Recent Research Works on Heat Mitigation by Trees
5.1. Microclimate Benefit Performance Evaluation through Measurement
5.2. Simulation and Prediction of Thermal Performance
5.3. Verification of Modeling Prediction Based on Measurement
6. Outlines of Further Research
6.1. Conducting Comprehensive and In-Depth Measurements to Analyze the Mechanisms of Tree Heat and Moisture Transfer in Different Areas
6.2. Developing Tree Radiation Attenuation, Airflow Resistance, and Transpiration Models to Accurately Represent Heat and Moisture Transfer Processes in Urban Environments
6.2.1. Radiation Attenuation Model
6.2.2. Airflow Resistance Model
6.2.3. Transpiration Model
6.3. Establishing a Three-Dimensional Numerical Simulation Method That Can Accurately Simulate the Urban Thermal Environment with Trees
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brysse, K.; Oreskes, N.; O’Reilly, J.; Oppenheimer, M. Climate change prediction: Erring on the side of least drama? Glob. Environ. Change-Hum. Policy Dimens. 2013, 23, 327–337. [Google Scholar] [CrossRef]
- Vailshery, L.S.; Jaganmohan, M.; Nagendra, H. Effect of street trees on microclimate and air pollution in a tropical city. Urban For. Urban Green. 2013, 12, 408–415. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Q.; Tan, K.; Zhang, L.; Zhang, Y. Experimental investigation on the influence of evaporative cooling of permeable pavements on outdoor thermal environment. Build. Environ. 2018, 140, 184–193. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Blackett, M.; Best, M.J.; Baik, J.; Belcher, S.E.; Beringer, J.; Bohnenstengel, S.I.; Calmet, I.; Chen, F.; Coutts, A.; et al. Initial results from Phase 2 of the international urban energy balance model comparison. Int. J. Clim. 2011, 31, 244–272. [Google Scholar] [CrossRef]
- Iungman, T.; Cirach, M.; Marando, F.; Barboza, E.P.; Khomenko, S.; Masselot, P.; Quijal-Zamorano, M.; Mueller, N.; Gasparrini, A.; Urquiza, J.; et al. Cooling cities through urban green infrastructure: A health impact assessment of European cities. Lancet 2023, 401, 577–589. [Google Scholar] [CrossRef]
- Fu, J.; Dupre, K.; Tavares, S.; King, D.; Banhalmi-Zakar, Z. Optimized greenery configuration to mitigate urban heat: A decade systematic review. Front. Arch. Res. 2022, 11, 466–491. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, K. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Tamaskani Esfehankalateh, A.; Ngarambe, J.; Yun, G.Y. Influence of tree canopy coverage and leaf area density on urban heat island mitigation. Sustainability 2021, 13, 7496. [Google Scholar] [CrossRef]
- Morgan, G.R.; Fulham, A.; Farmer, T.G. Machine Learning in Urban Tree Canopy Mapping: A Columbia, SC Case Study for Urban Heat Island Analysis. Geographies 2023, 3, 359–374. [Google Scholar] [CrossRef]
- Frank, S.D.; Backe, K.M. Effects of Urban Heat Islands on Temperate Forest Trees and Arthropods. Curr. For. Rep. 2023, 9, 48–57. [Google Scholar] [CrossRef]
- Ribeiro, A.P.; Bollmann, H.A.; de Oliveira, A.; Rakauskas, F.; Cortese, T.T.P.; Rodrigues, M.S.C.; Quaresma, C.C.; Ferreira, M.L. The role of tree landscape to reduce effects of urban heat islands: A study in two Brazilian cities. Trees 2023, 37, 17–30. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Rahman, M.A.; Moser-Reischl, A.; Peeters, A.; Franceschi, E.; Pretzsch, H.; Rötzer, T.; Pauleit, S.; Winters, G.; Groner, E.; et al. Do urban tree hydraulics limit their transpirational cooling? A comparison between temperate and hot arid climates. Urban Clim. 2023, 49, 101554. [Google Scholar] [CrossRef]
- Huang, J.; Kong, F.; Yin, H.; Middel, A.; Liu, H.; Zheng, X.; Wen, Z.; Wang, D. Transpirational cooling and physiological responses of trees to heat. Agric. For. Meteorol. 2022, 320, 108940. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, H.; Bardhan, R.; Kubilay, A.; Li, Q.; Carmeliet, J. The time-evolving impact of tree size on nighttime street canyon microclimate: Wind tunnel modeling of aerodynamic effects and heat removal. Urban Clim. 2023, 49, 101528. [Google Scholar] [CrossRef]
- Lai, D.; Liu, Y.; Liao, M.; Yu, B. Effects of different tree layouts on outdoor thermal comfort of green space in summer Shanghai. Urban Clim. 2023, 47, 101398. [Google Scholar] [CrossRef]
- Kotzen, B. An investigation of shade under six different tree species of the Negev desert towards their potential use for enhancing micro-climatic conditions in landscape architectural development. J. Arid Environ. 2003, 55, 231–274. [Google Scholar] [CrossRef]
- Shahidan, M.F.; Shariff, M.K.; Jones, P.; Salleh, E.; Abdullah, A.M. A comparison of Mesua ferrea L. and Hura crepitans L. for shade creation and radiation modification in improving thermal comfort. Landsc. Urban Plan. 2010, 97, 168–181. [Google Scholar] [CrossRef]
- Zheng, S.; Guldmann, J.-M.; Liu, Z.; Zhao, L.; Wang, J.; Pan, X. Modeling of shade creation and radiation modification by four tree species in hot and humid areas: Case study of Guangzhou, China. Urban For. Urban Green. 2020, 47, 126545. [Google Scholar] [CrossRef]
- De Abreu-Harbicha, L.V.; Labakia, L.C.; Matzarakis, A. Effect of tree planting design and tree species on human thermal comfort in the tropics. Landsc. Urban Plan. 2015, 138, 99–109. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Gold, A.; Rötzer, T.; Pauleit, S. Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days. Sci. Total Environ. 2018, 633, 100–111. [Google Scholar] [CrossRef]
- Shirzadi, M.; Naghashzadegan, M.; Mirzaei, P.A. Improving the CFD modelling of cross-ventilation in highly-packed urban areas. Sustain. Cities Soc. 2018, 37, 451–465. [Google Scholar] [CrossRef]
- Wang, Z.-H. Monte Carlo simulations of radiative heat exchange in a street canyon with trees. Sol. Energy 2014, 110, 704–713. [Google Scholar] [CrossRef]
- Li, R.; Zeng, F.; Zhao, Y.; Wu, Y.; Niu, J.; Wang, L.; Gao, N.; Shi, X. CFD simulations of the tree effect on the outdoor microclimate by coupling the canopy energy balance model. Build. Environ. 2023, 230, 109995. [Google Scholar] [CrossRef]
- Wang, L.; Su, J.; Gu, Z.; Tang, L. Numerical study on flow field and pollutant dispersion in an ideal street canyon within a real tree model at different wind velocities. Comput. Math. Appl. 2021, 81, 679–692. [Google Scholar] [CrossRef]
- Akbari, H.; Davis, S.; Huang, J.; Dorsano, S.; Winnett, S. Cooling Our Communities: A Guidebook on Tree Planting and Light-Colored Surfacing; Lab. (LBNL): Berkeley, CA, USA; Environmental Protection Agency: Washington, DC, USA; Climate Change Div.: Washington, DC, USA, 1992.
- Saaroni, H.; Amorim, J.; Hiemstra, J.; Pearlmutter, D. Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Clim. 2018, 24, 94–110. [Google Scholar] [CrossRef]
- Santamouris, M.; Ban-Weiss, G.; Osmond, P.; Paolini, R.; Synnefa, A.; Cartalis, C.; Muscio, A.; Zinzi, M.; Morakinyo, T.E.; Ng, E.; et al. Progress in urban greenery mitigation science—Assesment methodologies advanced technologies and impact on cities. J. Civ. Eng. Manag. 2018, 24, 638–671. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Zheng, S.; Guldmann, J.-M.; Liu, Z.; Zhao, L. Influence of trees on the outdoor thermal environment in subtropical areas: An experimental study in Guangzhou, China. Sustain. Cities Soc. 2018, 42, 482–497. [Google Scholar] [CrossRef]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology; Cambridge University Press: Cambridge, UK, 2013; 407p. [Google Scholar]
- Scharenbroch, B.C.; Lloyd, J.E.; Johnson-Maynard, J.L. Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia 2005, 49, 283–296. [Google Scholar] [CrossRef]
- Shahidan, M.F.; Salleh, E.; Mustafa, K.M.S. (Eds.) Effects of tree canopies on solar radiation filtration in a tropical microclimatic environment. In Proceedings of the 24th International Conference on Passive and Low Energy Architecture, PLEA 2007, Singapore, 22–24 November 2007. [Google Scholar]
- Potchter, O.; Cohen, P.; Bitan, A. Climatic behavior of various urban parks during hot and humid summer in the mediterranean city of Tel Aviv, Israel. Int. J. Clim. 2006, 26, 1695–1711. [Google Scholar] [CrossRef]
- Johnson, M.S.; Lathuillière, M.J.; Tooke, T.R.; Coops, N.C. Attenuation of urban agricultural production potential and crop water footprint due to shading from buildings and trees. Environ. Res. Lett. 2015, 10, 064007. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Yu, X.; Wen, H.; Yan, C. An advanced approach for measuring the transpiration rate of individual urban trees by the 3D three-temperature model and thermal infrared remote sensing. J. Hydrol. 2020, 587, 125034. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agric. For. Meteorol. 2017, 232, 443–456. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Zhao, P.; Zheng, H.; Ren, Y.; Gao, F.; Ouyang, Z. Transpiration rates of urban trees, Aesculus chinensis. J. Environ. Sci. 2012, 24, 1278–1287. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.-X.; Harshan, S.; Roth, M.; Velasco, E. Evaluation of an urban canopy model in a tropical city: The role of tree evapotranspiration. Environ. Res. Lett. 2017, 12, 094008. [Google Scholar] [CrossRef]
- Kong, F.; Yan, W.; Zheng, G.; Yin, H.; Cavan, G.; Zhan, W.; Zhang, N.; Cheng, L. Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agric. For. Meteorol. 2016, 217, 22–34. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y.; Buccolieri, R.; Sandberg, M.; DI Sabatino, S. On the contribution of mean flow and turbulence to city breathability: The case of long streets with tall buildings. Sci. Total Environ. 2012, 416, 362–373. [Google Scholar] [CrossRef]
- He, B.-J.; Ding, L.; Prasad, D. Enhancing urban ventilation performance through the development of precinct ventilation zones: A case study based on the Greater Sydney, Australia. Sustain. Cities Soc. 2019, 47, 101472. [Google Scholar] [CrossRef]
- Niu, J.; Liu, J.; Lee, T.-C.; Lin, Z.; Mak, C.; Tse, K.-T.; Tang, B.-S.; Kwok, K.C. A new method to assess spatial variations of outdoor thermal comfort: Onsite monitoring results and implications for precinct planning. Build. Environ. 2015, 91, 263–270. [Google Scholar] [CrossRef]
- He, B.-J. Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects. Urban Clim. 2018, 24, 26–33. [Google Scholar] [CrossRef]
- Zheng, S.; Zhao, L.; Li, Q. Numerical simulation of the impact of different vegetation species on the outdoor thermal environment. Urban For. Urban Green. 2016, 18, 138–150. [Google Scholar] [CrossRef]
- Dimoudi, A.; Nikolopoulou, M. Vegetation in the urban environment: Microclimatic analysis and benefits. Energy Build. 2003, 35, 69–76. [Google Scholar] [CrossRef]
- Ng, E. Policies and technical guidelines for urban planning of high-density cities—Air ventilation assessment (AVA) of Hong Kong. Build. Environ. 2009, 44, 1478–1488. [Google Scholar] [CrossRef]
- Allen, S.; Grime, V. Measurements of transpiration from savannah shrubs using sap flow gauges. Agric. For. Meteorol. 1995, 75, 23–41. [Google Scholar] [CrossRef]
- Scott, R.L.; Huxman, T.E.; Cable, W.L.; Emmerich, W.E. Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert shrubland. Hydrol. Process. 2006, 20, 3227–3243. [Google Scholar] [CrossRef]
- Zhou, M.C.; Ishidaira, H.; Hapuarachchi, H.P.; Magome, J.; Kiem, A.S.; Takeuchi, K. Estimating potential evapotranspiration using Shuttleworth–Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin. J. Hydrol. 2006, 327, 151–173. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Wang, G.; Xi, H.Y. Variations of land evapotranspiration in the plain of the middle reaches of Heihe River in the recent 35 years. J. Glaciol. Geocryol. 2007, 29, 406–412. [Google Scholar]
- Hagishima, A.; Tanimoto, J.; Katayama, T. Numerical analysis of air temperature increases in urban area using the building-urban-soil simultaneous simulation model. Proc. Build. 2023, 16, 32–39. [Google Scholar]
- Jia, H.; Hu, J.; Zhang, J. Estimation of evapotranspiration during the maize growing season using the shuttleworth-wallace model. J. Irrig. Drain. 2008, 27, 77–80. [Google Scholar]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Lin, B.-R. Studies of Greening’s Effects on Outdoor Thermal Environment; Tsinghua University: Beijing, China, 2004. [Google Scholar]
- Pedruzo-Bagazgoitia, X.; Ouwersloot, H.G.; Sikma, M.; Van Heerwaarden, C.C.; Jacobs, C.M.J.; De Arellano, J.V.G. Direct and Diffuse Radiation in the Shallow Cumulus–Vegetation System: Enhanced and Decreased Evapotranspiration Regimes. J. Hydrometeorol. 2017, 18, 1731–1748. [Google Scholar] [CrossRef]
- Zheng, S.; Guldmann, J.-M.; Liu, Z.; Zhao, L.; Wang, J.; Pan, X.; Zhao, D. Predicting the influence of subtropical trees on urban wind through wind tunnel tests and numerical simulations. Sustain. Cities Soc. 2020, 57, 102116. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, S.; Zhao, L. Evaluation of the ENVI-Met Vegetation Model of Four Common Tree Species in a Subtropical Hot-Humid Area. Atmosphere 2018, 9, 198. [Google Scholar] [CrossRef]
- Manickathan, L.; Defraeye, T.; Allegrini, J.; Derome, D.; Carmeliet, J. Aerodynamic characterisation of model vegetation by wind tunnel experiments. In Proceedings of the 4th International Conference on Countermeasures to Urban Heat Island, Singapore, 30 May–1 June 2016. [Google Scholar]
- Cao, J.; Tamura, Y.; Yoshida, A. Wind tunnel study on aerodynamic characteristics of shrubby specimens of three tree species. Urban For. Urban Green. 2012, 11, 465–476. [Google Scholar] [CrossRef]
- Quattrochi, D.; Luvall, J.; Rickman, D.; Estes, M., Jr.; Laymon, C.; Howell, B. A Decision Support Information System for Urban Landscape Management Using Thermal Infrared Data. Photogramm. Eng. Remote Sens. 2000, 66, 1195–1207. [Google Scholar]
- Sanusi, R.; Johnstone, D.; May, P.; Livesley, S.J. Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landsc. Urban Plan. 2017, 157, 502–511. [Google Scholar] [CrossRef]
- Gromke, C.; Ruck, B. Aerodynamic modelling of trees for small-scale wind tunnel studies. For. Int. J. For. Res. 2008, 81, 243–258. [Google Scholar] [CrossRef]
- Parker, J.H. Landscaping to reduce the energy used in cooling buildings. J. For. 1983, 81, 82–84. [Google Scholar]
- Shinzato, P.; Duarte, D. (Eds.) Microclimatic effect of vegetation for different leaf area index—LAI. In Proceedings of the 28th International PLEA Conference on Sustainable Architecture + Urban Design: Opportunities, Limits and Needs—Towards an Environmentally Responsible Architecture, PLEA 2012, Lima, Peru, 7–9 November 2012. [Google Scholar]
- Duarte, M.C.; Pimenta, D.C.; Menezes-Souza, D.; Magalhães, R.D.M.; Diniz, J.L.C.P.; Costa, L.E.; Chávez-Fumagalli, M.A.; Lage, P.S.; Bartholomeu, D.C.; Alves, M.J.M.; et al. Proteins Selected in Leishmania (Viannia) braziliensis by an Immunoproteomic Approach with Potential Serodiagnosis Applications for Tegumentary Leishmaniasis. Clin. Vaccine Immunol. 2015, 22, 1187–1196. [Google Scholar] [CrossRef]
- Zhang, L.; Zhan, Q.; Lan, Y. Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: A case study in Wuhan residential quarters. Build. Environ. 2018, 130, 27–39. [Google Scholar] [CrossRef]
- Santamouri, M.; Asimakopoulos, D.N.; Assimakopoulos, V.D.; Chrisomallidou, N.; Klitsikas, N.; Mangold, D.; Michel, P.; Tsangrassoulis, A. Energy and Climate in the Urban Built Environment; Routledge: London, UK, 2013; 402p. [Google Scholar]
- Chen, Z.; Su, X.; Liu, S. Study on the Ecological Benefits of Urban Greening in Beijing; China Environmental Science Press: Beijing, China, 1998; Volume 10, pp. 117–121. [Google Scholar]
- Han, H. Study on the Ecological Function of Urban Greening Tree Species; Northeast Forestry University: Harbin, China, 2007. [Google Scholar]
- Heisler, G.M. Effects of individual trees on the solar radiation climate of small buildings. Urban Ecol. 1986, 9, 337–359. [Google Scholar] [CrossRef]
- Helge, S. Modeling Urban Microclimate: Development, Implementation and Evaluation of New and Improved Calculation Methods for the Urban Microclimate Model ENVI-Met; Johannes Gutenberg-University Mainz: Mainz, Germany, 2016. [Google Scholar]
- Shinzato, P.; Yoshida, D.; Duarte, D. Parametrization of Tropical Plants Using ENVI-Met V.4 and Its Impact on Urban Microclimates—Sao Paulo Case Study. In Proceedings of the 4th International Conference on Countermeasures to Urban Heat Islands, Singapore, 30 May–1 June 2016. [Google Scholar]
- Lam, C.K.C.; Lee, H.; Yang, S.-R.; Park, S. A review on the significance and perspective of the numerical simulations of outdoor thermal environment. Sustain. Cities Soc. 2021, 71, 102971. [Google Scholar] [CrossRef]
- Stavrakakis, G.M.; Katsaprakakis, D.A.; Damasiotis, M. Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations. Energies 2021, 14, 6707. [Google Scholar] [CrossRef]
- Chen, Z. Study on the Impact of Greening System on the Outdoor Thermal Environment of Building Clusters in Humid and Hot Areas; South China University of Technology: Guangzhou, China, 2010. [Google Scholar]
- Lindén, J.; Simon, H.; Fonti, P.; Esper, J.; Bruse, M. Observed and Modeled Transpiration Cooling from Urban Trees in Mainz, Germany. In Proceedings of the 9th International Conference on Urban Climate, Toulouse, France, 24 July 2015. [Google Scholar]
- Krayenhoff, E.S.; Christen, A.; Martilli, A.; Oke, T.R. A Multi-layer Radiation Model for Urban Neighbourhoods with Trees. Bound.-Layer Meteorol. 2014, 151, 139–178. [Google Scholar] [CrossRef]
- Upreti, R.; Wang, Z.-H.; Yang, J. Radiative shading effect of urban trees on cooling the regional built environment. Urban For. Urban Green. 2017, 26, 18–24. [Google Scholar] [CrossRef]
- Gao, Y.; Long, D. Progress in model for evapotranspiration estimation using remotely sensed data. Hydrol. Process. 2008, 20, 3227–3247. [Google Scholar]
- Liu, Z. Study on Microclimate Effects of Trees in Humid and Hot Regions Based on Evidence-Based Design; South China University of Technology: Guangzhou, China, 2020. [Google Scholar]
- Kántor, N.; Kovács, A.; Takács, A. Small-scale human-biometeorological impacts of shading by a large tree. Open Geosci. 2016, 8, 231–245. [Google Scholar] [CrossRef]
- El-Bardisy, W.M.; Fahmy, M.; El-Gohary, G.F. Climatic Sensitive Landscape Design: Towards a Better Microclimate through Plantation in Public Schools, Cairo, Egypt. Procedia-Soc. Behav. Sci. 2016, 216, 206–216. [Google Scholar] [CrossRef]
- Cohen, P.; Potchter, O.; Matzarakis, A. Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build. Environ. 2012, 51, 285–295. [Google Scholar] [CrossRef]
- Zhao, Q.; Sailor, D.J.; Wentz, E.A. Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment. Urban For. Urban Green. 2018, 32, 81–91. [Google Scholar] [CrossRef]
- Duarte, D.H.; Shinzato, P.; Gusson, C.d.S.; Alves, C.A. The impact of vegetation on urban microclimate to counterbalance built density in a subtropical changing climate. Urban Clim. 2015, 14, 224–239. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H. Maximum extent of human heat stress reduction on building areas due to urban greening. Urban For. Urban Green. 2018, 32, 154–167. [Google Scholar] [CrossRef]
- Wong, N.H.; Jusuf, S.K. Study on the microclimate condition along a green pedestrian canyon in Singapore. Arch. Sci. Rev. 2010, 53, 196–212. [Google Scholar] [CrossRef]
- Sun, S.; Xu, X.; Lao, Z.; Liu, W.; Li, Z.; García, E.H.; He, L.; Zhu, J. Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. Build. Environ. 2017, 123, 277–288. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, Z.; Peng, Y.; Xia, B. Local variation of outdoor thermal comfort in different urban green spaces in Guangzhou, a subtropical city in South China. Urban For. Urban Green. 2018, 32, 99–112. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E. Simulation of the effect of downtown greenery on thermal comfort in subtropical climate using PET index: A case study in Hong Kong. Arch. Sci. Rev. 2013, 56, 297–305. [Google Scholar] [CrossRef]
- Kong, L.; Lau, K.K.-L.; Yuan, C.; Chen, Y.; Xu, Y.; Ren, C.; Ng, E. Regulation of outdoor thermal comfort by trees in Hong Kong. Sustain. Cities Soc. 2017, 31, 12–25. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F. Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s micro-climate and thermal comfort. Build. Environ. 2016, 103, 262–275. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lau, K.K.-L.; Ren, C.; Ng, E. Performance of Hong Kong’s common trees species for outdoor temperature regulation, thermal comfort and energy saving. Build. Environ. 2018, 137, 157–170. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.-L.; Ng, E. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.-L.; Ng, E. Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas. Build. Environ. 2017, 120, 93–109. [Google Scholar] [CrossRef]
- Correa, E.; Ruiz, M.A.; Canton, A.; Lesino, G. Thermal comfort in forested urban canyons of low building density. An assessment for the city of Mendoza, Argentina. Build. Environ. 2012, 58, 219–230. [Google Scholar] [CrossRef]
- Stocco, S.; Alicia Canton, M.; Norma Correa, E. Design of urban green square in dry areas: Thermal performance and comfort. Urban For. Urban Green. 2015, 14, 323–335. [Google Scholar] [CrossRef]
- Picot, X. Thermal comfort in urban spaces: Impact of vegetation growth: Case study: Piazza della Scienza, Milan, Italy. Energy Build. 2004, 36, 329–334. [Google Scholar] [CrossRef]
- Gómez, F.; Montero, L.; De Vicente, V.; Sequí, A.; Castilla, N. Vegetation influences on the human thermal comfort in outdoor spaces: Criteria for urban planning. WIT Trans. Ecol. Environ. 2008, 117, 151–163. [Google Scholar]
- Vanos, J.K.; Warland, J.S.; Gillespie, T.J.; Slater, G.A.; Brown, R.D.; Kenny, N.A. Human Energy Budget Modeling in Urban Parks in Toronto and Applications to Emergency Heat Stress Preparedness. J. Appl. Meteorol. Clim. 2012, 51, 1639–1653. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int. J. Clim. 2011, 31, 1498–1506. [Google Scholar] [CrossRef]
- Snir, K.; Pearlmutter, D.; Erell, E. The moderating effect of water-efficient ground cover vegetation on pedestrian thermal stress. Landsc. Urban Plan. 2016, 152, 1–12. [Google Scholar] [CrossRef]
- Massetti, L.; Petralli, M.; Napoli, M.; Brandani, G.; Orlandini, S.; Pearlmutter, D. Effects of deciduous shade trees on surface temperature and pedestrian thermal stress during summer and autumn. Int. J. Biometeorol. 2019, 63, 467–479. [Google Scholar] [CrossRef]
- Coccolo, S.; Pearlmutter, D.; Kaempf, J.; Scartezzini, J.-L. Thermal Comfort Maps to estimate the impact of urban greening on the outdoor human comfort. Urban For. Urban Green. 2018, 35, 91–105. [Google Scholar] [CrossRef]
- Coutts, A.M.; White, E.C.; Tapper, N.J.; Beringer, J.; Livesley, S.J. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor. Appl. Climatol. 2016, 124, 55–68. [Google Scholar] [CrossRef]
- Hu, H. The Research Based on the Sealing Arch Border Tree’s Shade Which Impacted on the Urban Street Canyon’s Micro-Climate in Xi’an City; Xi’an University of Architecture and Technology: Xi’an, China, 2017. [Google Scholar]
- Wu, Z.; Kong, F.; Wang, Y.; Sun, R.; Chen, L. The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China. Int. J. Environ. Res. Public Health 2016, 13, 1217, Erratum in Int. J. Environ. Res. Public Health 2017, 14, 156. [Google Scholar] [CrossRef]
- Lin, B.; Li, X.; Zhu, Y.; Qin, Y. Numerical simulation studies of the different vegetation patterns’ effects on outdoor pedestrian thermal comfort. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1707–1718. [Google Scholar] [CrossRef]
- Hsieh, C.-M.; Jan, F.-C.; Zhang, L. A simplified assessment of how tree allocation, wind environment, and shading affect human comfort. Urban For. Urban Green. 2016, 18, 126–137. [Google Scholar] [CrossRef]
- Xia, S. Analysis of the Plant Configuration Mode’s Impact on the Microclimate in the Enclosed Residential Area during Summer. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2017. [Google Scholar]
- Morakinyo, T.E.; Adegun, O.B.; Balogun, A.A. The effect of vegetation on indoor and outdoor thermal comfort conditions: Evidence from a microscale study of two similar urban buildings in Akure, Nigeria. Indoor Built Environ. 2016, 25, 603–617. [Google Scholar] [CrossRef]
- Xu, N. Microclimate Effect and Its Influence on Touristbehavior in Heilongjiang Forest Botanical Garden; Northeast Forestry University: Harbin, China, 2018. [Google Scholar]
- Gao, J.; Wang, C.; Wu, Z. Microclimate Conditions of Different Urban Land Types and Their lmpacts on Pleasing Feeling of Human Body. Urban For. China 2004, 32, 41–49+51. [Google Scholar]
- Wang, L. Study on Microclimate Environment Effects of Campus Green Space—As the Example of Northwest A&F University; Northwest A&F University: Xianyang, China, 2016. [Google Scholar]
- Wang, J. Comparative study on the effects of summer plant community on human comfort in Beijing. Shanxi Archit. 2018, 44, 198–199. [Google Scholar]
- Wang, X. Rural Residental Forests Evaluation of Microclimate and Air Anion Effects in Mountainous; Shandong Agricultural University: Jinan, China, 2011. [Google Scholar]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Konijnendijk, C.C. Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3–30–300 rule. J. For. Res. 2022, 34, 821–830. [Google Scholar] [CrossRef]
- Liu, X.; He, J.; Xiong, K.; Liu, S.; He, B.-J. Identification of factors affecting public willingness to pay for heat mitigation and adaptation: Evidence from Guangzhou, China. Urban Clim. 2023, 48, 101405. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Liu, X.; Yang, L.; Zhang, Y.; He, J. How does future climatic uncertainty affect multi-objective building energy retrofit decisions? Evidence from residential buildings in subtropical Hong Kong. Sustain. Cities Soc. 2023, 92, 104482. [Google Scholar] [CrossRef]
- Li, K.; Liu, X.; Zhang, H.; Ma, J.; He, B.-J. Evaluating and improving the adaptability of commonly used indices for predicting outdoor thermal sensation in hot and humid residential areas of China. Dev. Built Environ. 2023, 100278, in press. [Google Scholar] [CrossRef]
Symbol | Full Name | Unit |
---|---|---|
ET | Total evapotranspiration | J/m2·s |
Latent heat of water vaporization | J/kg | |
Canopy transpiration | J/m2·s | |
Bare surface evaporation | J/m2·s | |
and | Weight coefficients of and | - |
Canopy net radiations | J/m2·s | |
Soil surface net radiations | J/m2·s | |
G | Soil heat flux | J/m2·s |
γ | Air humidity constant | kPa/°C |
Saturated water vapor pressure | kPa | |
Actual water vapor pressure | kPa | |
Canopy stomatal resistance | s/m | |
Canopy boundary layer resistance | s/m | |
Soil surface resistance | s/m | |
Water vapor pressure-temperature curve | J/kg |
Type of Radiation | Wavelength (μm) | Proportion (%) |
---|---|---|
UV | 0.29~0.38 | 0~4 |
PAC | 0.38~0.71 | 21~46 |
Near-infrared | 0.71~4.0 | 50~79 |
Far-infrared | >4.0 | - |
Species | Leaf Area Density (m2/m2) | Drag Coefficient (Cd) |
---|---|---|
Ficus microcarpa | 4.97 | Cd = 1.07 × U−0.075 |
Mangifera indica | 4.79 | Cd = 1.0 × U−0.05 |
Michelia alba | 2.88 | Cd = 1.0 × U−0.19 |
Bauhinia blakeana | 4.27 | Cd = 0.89 × U−0.069 |
Test Parameter | Test Equipment | Factory Owners | Accurate | Test Range |
---|---|---|---|---|
Air temperature Relative humidity | HOBO pro v2 data logger (U23-001) | Onset Computer Corporation, Bourne, MA, USA | ±0.2 °C (0~50 h) | −40~70 °C |
Wind Speed, Wind Direction Black sphere temperature | Ultrasonic anemometer sensor (Model 81000) | M. Young Company, Traverse, MI, USA | ±1% ± 0.05 m/s | 0~40 m/s |
Meteorological parameters | Davis Vantage Pro2 | Davis Company, Boston, MA, USA | ±0.5 °C (Ta) ±5% (v) | −40~65 °C (Ta) 0–1800 W/m2 (S) |
Transpiration rate Leaf surface temperature | Photosynthesis apparatus Li-6400 | Decagon Company, Pullman, WA, USA | ±0.007 mmol/mol | 0~75 mol |
Solar radiation Long-wave radiation | 4-component net radiation sensor NR01 | Hukseflux Company, Delft, The Netherlands | 7–25 μV/W/m2 | 0~2000 W/m2 |
Soil temperature | T type thermocouple | Sensors Company, Wuxi, China | ±0.05 °C | −200~260 °C |
Thermal imaging | Thermal infrared imager | Kaise Company, Ueda, Japan | ±2 °C | −40~500 °C |
Leaf reflectance | Spectrophotometer (U-4100) | Hitachi Company Tokyo, Japan | / | 175~2600 nm |
Root depth, root width and root density | Tree Radar (TRU-100) | Tree Radar Company, Silver Spring, MD, USA | 1 cm | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; He, C.; Guldmann, J.-M.; Xu, H.; Liu, X. Heat Mitigation Benefits of Urban Trees: A Review of Mechanisms, Modeling, Validation and Simulation. Forests 2023, 14, 2280. https://doi.org/10.3390/f14122280
Zheng S, He C, Guldmann J-M, Xu H, Liu X. Heat Mitigation Benefits of Urban Trees: A Review of Mechanisms, Modeling, Validation and Simulation. Forests. 2023; 14(12):2280. https://doi.org/10.3390/f14122280
Chicago/Turabian StyleZheng, Senlin, Caiwei He, Jean-Michel Guldmann, Haodong Xu, and Xiao Liu. 2023. "Heat Mitigation Benefits of Urban Trees: A Review of Mechanisms, Modeling, Validation and Simulation" Forests 14, no. 12: 2280. https://doi.org/10.3390/f14122280
APA StyleZheng, S., He, C., Guldmann, J.-M., Xu, H., & Liu, X. (2023). Heat Mitigation Benefits of Urban Trees: A Review of Mechanisms, Modeling, Validation and Simulation. Forests, 14(12), 2280. https://doi.org/10.3390/f14122280