Second-Entry Burns Reduce Mid-Canopy Fuels and Create Resilient Forest Structure in Yosemite National Park, California
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Statistical Analyses
3. Results
3.1. Drivers of Forest Structure
3.2. Fire-Mediated Forest Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, P.S. Pattern, Process, and Natural Disturbance in Vegetation. Bot. Rev. 1979, 45, 123. [Google Scholar] [CrossRef]
- Agee, J.K. The Landscape Ecology Western Forest Fire Regimes. Northwest Sci. 1998, 72, 24–34. [Google Scholar]
- Bond, W.J.; Keeley, J.E. Fire as a Global “Herbivore”: The Ecology and Evolution of Flammable Ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. Syst. 1989, 20, 27. [Google Scholar] [CrossRef]
- Collins, B.M.; Miller, J.D.; Thode, A.E.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L. Interactions Among Wildland Fires in a Long-Established Sierra Nevada Natural Fire Area. Ecosystems 2009, 12, 114–128. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Miller, C.; Nelson, C.R. Wildland Fire as a Self-Regulating Mechanism: The Role of Previous Burns and Weather in Limiting Fire Progression. Ecol. Appl. 2015, 25, 1478–1492. [Google Scholar] [CrossRef]
- Mistry, J.; Berardi, A.; Andrade, V.; Krahô, T.; Krahô, P.; Leonardos, O. Indigenous Fire Management in the Cerrado of Brazil: The Case of the Krahô of Tocantíns. Hum. Ecol. 2005, 33, 365–386. [Google Scholar] [CrossRef]
- Anderson, M.K. The Use of Fire by Native Americans in California. In Fire in California’s Ecosystems; Sugihara, N., Ed.; University of California Press: Berkeley, CA, USA, 2006; pp. 417–430. ISBN 978-0-520-24605-8. [Google Scholar]
- Lake, F.K.; Christianson, A. Indigenous Fire Stewardship. In Encyclopedia of Wildfire and Wildland-Urban Interface Fires; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Hoffman, K.M.; Davis, E.L.; Wickham, S.B.; Schang, K.; Johnson, A.; Larking, T.; Lauriault, P.N.; Quynh Le, N.; Swerdfager, E.; Trant, A.J. Conservation of Earth’s Biodiversity Is Embedded in Indigenous Fire Stewardship. Proc. Natl. Acad. Sci. USA 2021, 118, e2105073118. [Google Scholar] [CrossRef]
- Donovan, G.H.; Brown, T.C. Be Careful What You Wish for: The Legacy of Smokey Bear. Front. Ecol. Environ. 2007, 5, 73–79. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of Anthropogenic Climate Change on Wildfire across Western US Forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef]
- Doerr, S.H.; Santín, C. Global Trends in Wildfire and Its Impacts: Perceptions versus Realities in a Changing World. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef] [PubMed]
- Stevens-Rumann, C.S.; Kemp, K.B.; Higuera, P.E.; Harvey, B.J.; Rother, M.T.; Donato, D.C.; Morgan, P.; Veblen, T.T. Evidence for Declining Forest Resilience to Wildfires under Climate Change. Ecol. Lett. 2017, 21, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Hagmann, R.K.; Hessburg, P.F.; Salter, R.B.; Merschel, A.G.; Reilly, M.J. Contemporary Wildfires Further Degrade Resistance and Resilience of Fire-Excluded Forests. For. Ecol. Manag. 2022, 506, 119975. [Google Scholar] [CrossRef]
- North, M.P.; Stephens, S.L.; Collins, B.M.; Agee, J.K.; Aplet, G.; Franklin, J.F.; Fulé, P.Z. Reform Forest Fire Management. Science 2015, 349, 1280–1281. [Google Scholar] [CrossRef]
- Collins, B.M.; Fry, D.L.; Lydersen, J.M.; Everett, R.; Stephens, S.L. Impacts of Different Land Management Histories on Forest Change. Ecol. Appl. 2017, 27, 2475–2486. [Google Scholar] [CrossRef]
- Van Wagtendonk, J.W. The History and Evolution of Wildland Fire Use. Fire Ecol. 2007, 3, 3–17. [Google Scholar] [CrossRef]
- Taylor, A.H.; Skinner, C.N. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. Ecol. Appl. 2003, 13, 704–719. [Google Scholar] [CrossRef]
- Kane, V.R.; North, M.P.; Lutz, J.A.; Churchill, D.J.; Roberts, S.L.; Smith, D.F.; McGaughey, R.J.; Kane, J.T.; Brooks, M.L. Assessing Fire Effects on Forest Spatial Structure Using a Fusion of Landsat and Airborne LiDAR Data in Yosemite National Park. Remote Sens. Environ. 2014, 151, 89–101. [Google Scholar] [CrossRef]
- Dolanc, C.R.; Safford, H.D.; Thorne, J.H.; Dobrowski, S.Z. Changing Forest Structure across the Landscape of the Sierra Nevada, CA, USA, since the 1930s. Ecosphere 2014, 5, art101. [Google Scholar] [CrossRef]
- Collins, B.M.; Everett, R.G.; Stephens, S.L. Impacts of Fire Exclusion and Recent Managed Fire on Forest Structure in Old Growth Sierra Nevada Mixed-Conifer Forests. Ecosphere 2011, 2, art51. [Google Scholar] [CrossRef]
- Lutz, J.A.; van Wagtendonk, J.W.; Franklin, J.F. Twentieth-Century Decline of Large-Diameter Trees in Yosemite National Park, California, USA. For. Ecol. Manag. 2009, 257, 2296–2307. [Google Scholar] [CrossRef]
- Stephens, S.L.; Lydersen, J.M.; Collins, B.M.; Fry, D.L.; Meyer, M.D. Historical and Current Landscape-Scale Ponderosa Pine and Mixed Conifer Forest Structure in the Southern Sierra Nevada. Ecosphere 2015, 6, art79. [Google Scholar] [CrossRef]
- Miller, C.; Urban, D.L. Forest Pattern, Fire, and Climatic Change in the Sierra Nevada. Ecosystems 1999, 2, 76–87. [Google Scholar] [CrossRef]
- Collins, B.M.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L. Spatial Patterns of Large Natural Fires in Sierra Nevada Wilderness Areas. Landsc. Ecol 2007, 22, 545–557. [Google Scholar] [CrossRef]
- Scholl, A.E.; Taylor, A.H. Fire Regimes, Forest Change, and Self-Organization in an Old-Growth Mixed-Conifer Forest, Yosemite National Park, USA. Ecol. Appl. 2010, 20, 362–380. [Google Scholar] [CrossRef]
- Agee, J.K.; Skinner, C.N. Basic Principles of Forest Fuel Reduction Treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Stephens, S.L.; Moghaddas, J.J.; Edminster, C.; Fiedler, C.E.; Haase, S.; Harrington, M.; Keeley, J.E.; Knapp, E.E.; McIver, J.D.; Metlen, K.; et al. Fire Treatment Effects on Vegetation Structure, Fuels, and Potential Fire Severity in Western U.S. Forests. Ecol. Appl. 2009, 19, 305–320. [Google Scholar] [CrossRef]
- Allen, C.D.; Savage, M.; Falk, D.A.; Suckling, K.F.; Swetnam, T.W.; Schulke, T.; Stacey, P.B.; Morgan, P.; Hoffman, M.; Klingel, J.T. Ecological Restoration of Southwestern Ponderosa Pine Ecosystems: A Broad Perspective. Ecol. Appl. 2002, 12, 1418–1433. [Google Scholar] [CrossRef]
- Stephens, S.L.; Thompson, S.; Boisramé, G.; Collins, B.M.; Ponisio, L.C.; Rakhmatulina, E.; Steel, Z.L.; Stevens, J.T.; van Wagtendonk, J.W.; Wilkin, K. Fire, Water, and Biodiversity in the Sierra Nevada: A Possible Triple Win. Environ. Res. Commun. 2021, 3, 081004. [Google Scholar] [CrossRef]
- Boisramé, G.; Thompson, S.; Collins, B.; Stephens, S. Managed Wildfire Effects on Forest Resilience and Water in the Sierra Nevada. Ecosystems 2017, 20, 717–732. [Google Scholar] [CrossRef]
- Goeking, S.A.; Tarboton, D.G. Forests and Water Yield: A Synthesis of Disturbance Effects on Streamflow and Snowpack in Western Coniferous Forests. J. For. 2020, 118, 172–192. [Google Scholar] [CrossRef]
- Skinner, C.N.; Chang, C.; Et-man, D.C.; Husari, S.J.; Parsons, D.J.; van Wagtendonk, J.W.; Weatherspoon, C.P. An Overview of Fire in the Sierra Nevada. In Sierra Nevada Ecosystem Project, Final Report to Congress, Vol. II, Assessments and Scientific Basis for Management Options; University of California, Centers for Water and Wildland Resources: Davis, CA, USA, 1996. [Google Scholar]
- Van Wagtendonk, J. Fuel Bed Characteristics of Sierra Nevada Conifers. West. J. Appl. Forestry. 1998, 13, 73–84. [Google Scholar] [CrossRef]
- Stephens, S.L. Fire History Differences in Adjacent Jeffrey Pine and Upper Montane Forests in the Eastern Sierra Nevada. Int. J. Wildland Fire 2001, 10, 161. [Google Scholar] [CrossRef]
- Reutebuch, S.E.; Andersen, H.-E.; McGaughey, R.J. Light Detection and Ranging (LIDAR): An Emerging Tool for Multiple Resource Inventory. J. For. 2005, 103, 286–292. [Google Scholar]
- Hudak, A.T.; Evans, J.S.; Stuart Smith, A.M. LiDAR Utility for Natural Resource Managers. Remote Sens. 2009, 1, 934–951. [Google Scholar] [CrossRef]
- Kane, V.R.; Gersonde, R.F.; Lutz, J.A.; McGaughey, R.J.; Bakker, J.D.; Franklin, J.F. Patch Dynamics and the Development of Structural and Spatial Heterogeneity in Pacific Northwest Forests. Can. J. For. Res. 2011, 41, 2276–2291. [Google Scholar] [CrossRef]
- Kane, V.R.; Lutz, J.A.; Roberts, S.L.; Smith, D.F.; McGaughey, R.J.; Povak, N.A.; Brooks, M.L. Landscape-Scale Effects of Fire Severity on Mixed-Conifer and Red Fir Forest Structure in Yosemite National Park. For. Ecol. Manag. 2013, 287, 17–31. [Google Scholar] [CrossRef]
- Cansler, C.A.; Kane, V.R.; Bartl-Geller, B.N.; Churchill, D.J.; Hessburg, P.F.; Povak, N.A.; Lutz, J.A.; Kane, J.; Larson, A.J. Postfire Treatments Alter Forest Canopy Structure up to Three Decades after Fire. For. Ecol. Manag. 2022, 505, 119872. [Google Scholar] [CrossRef]
- Olszewski, J.H.; Bailey, J.D. LiDAR as a Tool for Assessing Change in Vertical Fuel Continuity Following Restoration. Forests 2022, 13, 503. [Google Scholar] [CrossRef]
- Kramer, H.; Collins, B.; Kelly, M.; Stephens, S. Quantifying Ladder Fuels: A New Approach Using LiDAR. Forests 2014, 5, 1432–1453. [Google Scholar] [CrossRef]
- Kemp, K.B.; Higuera, P.E.; Morgan, P. Fire Legacies Impact Conifer Regeneration across Environmental Gradients in the U.S. Northern Rockies. Landsc. Ecol. 2016, 31, 619–636. [Google Scholar] [CrossRef]
- Wolf, K.D.; Higuera, P.E.; Davis, K.T.; Dobrowski, S.Z. Wildfire Impacts on Forest Microclimate Vary with Biophysical Context. Ecosphere 2021, 12, e03467. [Google Scholar] [CrossRef]
- Beedy, E.C. Bird Communities and Forest Structure in the Sierra Nevada of California. The Condor 1981, 83, 97–105. [Google Scholar] [CrossRef]
- Sollmann, R.; White, A.M.; Gardner, B.; Manley, P.N. Investigating the Effects of Forest Structure on the Small Mammal Community in Frequent-Fire Coniferous Forests Using Capture-Recapture Models for Stratified Populations. Mamm. Biol. 2015, 80, 247–254. [Google Scholar] [CrossRef]
- Blomdahl, E.M.; Thompson, C.M.; Kane, J.R.; Kane, V.R.; Churchill, D.; Moskal, L.M.; Lutz, J.A. Forest Structure Predictive of Fisher (Pekania Pennanti) Dens Exists in Recently Burned Forest in Yosemite, California, USA. For. Ecol. Manag. 2019, 444, 174–186. [Google Scholar] [CrossRef]
- van Wagtendonk, J.W.; van Wagtendonk, K.A.; Meyer, J.B.; Paintner, K.J. The Use of Geographic Information for Fire Management Planning in Yosemite National Park. Georg. Wright FORUM 2002, 19, 22. [Google Scholar]
- Pyne, S.J. Pyrocene Park. Aeon. Available online: https://aeon.co/essays/what-yosemites-fire-history-says-about-life-in-the-pyrocene (accessed on 24 March 2022).
- Kane, V.R. Patterns of Forest Structural Complexity Studied with Airborne LiDAR Data. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2010. [Google Scholar]
- Chamberlain, C.P.; Kane, V.R.; Case, M.J. Accelerating the development of structural complexity: Lidar analysis supports restoration as a tool in coastal Pacific Northwest forests. For. Ecol. Manag. 2021, 500, 119641. [Google Scholar] [CrossRef]
- McGaughey, R.J. FUSION/LDV LIDAR Analysis and Visualization Software. Pacific Northwest Research Station, USDA Forest Service, Portland, OR, USA. 2020. Available online: http://forsys.sefs.uw.edu/fusion/fusion_overview.html (accessed on 1 December 2020).
- Jeronimo, S.M.A.; Kane, V.R.; Churchill, D.J.; McGaughey, R.J.; Franklin, J.F. Applying LiDAR Individual Tree Detection to Management of Structurally Diverse Forest Landscapes. J. For. 2018, 116, 336–346. [Google Scholar] [CrossRef]
- PRISM Climate Group PRISM Gridded Climate Data 2022. Available online: https://www.prism.oregonstate.edu/ (accessed on 1 January 2022).
- Yosemite National Park NPS Geospatial Data, El Portal, CA, USA. 2021. Available online: https://irma.nps.gov/DataStore/ (accessed on 1 March 2022).
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Chr Stenseth, N. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Meneses-Tovar, C.L. NDVI as Indicator of Degradation. Unasylva 2011, 62, 39–46. [Google Scholar]
- ArcGIS Pro v2.9.1; ESRI: Redlands, CA, USA, 2021.
- Earth Resources Observation and Science (EROS) Center, National Land Cover Database. 2018. Available online: https://www.usgs.gov/centers/eros/science/national-land-cover-database (accessed on 1 March 2022).
- Dewitz, J. National Land Cover Database 2019; United States Geological Survey: Reston, VA, USA. [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Community Ecology Package “Vegan”. 2022. Available online: https://github.com/vegandevs/vegan (accessed on 1 March 2022).
- Anderson, M.J. Permutational Multivariate Analysis of Variance ( PERMANOVA ). In Wiley StatsRef: Statistics Reference Online; Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F., Teugels, J.L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 1–15. ISBN 978-1-118-44511-2. [Google Scholar]
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. Performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Kane, V.R.; Bartl-Geller, B.N.; North, M.P.; Kane, J.T.; Lydersen, J.M.; Jeronimo, S.M.A.; Collins, B.M.; Monika Moskal, L. First-Entry Wildfires Can Create Opening and Tree Clump Patterns Characteristic of Resilient Forests. For. Ecol. Manag. 2019, 454, 117659. [Google Scholar] [CrossRef]
- Boisramé, G.F.S.; Thompson, S.E.; Kelly, M.; Cavalli, J.; Wilkin, K.M.; Stephens, S.L. Vegetation Change during 40 Years of Repeated Managed Wildfires in the Sierra Nevada, California. For. Ecol. Manag. 2017, 402, 241–252. [Google Scholar] [CrossRef]
- Collins, B.M.; Lydersen, J.M.; Everett, R.G.; Stephens, S.L. How Does Forest Recovery Following Moderate-Severity Fire Influence Effects of Subsequent Wildfire in Mixed-Conifer Forests? Fire Ecol 2018, 14, 3. [Google Scholar] [CrossRef]
- Parks, S.A.; Miller, C.; Nelson, C.R.; Holden, Z.A. Previous Fires Moderate Burn Severity of Subsequent Wildland Fires in Two Large Western US Wilderness Areas. Ecosystems 2014, 17, 29–42. [Google Scholar] [CrossRef]
- Cansler, C.A.; Kane, V.R.; Hessburg, P.F.; Kane, J.T.; Jeronimo, S.M.A.; Lutz, J.A.; Povak, N.A.; Churchill, D.J.; Larson, A.J. Previous Wildfires and Management Treatments Moderate Subsequent Fire Severity. For. Ecol. Manag. 2022, 504, 119764. [Google Scholar] [CrossRef]
- Odion, D.C.; Hanson, C.T.; Arsenault, A.; Baker, W.L.; DellaSala, D.A.; Hutto, R.L.; Klenner, W.; Moritz, M.A.; Sherriff, R.L.; Veblen, T.T.; et al. Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America. PLoS ONE 2014, 9, e87852. [Google Scholar] [CrossRef] [PubMed]
- Airey-Lauvaux, C.; Pierce, A.D.; Skinner, C.N.; Taylor, A.H. Changes in Fire Behavior Caused by Fire Exclusion and Fuel Build-up Vary with Topography in California Montane Forests, USA. J. Environ. Manag. 2022, 304, 114255. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.M.; Keyser, A.R.; Westerling, A.L.; Baldwin, W.J.; Keane, J.J.; Sawyer, S.C.; Clare, J.D.; Gutiérrez, R.; Peery, M.Z. Forest Restoration Limits Megafires and Supports Species Conservation under Climate Change. Front. Ecol Env. 2022, 20, 210–216. [Google Scholar] [CrossRef]
- Stephens, S.L.; Bigelow, S.W.; Burnett, R.D.; Collins, B.M.; Gallagher, C.V.; Keane, J.; Kelt, D.A.; North, M.P.; Roberts, L.J.; Stine, P.A.; et al. California Spotted Owl, Songbird, and Small Mammal Responses to Landscape Fuel Treatments. BioScience 2014, 64, 893–906. [Google Scholar] [CrossRef]
- Knapp, E.E.; Lydersen, J.M.; North, M.P.; Collins, B.M. Efficacy of Variable Density Thinning and Prescribed Fire for Restoring Forest Heterogeneity to Mixed-Conifer Forest in the Central Sierra Nevada, CA. For. Ecol. Manag. 2017, 406, 228–241. [Google Scholar] [CrossRef]
- van Mantgem, P.J.; Stephenson, N.L.; Knapp, E.; Battles, J.; Keeley, J.E. Long-Term Effects of Prescribed Fire on Mixed Conifer Forest Structure in the Sierra Nevada, California. For. Ecol. Manag. 2011, 261, 989–994. [Google Scholar] [CrossRef]
- Hood, S.M.; Baker, S.; Sala, A. Fortifying the Forest: Thinning and Burning Increase Resistance to a Bark Beetle Outbreak and Promote Forest Resilience. Ecol Appl 2016, 26, 1984–2000. [Google Scholar] [CrossRef] [PubMed]
- Fulé, P.Z.; Crouse, J.E.; Roccaforte, J.P.; Kalies, E.L. Do Thinning and/or Burning Treatments in Western USA Ponderosa or Jeffrey Pine-Dominated Forests Help Restore Natural Fire Behavior? For. Ecol. Manag. 2012, 269, 68–81. [Google Scholar] [CrossRef]
- Stevens, J.T.; Boisramé, G.F.S.; Rakhmatulina, E.; Thompson, S.E.; Collins, B.M.; Stephens, S.L. Forest Vegetation Change and Its Impacts on Soil Water Following 47 Years of Managed Wildfire. Ecosystems 2020, 23, 1547–1565. [Google Scholar] [CrossRef]
- Wilkin, K.; Ponisio, L.; Fry, D.L.; Collins, B.M.; Moody, T.; Stephens, S.L. Drivers of Understory Plant Communities in Sierra Nevada Mixed Conifer Forests with Pyrodiversity. Fire Ecol 2021, 17, 30. [Google Scholar] [CrossRef]
- Collins, B.M.; Moghaddas, J.J.; Stephens, S.L. Initial Changes in Forest Structure and Understory Plant Communities Following Fuel Reduction Activities in a Sierra Nevada Mixed Conifer Forest. For. Ecol. Manag. 2007, 239, 102–111. [Google Scholar] [CrossRef]
- Stephens, S.L.; Moghaddas, J.J. Experimental Fuel Treatment Impacts on Forest Structure, Potential Fire Behavior, and Predicted Tree Mortality in a California Mixed Conifer Forest. For. Ecol. Manag. 2005, 215, 21–36. [Google Scholar] [CrossRef]
Forest Type | Burn Class | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | >3 | Total | |
Jeffrey Pine | 300 | 417 | 494 | 192 | 64 | 1467 |
Mixed Conifer | 1261 | 2280 | 2856 | 1088 | 286 | 7771 |
Red Fir | 1466 | 1740 | 902 | 238 | 58 | 4404 |
Lodgepole Pine | 844 | 289 | 102 | 20 | 4 | 1259 |
Total | 3871 | 4726 | 4354 | 1538 | 412 | 14,901 |
Forest Type | Elevation (m) | Tree Density (TAO/ha) | # Fires (Since 1930) | MAT (°C) | MAP (mm) |
---|---|---|---|---|---|
Jeffrey pine | 2076 (413) | 124 (46) | 1.6 (1.7) | 8.0 (2.3) | 1173 (104) |
Mixed conifer | 1774 (234) | 138 (44) | 1.1 (1.4) | 10.0 (1.2) | 1106 (73) |
Red fir | 2284 (183) | 124 (44) | 1.3 (1.5) | 7.3 (1.2) | 1183 (92) |
Lodgepole pine | 2583 (238) | 131 (51) | 2.0 (1.5) | 5.2 (1.6) | 1303 (142) |
Response | Burn Class | Mean (sd) | Sum Sq | Mean Sq | F-Value | p-Value |
---|---|---|---|---|---|---|
Canopy cover 1–2 m | 0 | 6.3 (5.1) | 4303 | 1077 | 21 | <0.001 |
1 | 6 (6.9) | |||||
2 | 7.1 (8.7) | |||||
3 | 6.4 (7) | |||||
>3 | 8.3 (8.4) | |||||
Canopy cover 2–4 m | 0 | 8.1 (5.4) | 20761 | 5188 | 170 | <0.001 |
1 | 5.6 (5.3) | |||||
2 | 5.3 (5.9) | |||||
3 | 4.8 (5.1) | |||||
>3 | 7 (6.5) | |||||
Canopy cover 4–8 m | 0 | 0.4 (1.7) | 1403 | 351 | 49 | <0.001 |
1 | 0.8 (2.6) | |||||
2 | 1.2 (3.2) | |||||
3 | 1.2 (3.4) | |||||
>3 | 0.6 (2) | |||||
Canopy cover 8–16 m | 0 | 23.9 (10.6) | 383350 | 95838 | 898 | <0.001 |
1 | 16.2 (10.7) | |||||
2 | 10.7 (10) | |||||
3 | 11.1 (9.6) | |||||
>3 | 12.2 (10.1) | |||||
Canopy cover 16–32 m | 0 | 25.3 (14.8) | 147258 | 36814 | 174 | <0.001 |
1 | 21.3 (14.2) | |||||
2 | 17.2 (14.7) | |||||
3 | 18.1 (14.8) | |||||
>3 | 15.9 (14.1) | |||||
Canopy cover 32–48 m | 0 | 6.3 (9) | 9166 | 2292 | 25.3 | <0.001 |
1 | 7 (8.9) | |||||
2 | 7.9 (10.2) | |||||
3 | 8.6 (10.7) | |||||
>3 | 5.9 (9.1) | |||||
Tree density (TAOs/ha) | 0 | 141.2 (37.2) | 1604513 | 401128 | 207 | <0.001 |
1 | 140.6 (46.8) | |||||
2 | 120.7 (46.5) | |||||
3 | 115.4 (45.1) | |||||
>3 | 126.1 (37.7) | |||||
NDVI | 0 | 0.43 (0.13) | 12.85 | 3.21 | 183.7 | <0.001 |
1 | 0.44 (0.14) | |||||
2 | 0.49 (0.14) | |||||
3 | 0.50 (0.12) | |||||
>3 | 0.50 (0.11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hankin, L.E.; Anderson, C.T. Second-Entry Burns Reduce Mid-Canopy Fuels and Create Resilient Forest Structure in Yosemite National Park, California. Forests 2022, 13, 1512. https://doi.org/10.3390/f13091512
Hankin LE, Anderson CT. Second-Entry Burns Reduce Mid-Canopy Fuels and Create Resilient Forest Structure in Yosemite National Park, California. Forests. 2022; 13(9):1512. https://doi.org/10.3390/f13091512
Chicago/Turabian StyleHankin, Lacey E., and Chad T. Anderson. 2022. "Second-Entry Burns Reduce Mid-Canopy Fuels and Create Resilient Forest Structure in Yosemite National Park, California" Forests 13, no. 9: 1512. https://doi.org/10.3390/f13091512
APA StyleHankin, L. E., & Anderson, C. T. (2022). Second-Entry Burns Reduce Mid-Canopy Fuels and Create Resilient Forest Structure in Yosemite National Park, California. Forests, 13(9), 1512. https://doi.org/10.3390/f13091512