A Comparison of Water Uptake by Transpiration from Different Soil Depths among Three Land Cover Types in the Arid Northwest of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements, Data Collection, and Processing Analysis
2.3. Drawing Platform and Analytical Method
3. Results
3.1. Annual Soil Moisture Variation at Different Depths for Different Ecosystems
3.2. Annual Canopy Coverage Variation for Different Ecosystems
3.3. Relationship between Transpiration and Deep Soil Moisture for Different Ecosystems
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, F.X.; Liu, L.L.; Gao, J.B.; Yin, Z.Y.; Zhang, Y.B.; Jiang, Y.; Zuo, L.Y.; Fang, W.G. Effects of extreme drought events on vegetation activity from the perspectives of meteorological and soil droughts in southwestern China. Sci. Total Environ. 2023, 903, 166562. [Google Scholar] [CrossRef] [PubMed]
- Moreno-de-las-Heras, M.; Bochet, E.; Vicente-Serrano, S.M.; Espigares, T.; Molina, M.J.; Monleon, V.; Nicolau, J.M.; Tormo, J.; Garcia-Fayos, P. Drought conditions, aridity and forest structure control the responses of Iberian holm oak woodlands to extreme droughts: A large-scale remote-sensing exploration in eastern Spain. Sci. Total Environ. 2023, 901, 165887. [Google Scholar] [CrossRef] [PubMed]
- Restrepo-Coupe, N.; Christofferse, B.O.; Longo, M.; Alves, L.F.; Campos, K.S.; da Araujo, A.C.; de Oliveira, R.C.; Prohaska, N.; da Silva, R.; Tapajos, R.; et al. Asymmetric response of Amazon forest water and energy fluxes to wet and dry hydrological extremes reveals onset of a local drought-induced tipping point. Glob. Chang. Biol. 2023, 29, 6077–6092. [Google Scholar] [CrossRef]
- Huang, A.; Xu, Y.Q.; Sun, P.L.; Zhou, G.Y.; Liu, C.; Lu, L.H.; Xiang, Y.; Wang, H. Land use/land cover changes and its impact on ecosystem services in ecologically fragile zone: A case study of Zhangjiakou City, Hebei Province, China. Ecol. Indic. 2019, 104, 604–614. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, Y.G.; Gong, X.W.; Niu, Y.Y.; Chen, Y.P.; Shi, X.P.; Li, W. Storage, pattern and driving factors of soil organic carbon in an ecologically fragile zone of northern China. Geoderma 2019, 343, 155–165. [Google Scholar] [CrossRef]
- Yang, X.; Bai, Y.; Che, L.; Qiao, F.; Xie, L. Incorporating ecological constraints into urban growth boundaries: A case study of ecologically fragile areas in the Upper Yellow River. Ecol. Indic. 2021, 124, 107436. [Google Scholar] [CrossRef]
- Wang, H.B.; Li, X.; Xiao, J.F.; Ma, M.G. Evapotranspiration components and water use efficiency from desert to alpine ecosystems in drylands. Agric. For. Meteorol. 2021, 298, 108283. [Google Scholar] [CrossRef]
- Xu, H.L.; Xu, F.J.; Lin, T.; Xu, Q.; Yu, P.J.; Wang, C.H.; Aili, A.; Zhao, X.F.; Zhao, W.Y.; Zhang, P.; et al. A systematic review and comprehensive analysis on ecological restoration of mining areas in the arid region of China: Challenge, capability and reconsideration. Ecol. Indic. 2023, 154, 110630. [Google Scholar] [CrossRef]
- Mo, K.; Chen, Q.; Chen, C.; Zhang, J.; Wang, L.; Bao, Z. Spatiotemporal variation of correlation between vegetation cover and precipitation in an arid mountain-oasis river basin in northwest China. J. Hydrol. 2019, 574, 138–147. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef]
- Yan, J. Analysis on the Climatic Warming-drying Trend in the Juncture of Shaaxi and Gansu Provinces and Ningxia Hui Autonomous Region. Arid. Zone Res. 2002, 3, 67–70. [Google Scholar]
- Tan, C.; Yang, J.; Li, M. Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China. Atmosphere 2015, 6, 1399–1421. [Google Scholar] [CrossRef]
- Liu, Y.; Miao, H.-T.; Huang, Z.; Cui, Z.; He, H.; Zheng, J.; Han, F.; Chang, X.; Wu, G.-L. Soil water depletion patterns of artificial forest species and ages on the Loess Plateau (China). For. Ecol. Manag. 2018, 417, 137–143. [Google Scholar] [CrossRef]
- Li, J.; Chen, B.; Li, X.; Zhao, Y.; Ciren, Y.; Jiang, B.; Hu, W.; Cheng, J.; Sao, M. Effects of deep soil desiccation on artificial forestlands in different vegetation zones on the Loess Plateau of China. Acta Ecol. Sin. 2008, 28, 1429–1445. [Google Scholar]
- Yang, X.H.; Jia, Z.Q.; Ci, L.J. Assessing effects of afforestation projects in China. Nature 2010, 466, 315. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.; Moura, C.F.; Anderegg, W.R.L.; Ruehr, N.K.; Salmon, Y.; Allen, C.D.; Arndt, S.K.; Breshears, D.D.; Davi, H.; Galbraith, D.; et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 2018, 218, 15–28. [Google Scholar] [CrossRef]
- Dong, J.Z.; Akbar, R.; Gianotti, D.J.S.; Feldman, A.F.; Crow, W.T.; Entekhabi, D. Can Surface Soil Moisture Information Identify Evapotranspiration Regime Transitions? Geophys. Res. Lett. 2022, 49, e2021GL097697. [Google Scholar] [CrossRef]
- Dong, J.Z.; Dirmeyer, P.A.; Lei, F.N.; Anderson, M.C.; Holmes, T.R.H.; Hain, C.; Crow, W.T. Soil Evaporation Stress Determines Soil Moisture-Evapotranspiration Coupling Strength in Land Surface Modeling. Geophys. Res. Lett. 2020, 47, e2020GL090391. [Google Scholar] [CrossRef]
- Liu, Q.; Hao, Y.; Stebler, E.; Tanaka, N.; Zou, C.B. Impact of Plant Functional Types on Coherence Between Precipitation and Soil Moisture: A Wavelet Analysis. Geophys. Res. Lett. 2017, 44, 197–207. [Google Scholar] [CrossRef]
- Puigdefábregas, J. The Role of Vegetation Patterns in Structuring Runoff and Sediment Fluxes in Drylands. Earth Surf. Process. Landf. 2005, 30, 133–147. [Google Scholar] [CrossRef]
- El-Hassanin, A.S.; Labib, T.M.; Gaber, E.I. Effect of vegetation cover and land slope on runoff and soil losses from the watersheds of Burundi. Agric. Ecosyst. Environ. 1993, 43, 301–308. [Google Scholar] [CrossRef]
- Amato, M.; Basso, B.; Celano, G.; Bitella, G.; Morelli, G.; Rossi, R. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging. Tree Physiol. 2008, 28, 1441–1448. [Google Scholar] [CrossRef]
- Plante, P.M.; Rivest, D.; Vezina, A.; Vanasse, A. Root distribution of different mature tree species growing on contrasting textured soils in temperate windbreaks. Plant Soil. 2014, 380, 429–439. [Google Scholar] [CrossRef]
- Wen, Z.; Wu, J.; Yang, Y.; Li, R.; Ouyang, Z.; Zheng, H. Implementing intercropping maintains soil water balance while enhancing multiple ecosystem services. Catena 2022, 217, 106426. [Google Scholar] [CrossRef]
- Beyene, A.; Cornelis, W.; Verhoest, N.E.C.; Tilahun, S.; Alamirew, T.; Adgo, E.; De Pue, J.; Nyssen, J. Estimating the actual evapotranspiration and deep percolation in irrigated soils of a tropical floodplain, northwest Ethiopia. Agric. Water Manag. 2018, 202, 42–56. [Google Scholar] [CrossRef]
- Wei, Z.W.; Yoshimura, K.; Wang, L.X.; Miralles, D.G.; Jasechko, S.; Lee, X.H. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 2017, 44, 2792–2801. [Google Scholar] [CrossRef]
- Cui, Z.Y.; Wang, Y.; Zhang, G.J.; Yang, M.M.; Liu, J.; Wei, L.Y. Effects of Improved Simulation of Precipitation on Evapotranspiration and Its Partitioning Over Land. Geophys. Res. Lett. 2022, 49, e2021GL097353. [Google Scholar] [CrossRef]
- Rigden, A.J.; Salvucci, G.D.; Entekhabi, D.; Gianotti, D.J.S. Partitioning Evapotranspiration Over the Continental United States Using Weather Station Data. Geophys. Res. Lett. 2018, 45, 9605–9613. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Muller, J.; Brandl, R.; Buchner, J.; Pretzsch, H.; Seifert, S.; Stratz, C.; Veith, M.; Fenton, B. From ground to above canopy-Bat activity in mature forests is driven by vegetation density and height. For. Ecol. Manag. 2013, 306, 179–184. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, W.Q.; Tan, B.; Wang, Q.; Wang, L.F.; Chang, C.H.; Cao, R.; Jiang, Y.R.; Mueller, J. Effects of forest canopy density and epixylic vegetation on nutrient concentrations in decaying logs of a subalpine fir forest. For. Ecosyst. 2022, 9, 100064. [Google Scholar] [CrossRef]
- Burchfiel, B.; Zhang, P.; Wang, Y.; Zhang, W.; Song, F.; Deng, Q.; Molnar, P.; Royden, L. Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics 1991, 10, 1091–1110. [Google Scholar] [CrossRef]
- Siyu, X.; Zhixun, X.; Pingwu, W. Soil salinity in the irrigated area of the Yellow River in Ningxia, China. Arid. Land. Res. Manag. 1996, 10, 95–101. [Google Scholar] [CrossRef]
- Chen, X.; Duan, Z. Changes in soil physical and chemical properties during reversal of desertification in Yanchi County of Ningxia Hui autonomous region, China. Environ. Geol. 2009, 57, 975–985. [Google Scholar] [CrossRef]
- Li, Z.; Sun, X.; Huang, Z.; Zhang, X.; Zhai, B. Changes in nutrient balance, environmental effects, and green development after returning farmland to forests: A case study in Ningxia, China. Sci. Total Environ. 2020, 735, 139370. [Google Scholar] [CrossRef]
- Li, Z.; Schneider, R.L.; Morreale, S.J.; Xie, Y.; Li, J.; Li, C.; Ni, X. Using woody organic matter amendments to increase water availability and jump: Tart soil restoration of desertified grassland soils of Ningxia, China. Land. Degrad. Dev. 2019, 30, 1313–1324. [Google Scholar] [CrossRef]
- Du, L. Study on Land Use/Cover Change in Mountain Areas of Southern Ningxia Based on RS Technology. Progress. Geogr. 2006, 25, 94–101. [Google Scholar]
- Iritz, Z.; Lindroth, A.; Heikinheimo, M.; Grelle, A.; Kellner, E. Test of a modified Shuttleworth-Wallace estimate of boreal forest evaporation. Agric. For. Meteorol. 1999, 98, 605–619. [Google Scholar] [CrossRef]
- Allen, R.G.; Smith, M.; Perrier, A.; Pereira, L.S. An Update for the Definition of Reference Evapotranspiration. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 1994, 43, 1–35. [Google Scholar]
- Thom, A.S. Momentum, Mass and Heat-Exchange of Vegetation. Q. J. R. Meteor. Soc. 1972, 98, 124–134. [Google Scholar] [CrossRef]
- Thom, A.S. Exchange of Momentum Mass and Heat between an Artificial Leaf and Airflow in a Wind-Tunnel. Q. J. R. Meteor. Soc. 1968, 94, 44–55. [Google Scholar] [CrossRef]
- Zhang, R.F.; Xu, X.L.; Guo, J.S.; Sheng, Z.P. Multi-model ensemble approaches for simulation of evapotranspiration of karst agroforestry ecosystems. Agric. Water Manag. 2022, 273, 107869. [Google Scholar] [CrossRef]
- Langensiepen, M.; Fuchs, M.; Bergamaschi, H.; Moreshet, S.; Cohen, Y.; Wolff, P.; Jutzi, S.C.; Cohen, S.; Rosa, L.M.G.; Li, Y.; et al. Quantifying the uncertainties of transpiration calculations with the Penman-Monteith equation under different climate and optimum water supply conditions. Agric. For. Meteorol. 2009, 149, 1063–1072. [Google Scholar] [CrossRef]
- Sellers, P.J.; Mintz, Y.; Sud, Y.C.; Dalcher, A. A Simple Biosphere Model (Sib) for Use within General-Circulation Models. J. Atmos. Sci. 1986, 43, 505–531. [Google Scholar] [CrossRef]
- Dickinson, R.E. The Global Climate. Science 1984, 225, 1466–1467. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, R.E.; Henderson-Sellers, A.; Rosenzweig, C.; Sellers, P.J. Evapotranspiration Models with Canopy Resistance for Use in Climate Models—A Review. Agric. For. Meteorol. 1991, 54, 373–388. [Google Scholar] [CrossRef]
- Thompson, N. Modeling the Field Drying of Hay. J. Agric. Sci. 1981, 97, 241–260. [Google Scholar] [CrossRef]
- Jarvis, P.G. Interpretation of Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in Field. Philos. Trans. R. Soc. B 1976, 273, 593–610. [Google Scholar] [CrossRef]
- Hartmann, A.; Barbera, J.A.; Lange, J.; Andreo, B.; Weiler, M. Progress in the hydrologic simulation of time variant recharge areas of karst systems—Exemplified at a karst spring in Southern Spain. Adv. Water Resour. 2013, 54, 149–160. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A. Potential evapotranspiration and continental drying. Nat. Clim. Chang. 2016, 6, 946–949. [Google Scholar] [CrossRef]
- Bai, X.; Jia, X.X.; Zhao, C.L.; Shao, M.A. Artificial forest conversion into grassland alleviates deep-soil desiccation in typical grass zone on China’s Loess Plateau: Regional modeling. Agric. Ecosyst. Environ. 2021, 320, 107608. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Tang, R.L.; Jiang, X.G.; Li, Z.L.; Gao, C.X. Estimation of Soil Evaporation and Vegetation Transpiration Using Two Trapezoidal Models From MODIS Data. J. Geophys. Res.-Atmos. 2019, 124, 7647–7664. [Google Scholar] [CrossRef]
- Xu, D.H.; Agee, E.; Wang, J.F.; Ivanov, V.Y. Estimation of Evapotranspiration of Amazon Rainforest Using the Maximum Entropy Production Method. Geophys. Res. Lett. 2019, 46, 1402–1412. [Google Scholar] [CrossRef]
- Yang, Y.T.; Long, D.; Shang, S.H. Remote estimation of terrestrial evapotranspiration without using meteorological data. Geophys. Res. Lett. 2013, 40, 3026–3030. [Google Scholar] [CrossRef]
- Zeng, R.J.; Cai, X.M. Climatic and terrestrial storage control on evapotranspiration temporal variability: Analysis of river basins around the world. Geophys. Res. Lett. 2016, 43, 185–195. [Google Scholar] [CrossRef]
- Liu, Z.B.; Wang, Y.H.; Tian, A.; Webb, A.A.; Yu, P.T.; Xiong, W.; Xu, L.H.; Wang, Y.R. Modeling the Response of Daily Evapotranspiration and its Components of a Larch Plantation to the variation of Weather, Soil Moisture, and Canopy Leaf Area Index. J. Geophys. Res.-Atmos. 2018, 123, 7354–7374. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Chiew, F.H.S.; Zhang, L.; Leuning, R.; Cleugh, H.A. Estimating catchment evaporation and runoff using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44, 1–15. [Google Scholar] [CrossRef]
- Bao, Z.X.; Zhang, J.Y.; Wang, G.Q.; Chen, Q.W.; Guan, T.S.; Yan, X.L.; Liu, C.S.; Liu, J.; Wang, J. The impact of climate variability and land use/cover change on the water balance in the Middle Yellow River Basin, China. J. Hydrol. 2019, 577, 123942. [Google Scholar] [CrossRef]
- Crow, W.T.; Kustas, W.P.; Prueger, J.H. Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model. Remote Sens. Environ. 2008, 112, 1268–1281. [Google Scholar] [CrossRef]
- Li, H.J.; Ma, X.J.; Lu, Y.W.; Ren, R.Q.; Cui, B.L.; Si, B.C. Growing deep roots has opposing impacts on the transpiration of apple trees planted in subhumid loess region. Agric. Water Manag. 2021, 258, 107207. [Google Scholar] [CrossRef]
- Gared, A.; Leung, A.K.; Ng, C.W.W. Transpiration reduction and root distribution functions for a non-crop species Schefflera heptaphylla. Catena 2015, 135, 78–82. [Google Scholar] [CrossRef]
- Braud, I.; Varado, N.; Olioso, A. Comparison of root water uptake modules using either the surface energy balance or potential transpiration. J. Hydrol. 2005, 301, 267–286. [Google Scholar] [CrossRef]
- de Melo, M.L.A.; van Lier, Q.D. Revisiting the Feddes reduction function for modeling root water uptake and crop transpiration. J. Hydrol. 2021, 603, 126952. [Google Scholar] [CrossRef]
- Domec, J.C.; Ogee, J.; Noormets, A.; Jouangy, J.; Gavazzi, M.; Treasure, E.; Sun, G.; McNulty, S.G.; King, J.S. Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations. Tree Physiol. 2012, 32, 707–723. [Google Scholar] [CrossRef]
- Von Jeetze, P.J.; Zarebanadkouki, M.; Carminati, A. Spatial Heterogeneity Enables Higher Root Water Uptake in Dry Soil but Protracts Water Stress After Transpiration Decline: A Numerical Study. Water Resour. Res. 2020, 56, e2019WR025501. [Google Scholar] [CrossRef]
- Li, H.Y.; Luo, Y.; Sun, L.; Li, X.D.; Ma, C.K.; Wang, X.L.; Jiang, T.; Zhu, H.Y. Modelling the artificial forest (Robinia pseudoacacia L.) root-soil water interactions in the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2022, 26, 17–34. [Google Scholar] [CrossRef]
- Condon, L.E.; Atchley, A.L.; Maxwell, R.M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 2020, 11, 873. [Google Scholar] [CrossRef]
- Tuel, A.; Steinfeld, D.; Ali, S.M.; Sprenger, M.; Martius, O. Large-Scale Drivers of Persistent Extreme Weather During Early Summer 2021 in Europe. Geophys. Res. Lett. 2022, 49, e2022GL099624. [Google Scholar] [CrossRef]
- Malik, A.; Li, M.Y.; Lenzen, M.; Fry, J.; Liyanapathirana, N.; Beyer, K.; Boylan, S.; Lee, A.; Raubenheimer, D.; Geschke, A.; et al. Impacts of climate change and extreme weather on food supply chains cascade across sectors and regions in Australia. Nat. Food 2022, 3, 631–643. [Google Scholar] [CrossRef]
- Dagon, K.; Truesdale, J.; Biard, J.C.; Kunkel, K.E.; Meehl, G.A.; Molina, M.J. Machine Learning-Based Detection of Weather Fronts and Associated Extreme Precipitation in Historical and Future Climates. J. Geophys. Res.-Atmos. 2022, 127, e2022JD037038. [Google Scholar] [CrossRef]
- Prein, A.F.; Coen, J.; Jaye, A. The Character and Changing Frequency of Extreme California Fire Weather. J. Geophys. Res.-Atmos. 2022, 127, e2021JD035350. [Google Scholar] [CrossRef]
Tegetation Types | Location | Coordinates | Elevation (m) | Annual Precipitation (mm) | Annual Air Temperature (°C) | Soil Types | Tree Spacing (m × m) | Establishment Date |
---|---|---|---|---|---|---|---|---|
Natural Grassland | Zhongwei | 36°38′40″ N 106°6′25″ E | 1400 | Sierozem | NAN | 2010 | ||
Artificial Grassland | 145.6–276.4 | 9.2–11.2 | 0.15 × 0.15 | 2010 | ||||
Artificial Elaeagnus angustifolia | Tongxin | 38°9′20″ N 106°18′28″ E | 1120 | Sierozem | 5.0 × 5.0 | 2010 | ||
Artificial Poplar forest | 153.4–289.4 | 9.1–10.6 | 5.0 × 8.0 | 2010 | ||||
Artificial Sand willow forest | Yinchuan | 38°25′06″ N 106°10′35 E | 1115 | Anthropogenic alluvial soil | 6.5 × 7.5 | 2010 | ||
Artificial Buddleia | 146.3–286.7 | 9.3–10.8 | 0.5 × 3.0 | 2010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Zhang, T.; Zhang, R.; Zhao, Z.; Qiao, G.; Chen, W.; He, L. A Comparison of Water Uptake by Transpiration from Different Soil Depths among Three Land Cover Types in the Arid Northwest of China. Forests 2023, 14, 2208. https://doi.org/10.3390/f14112208
Qin Y, Zhang T, Zhang R, Zhao Z, Qiao G, Chen W, He L. A Comparison of Water Uptake by Transpiration from Different Soil Depths among Three Land Cover Types in the Arid Northwest of China. Forests. 2023; 14(11):2208. https://doi.org/10.3390/f14112208
Chicago/Turabian StyleQin, Yushi, Tianwen Zhang, Rongfei Zhang, Ziyan Zhao, Gaixia Qiao, Wei Chen, and Lijun He. 2023. "A Comparison of Water Uptake by Transpiration from Different Soil Depths among Three Land Cover Types in the Arid Northwest of China" Forests 14, no. 11: 2208. https://doi.org/10.3390/f14112208
APA StyleQin, Y., Zhang, T., Zhang, R., Zhao, Z., Qiao, G., Chen, W., & He, L. (2023). A Comparison of Water Uptake by Transpiration from Different Soil Depths among Three Land Cover Types in the Arid Northwest of China. Forests, 14(11), 2208. https://doi.org/10.3390/f14112208