Assessment and Mechanism Analysis of Forest Protection against Rockfall in a Large Rock Avalanche Area
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Rockfall Simulations—RockyFor3D
3.2. Terrain Input Parameter Setting
3.3. Forest Input Parameter Setting
3.4. Simulation Method and Process
4. Results
4.1. Characteristics of Path Distribution of Falling Rocks of Different Sizes after Rockfalls
4.2. Assessment of the Effectiveness of Forest Protection against Rockfalls
4.3. Influence of Forest Structure on the Effectiveness of Rockfall Protection
5. Discussion
5.1. Rock Size Influences Forests’ Rockfall Protection Effect
5.2. Influencing Factors of Forest Structure on Mitigating Rockfall Hazards
5.3. Forest Management and Policy Recommendations for Rockfall Hazard Areas
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; de Vries, M.V.W.; Mergili, M.; et al. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef]
- Noël, F.; Nordang, S.F.; Jaboyedoff, M.; Digout, M.; Guerin, A.; Locat, J.; Matasci, B. Comparing Flow-R, Rockyfor3D and RAMMS to Rockfalls from the Mel de La Niva Mountain: A Benchmarking Exercise. Geosciences 2023, 13, 200. [Google Scholar] [CrossRef]
- Wen, H.; Hu, J.; Zhang, J.; Xiang, X.; Liao, M. Rockfall Susceptibility Mapping Using XGBoost Model by Hybrid Optimized Factor Screening and Hyperparameter. Geocarto Int. 2022, 37, 16872–16899. [Google Scholar] [CrossRef]
- Yang, H.Q.; Xing, S.G.; Wang, Q.; Li, Z. Model Test on the Entrainment Phenomenon and Energy Conversion Mechanism of Flow-like Landslides. Eng. Geol. 2018, 239, 119–125. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, X. A New Approach to Calculate Trajectory of Rockfall. Rock Soil Mech. 2009, 30, 3411–3416. [Google Scholar]
- Fanos, A.M.; Pradhan, B.; Aziz, A.A.; Jebur, M.N.; Park, H.-J. Assessment of Multi-Scenario Rockfall Hazard Based on Mechanical Parameters Using High-Resolution Airborne Laser Scanning Data and GIS in a Tropical Area. Environ. Earth Sci. 2016, 75, 1129. [Google Scholar] [CrossRef]
- Jiang, N.; Li, H.; Liu, M.; Zhang, J.; Zhou, J. Quantitative Hazard Assessment of Rockfall and Optimization Strategy for Protection Systems of the Huashiya Cliff, Southwest China. Geomat. Nat. Hazards Risk 2020, 11, 1939–1965. [Google Scholar] [CrossRef]
- Jiang, N.; Li, H.; Zhou, J. Quantitative Hazard Analysis and Mitigation Measures of Rockfall in a High-Frequency Rockfall Region. Bull. Eng. Geol. Environ. 2021, 80, 3439–3456. [Google Scholar] [CrossRef]
- Wen, H.; Hu, J.; Zhang, J.; Xiang, X.; Liao, M. Explainable Machine Learning Model for Rockfall Susceptibility Evaluation. Geo-Risk 2023, 102–110. [Google Scholar] [CrossRef]
- Luo, H.; Hu, W.; Zhang, X.; McSaveney, M.; Li, Y. The Study on Rock Thermal Fractures at Sliding Surface of Jiweishan Landslide. Eng. Geol. 2022, 300, 106588. [Google Scholar] [CrossRef]
- Zhang, M.; McSaveney, M.; Shao, H.; Zhang, C. The 2009 Jiweishan Rock Avalanche, Wulong, China: Precursor Conditions and Factors Leading to Failure. Eng. Geol. 2018, 233, 225–230. [Google Scholar] [CrossRef]
- Yin, Y.; Sun, P.; Zhang, M.; Li, B. Mechanism on Apparent Dip Sliding of Oblique Inclined Bedding Rockslide at Jiweishan, Chongqing, China. Landslides 2011, 8, 49–65. [Google Scholar] [CrossRef]
- Yang, H.Q.; Lan, Y.F.; Lu, L.; Zhou, X.P. A Quasi-Three-Dimensional Spring-Deformable-Block Model for Runout Analysis of Rapid Landslide Motion. Eng. Geol. 2015, 185, 20–32. [Google Scholar] [CrossRef]
- Sellmeier, B.; Thuro, K. Comparison of Two 3D Rockfall Codes on Behalf of a Case Study in the Bavarian Alps. Geomech. Tunn. 2017, 10, 15–23. [Google Scholar] [CrossRef]
- Eichel, J.; Stoffel, M.; Wipf, S. Go or Grow? Feedbacks between Moving Slopes and Shifting Plants in High Mountain Environments. Prog. Phys. Geogr. Earth Environ. 2023, 0, 1–19. [Google Scholar] [CrossRef]
- Moos, C.; Thomas, M.; Pauli, B.; Bergkamp, G.; Stoffel, M.; Dorren, L. Economic Valuation of Ecosystem-Based Rockfall Risk Reduction Considering Disturbances and Comparison to Structural Measures. Sci. Total Environ. 2019, 697, 134077. [Google Scholar] [CrossRef]
- Dupire, S.; Bourrier, F.; Monnet, J.-M.; Bigot, S.; Borgniet, L.; Berger, F.; Curt, T. The Protective Effect of Forests against Rockfalls across the French Alps: Influence of Forest Diversity. For. Ecol. Manag. 2016, 382, 269–279. [Google Scholar] [CrossRef]
- Moos, C.; Lischke, H. Modeling the Effect of Rockfall on Forest Development in a Dynamic Forest Landscape Model. Ecosphere 2022, 13, e3909. [Google Scholar] [CrossRef]
- Lanfranconi, C.; Frattini, P.; Sala, G.; Dattola, G.; Bertolo, D.; Sun, J.; Crosta, G.B. Accounting for the Effect of Forest and Fragmentation in Probabilistic Rockfall Hazard. Nat. Hazards Earth Syst. Sci. 2023, 23, 2349–2363. [Google Scholar] [CrossRef]
- Moos, C.; Fehlmann, M.; Trappmann, D.; Stoffel, M.; Dorren, L. Integrating the Mitigating Effect of Forests into Quantitative Rockfall Risk Analysis—Two Case Studies in Switzerland. Int. J. Disaster Risk Reduct. 2018, 32, 55–74. [Google Scholar] [CrossRef]
- Dorren, L.K.A.; Berger, F.; Imeson, A.C.; Maier, B.; Rey, F. Integrity, Stability and Management of Protection Forests in the European Alps. For. Ecol. Manag. 2004, 195, 165–176. [Google Scholar] [CrossRef]
- Moos, C.; Khelidj, N.; Guisan, A.; Lischke, H.; Randin, C.F. A Quantitative Assessment of Rockfall Influence on Forest Structure in the Swiss Alps. Eur. J. For. Res. 2021, 140, 91–104. [Google Scholar] [CrossRef]
- Dupire, S.; Toe, D.; Barré, J.-B.; Bourrier, F.; Berger, F. Harmonized Mapping of Forests with a Protection Function against Rockfalls over European Alpine Countries. Appl. Geogr. 2020, 120, 102221. [Google Scholar] [CrossRef]
- Corona, C.; Trappmann, D.; Stoffel, M. Parameterization of Rockfall Source Areas and Magnitudes with Ecological Recorders: When Disturbances in Trees Serve the Calibration and Validation of Simulation Runs. Geomorphology 2013, 202, 33–42. [Google Scholar] [CrossRef]
- Radtke, A.; Toe, D.; Berger, F.; Zerbe, S.; Bourrier, F. Managing Coppice Forests for Rockfall Protection: Lessons from Modeling. Ann. For. Sci. 2014, 71, 485–494. [Google Scholar] [CrossRef]
- Jonsson, M.J. Energy Absorption of Trees in a Rockfall Protection Forest, Royal Institute of Technology Stockholm. Ph.D. Dissertation, ETH, Zurich, Switzerland, 2007. [Google Scholar]
- Lundström, T.; Jonsson, M.J.; Volkwein, A.; Stoffel, M. Reactions and Energy Absorption of Trees Subject to Rockfall: A Detailed Assessment Using a New Experimental Method. Tree Physiol. 2009, 29, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Bigot, C.; Dorren, L.K.A.; Berger, F. Quantifying the Protective Function of a Forest against Rockfall for Past, Present and Future Scenarios Using Two Modelling Approaches. Nat. Hazards 2009, 49, 99–111. [Google Scholar] [CrossRef]
- Dorren, L.K.A.; Maier, B.; Putters, U.S.; Seijmonsbergen, A.C. Combining Field and Modelling Techniques to Assess Rockfall Dynamics on a Protection Forest Hillslope in the European Alps. Geomorphology 2004, 57, 151–167. [Google Scholar] [CrossRef]
- Leine, R.I.; Schweizer, A.; Christen, M.; Glover, J.; Bartelt, P.; Gerber, W. Simulation of Rockfall Trajectories with Consideration of Rock Shape. Multibody Syst. Dyn. 2014, 32, 241–271. [Google Scholar] [CrossRef]
- Dorren, L.K.A.; Berger, F.; Putters, U.S. Real-Size Experiments and 3-D Simulation of Rockfall on Forested and Non-Forested Slopes. Nat. Hazards Earth Syst. Sci. 2006, 6, 145–153. [Google Scholar] [CrossRef]
- Dupire, S.; Bourrier, F.; Monnet, J.-M.; Bigot, S.; Borgniet, L.; Berger, F.; Curt, T. Novel Quantitative Indicators to Characterize the Protective Effect of Mountain Forests against Rockfall. Ecol. Indic. 2016, 67, 98–107. [Google Scholar] [CrossRef]
- van Veen, M.; Hutchinson, D.J.; Bonneau, D.A.; Sala, Z.; Ondercin, M.; Lato, M. Combining Temporal 3-D Remote Sensing Data with Spatial Rockfall Simulations for Improved Understanding of Hazardous Slopes within Rail Corridors. Nat. Hazards Earth Syst. Sci. 2018, 18, 2295–2308. [Google Scholar] [CrossRef]
- Menk, J.; Berger, F.; Moos, C.; Dorren, L. Towards an Improved Rapid Assessment Tool for Rockfall Protection Forests Using Field-Mapped Deposited Rocks. Geomorphology 2023, 422, 108520. [Google Scholar] [CrossRef]
- Kajdiž, P.; Diaci, J.; Rebernik, J. Modelling Facilitates Silvicultural Decision-Making for Improving the Mitigating Effect of Beech (Fagus Sylvatica L.) Dominated Alpine Forest against Rockfall. Forests 2015, 6, 2178–2198. [Google Scholar] [CrossRef]
- Dorren, L.; Schaller, C.; Erbach, A.; Moos, C. Automated Delimitation of Rockfall Hazard Indication Zones Using High-Resolution Trajectory Modelling at Regional Scale. Geosciences 2023, 13, 182. [Google Scholar] [CrossRef]
- Xu, Q.; Fan, X.; Huang, R.; Yin, Y.; Hou, S.; Dong, X.; Tang, M. A Catastrophic Rockslide-Debris Flow in Wulong, Chongqing, China in 2009: Background, Characterization, and Causes. Landslides 2010, 7, 75–87. [Google Scholar] [CrossRef]
- Zhao, Z.; Deng, L. Initiation Mechanism of Jiweishan High-Speed Rockslide in Chongqing, China. Nat. Hazards 2020, 103, 3765–3781. [Google Scholar] [CrossRef]
- Zou, Z.; Tang, H.; Xiong, C.; Su, A.; Criss, R.E. Kinetic Characteristics of Debris Flows as Exemplified by Field Investigations and Discrete Element Simulation of the Catastrophic Jiweishan Rockslide, China. Geomorphology 2017, 295, 1–15. [Google Scholar] [CrossRef]
- Ge, Y.; Tang, H.; Ez Eldin, M.A.M.; Chen, H.; Zhong, P.; Zhang, L.; Fang, K. Deposit Characteristics of the Jiweishan Rapid Long-Runout Landslide Based on Field Investigation and Numerical Modeling. Bull. Eng. Geol. Environ. 2019, 78, 4383–4396. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, M.; Jiao, W.; Wu, Y.; Zhang, C.; Wang, Z. Influence of Intergranular Friction Weakening on Rock Avalanche Dynamics. Comput. Geotech. 2023, 159, 105440. [Google Scholar] [CrossRef]
- Chen, L.; Yang, H.; Song, K.; Huang, W.; Ren, X.; Xu, H. Failure Mechanisms and Characteristics of the Zhongbao Landslide at Liujing Village, Wulong, China. Landslides 2021, 18, 1445–1457. [Google Scholar] [CrossRef]
- The Wulong Karst Area Has the Following Types of Forests and Plant Communities. Available online: https://en.wikipedia.org/wiki/Wulong_Karst (accessed on 3 May 2023).
- Yang, L.; Zhang, M.; Zhang, C.; Wang, Z.; Li, W.; Wu, Y.; Wang, L.; Yan, G. How Strain- and Strain-Rate- Weakening of Rupture-Surface Strength Affects Rapid Landslides Explored through Numerical Models of the 2009 Jiweishan Rock Avalanche. Eng. Geol. 2022, 303, 106668. [Google Scholar] [CrossRef]
- Marija, L.; Martin, Z.; Jordan, A.; Matthew, P. Rockfall Susceptibility and Runout in the Valley of the Kings. Nat. Hazards 2022, 110, 451–485. [Google Scholar] [CrossRef]
- Dorren, L.K.A. Using GIS for Preparing Rockyfor3D Input Data in 10 Steps. Available online: https://www.yumpu.com/en/document/view/41913274/using-gis-for-preparing-rockyfor3d-input-data-in-10-steps-ecorisq (accessed on 5 April 2023).
- Dorren, L.K.A. Rockyfor3D (v5.2) Revealed—Transparent Description of the Complete 3D Rockfall Model. Available online: https://www.ecorisq.org/publications/tools-manuals/rockyfor3d-user-manual/3-english/file (accessed on 5 April 2023).
- Zhou, J.; Cui, P.; Hao, M. Comprehensive Analyses of the Initiation and Entrainment Processes of the 2000 Yigong Catastrophic Landslide in Tibet, China. Landslides 2016, 13, 39–54. [Google Scholar] [CrossRef]
- Matas, G.; Lantada, N.; Corominas, J.; Gili, J.; Ruiz-Carulla, R.; Prades, A. Simulation of Full-Scale Rockfall Tests with a Fragmentation Model. Geosciences 2020, 10, 168. [Google Scholar] [CrossRef]
- Žabota, B.; Mikoš, M.; Kobal, M. Rockfall Modelling in Forested Areas: The Role of Digital Terrain Model Grid Cell Size. Appl. Sci. 2021, 11, 1461. [Google Scholar] [CrossRef]
- Lopez-Saez, J.; Corona, C.; Eckert, N.; Stoffel, M.; Bourrier, F.; Berger, F. Impacts of Land-Use and Land-Cover Changes on Rockfall Propagation: Insights from the Grenoble Conurbation. Sci. Total Environ. 2016, 547, 345–355. [Google Scholar] [CrossRef]
- Maringer, J.; Ascoli, D.; Dorren, L.; Bebi, P.; Conedera, M. Temporal Trends in the Protective Capacity of Burnt Beech Forests (Fagus Sylvatica L.) against Rockfall. Eur. J. For. Res. 2016, 135, 657–673. [Google Scholar] [CrossRef]
- Malik, I.; Tie, Y.; Owczarek, P.; Wistuba, M.; Pilorz, W.; Woskowicz-Ślęzak, B. Human-Planted Alder Trees as a Protection against Debris Flows (a Dendrochronological Study from the Moxi Basin, Southwestern China). Geochronometria 2013, 40, 208–216. [Google Scholar] [CrossRef]
- Fidej, G.; Mikoš, M.; Rugani, T.; Jež, J.; Kumelj, Š.; Diaci, J. Assessment of the Protective Function of Forests against Debris Flows in a Gorge of the Slovenian Alps. iForest—Biogeosciences For. 2015, 8, 73. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Skidmore, A.K.; Cao, F.; She, G.; Cao, L. An Improved Area-Based Approach for Estimating Plot-Level Tree DBH from Airborne LiDAR Data. For. Ecosyst. 2023, 10, 100089. [Google Scholar] [CrossRef]
- Moos, C.; Dorren, L.; Stoffel, M. Quantifying the Effect of Forests on Frequency and Intensity of Rockfalls. Nat. Hazards Earth Syst. Sci. 2017, 17, 291–304. [Google Scholar] [CrossRef]
- Dakhil, M.A.; Xiong, Q.; Farahat, E.A.; Zhang, L.; Pan, K.; Pandey, B.; Olatunji, O.A.; Tariq, A.; Wu, X.; Zhang, A.; et al. Past and Future Climatic Indicators for Distribution Patterns and Conservation Planning of Temperate Coniferous Forests in Southwestern China. Ecol. Indic. 2019, 107, 105559. [Google Scholar] [CrossRef]
- Bonneau, D.A.; DiFrancesco, P.-M.; Hutchinson, D.J. A Method for Vegetation Extraction in Mountainous Terrain for Rockfall Simulation. Remote Sens. Environ. 2020, 251, 112098. [Google Scholar] [CrossRef]
- Lanfranconi, C.; Sala, G.; Frattini, P.; Crosta, G.B.; Valagussa, A. Assessing the Rockfall Protection Efficiency of Forests at the Regional Scale. Landslides 2020, 17, 2703–2721. [Google Scholar] [CrossRef]
- NaiS STEINSCHLAG-TOOL. Available online: https://www.gebirgswald.ch/de/anforderungen-steinschlag.html (accessed on 5 April 2023).
- Song, K.; Yang, H.; Liu, X.; Liang, D.; Chen, L. Risk Assessment on the Stability of Barrier Dam Induced by Caijiaba Landslide, SW China. Bull. Eng. Geol. Environ. 2022, 81, 235. [Google Scholar] [CrossRef]
- Yang, H.; Song, K.; Chen, L.; Qu, L. Hysteresis Effect and Seasonal Step-like Creep Deformation of the Jiuxianping Landslide in the Three Gorges Reservoir Region. Eng. Geol. 2023, 317, 107089. [Google Scholar] [CrossRef]
- Wen, H.; Liu, L.; Zhang, J.; Hu, J.; Huang, X. A Hybrid Machine Learning Model for Landslide-Oriented Risk Assessment of Long-Distance Pipelines. J. Environ. Manag. 2023, 342, 118177. [Google Scholar] [CrossRef]
- Dai, Y.; Diao, Y.; Dai, C.; Li, Y.; Sun, G.; Zahoor, B.; Li, D. Spatial-Temporal Dynamics and Evolution of Ecological Security in a Rapid Urbanization City, Southwest China. Front. Ecol. Evol. 2022, 10, 914567. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, K.; Zhu, Z.; Tang, L.; Su, K.; Yang, Q. Spatiotemporal Evolution and Influencing Factors of the Rural Natural Capital Utilization Efficiency: A Case Study of Chongqing, China. Land 2022, 11, 697. [Google Scholar] [CrossRef]
- Yang, Y.; Fujihara, M.; Li, B.; Yuan, X.; Hara, K.; Da, L.; Tomita, M.; Zhao, Y. Structure and Diversity of Remnant Natural Evergreen Broad-Leaved Forests at Three Sites Affected by Urbanization in Chongqing Metropolis, Southwest China. Landsc. Ecol. Eng. 2014, 10, 137–149. [Google Scholar] [CrossRef]
Input Raster Name | Description of Parameters | Value(s) |
---|---|---|
dem.asc | Digital elevation model | 2 m grid DEM from NASA satellite (taken in 2008) |
bl_shape.asc | Shape of the rock block | Rectangular, default to cube |
rockdensity.asc | Density of the rock | 2600 kg/m3 |
soiltype.asc | The values used to determine the normal recovery coefficients. Eight values were selected from the list, each corresponding to a different coefficient of restitution (COR). | Based on a regional survey of the Jiweishan rock avalanche, the gully stratigraphy is dense soil interbedded with bedrock. According to the Rockyfor3D manual, the soil type was determined to be between 3 and 5, corresponding to a COR value of 0.33–0.43. |
d1.asc d2.asc d3.asc | Dimensions of the falling block in metres. | The default falling rock size is a cube with d1 = d2 = d3. The volume is 60 m3, 8 m3, and 2 m3, respectively. |
rg70.asc rg20.asc rg10.asc | Represents the roughness of the slope within each DEM cell. | The roughness was set to (rg70 = rg20 = rg10) equal to 0.1 m based on a survey of the Jiweishan rock avalanche area. |
Group | Forest Type | Tree Types in the Jiweishan Rockfall Area | Mean DBH (cm) | Mean Number of Trees ha−1 |
---|---|---|---|---|
F1 | 100% broadleaf forest | Fagus | 30 | 800 |
F2 | Mixed coniferous and broadleaf forest (40% coniferous and 60% broadleaf) | Fagus, Sequoia, and Pinus | 30 | 800 |
F3 | 100% coniferous forest | Sequoia, Pinus | 30 | 800 |
F4 | 100% coniferous forest | Sequoia, Pinus | 35 | 800 |
F5 | 100% coniferous forest | Sequoia, Pinus | 40 | 800 |
F6 | 100% coniferous forest | Sequoia, Pinus | 30 | 600 |
F7 | 100% coniferous forest | Sequoia, Pinus | 30 | 400 |
Simulation Group | Rockfall Volume/m3 | Without\With Forest | Number of Simulated Rockfalls | Rockfall Main Distribution Area |
---|---|---|---|---|
S1 | 2 | Without forest | 200 | Debris flow area |
S2 | 8 | Without forest | 500 | Spilling and debris flow areas |
S3 | 60 | Without forest | 1000 | The main accumulation area and scraping area |
S4 | 2 | With forest | 200 | Debris flow area |
S5 | 8 | With forest | 500 | Spilling and debris flow areas |
S6 | 60 | With forest | 1000 | The main accumulation area and scraping area |
Rockfall Volume(m3) | Rockfall Propagation Area (m2) | |||
---|---|---|---|---|
Without Forest | With Forest | Area of Difference | Decrease Percentage | |
2 | 1,049,460 | 878,601 | 170,858 | 16.28% |
8 | 1,003,094 | 844,515 | 158,579 | 15.81% |
60 | 507,585 | 505,687 | 1898 | 0.37% |
Forest Type | Mean DBH (cm) | Mean Number of Trees ha−1 | Rockfall Propagation Area (m2) | Runout Distance (m) |
---|---|---|---|---|
Broad-leaved | 30 | 800 | 878,601 | 1867 |
Coniferous broad-leaved mixed forest | 30 | 800 | 905,370 | 1985 |
Pure coniferous | 30 | 800 | 934,738 | 2148 |
Pure coniferous | 35 | 800 | 915,817 | 2013 |
Pure coniferous | 40 | 800 | 865,922 | 1800 |
Pure coniferous | 30 | 600 | 948,966 | 2177 |
Pure coniferous | 30 | 400 | 959,034 | 2248 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Yang, H.; Liang, D.; Chen, L.; Qu, L.; Chen, C. Assessment and Mechanism Analysis of Forest Protection against Rockfall in a Large Rock Avalanche Area. Forests 2023, 14, 1982. https://doi.org/10.3390/f14101982
Song K, Yang H, Liang D, Chen L, Qu L, Chen C. Assessment and Mechanism Analysis of Forest Protection against Rockfall in a Large Rock Avalanche Area. Forests. 2023; 14(10):1982. https://doi.org/10.3390/f14101982
Chicago/Turabian StyleSong, Kanglei, Haiqing Yang, Dan Liang, Lichuan Chen, Lili Qu, and Chiwei Chen. 2023. "Assessment and Mechanism Analysis of Forest Protection against Rockfall in a Large Rock Avalanche Area" Forests 14, no. 10: 1982. https://doi.org/10.3390/f14101982
APA StyleSong, K., Yang, H., Liang, D., Chen, L., Qu, L., & Chen, C. (2023). Assessment and Mechanism Analysis of Forest Protection against Rockfall in a Large Rock Avalanche Area. Forests, 14(10), 1982. https://doi.org/10.3390/f14101982