Impact of Leaf Litter and Fine Roots in the Pool of Carbon, Nitrogen and Phosphorus Accumulated in Soil in Various Scenarios of Regeneration and Reconstruction of Forest Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Field Study
2.2. Statistical Analysis
3. Study Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angst, G.; Mueller, K.E.; Eissenstat, D.M.; Trumbore, S.; Freeman, K.H.; Hobbie, S.E.; Chorover, J.; Oleksyn, J.; Reich, P.B.; Mueller, C.W. Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. Glob. Chang. Biol. 2019, 25, 1529–1546. [Google Scholar] [CrossRef]
- Binkley, D.; Giardina, C.; Bashkin, M. Soil phosphorus pools and supply under the influence of Eucalyptus saligna and nitrogen-fixing Albizia facaltaria. For. Ecol. Manag. 2000, 128, 241–247. [Google Scholar] [CrossRef]
- Vesterdal, L.; Schmidt, I.K.; Callesen, I.; Nilsson, L.O.; Gundersen, P. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For. Ecol. Manag. 2008, 255, 35–48. [Google Scholar] [CrossRef]
- Woś, B.; Józefowska, A.; Likus-Cieślik, J.; Chodak, M.; Pietrzykowski, M. Effect of tree species and soil texture on the carbon stock, macronutrient content, and physicochemical properties of regenerated postfire forest soils. Land Degrad. Dev. 2021, 32, 5227–5240. [Google Scholar] [CrossRef]
- Frouz, J. The effect of litter type and macrofauna community on litter decomposition and organic matter accumulation in post-mining sites. Biologia 2008, 63, 249–253. [Google Scholar] [CrossRef]
- Misebo, A.M.; Pietrzykowski, M.; Woś, B. Soil Carbon Sequestration in Novel Ecosystems at Post-Mine Sites—A New Insight into the Determination of Key Factors in the Restoration of Terrestrial Ecosystems. Forests 2022, 13, 63. [Google Scholar] [CrossRef]
- Aerts, R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 1997, 79, 439–449. [Google Scholar] [CrossRef]
- Parton, W.; Silver, W.L.; Burke, I.C.; Grassens, L.; Harmon, M.E.; Currie, W.S.; King, J.Y.; Adair, E.C.; Brandt, L.A.; Hart, S.C.; et al. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 2007, 315, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Bird, J.A.; Kleber, M.; Torn, M.S. 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Org. Geochem. 2008, 39, 465–477. [Google Scholar] [CrossRef]
- Baishya, R.; Barik, S.K. Estimation of tree biomass, carbon pool and net primary production of an old-growth Pinus kesiya Royle ex. Gordon forest in north-eastern India. Ann. For. Sci. 2011, 68, 727–736. [Google Scholar] [CrossRef] [Green Version]
- Koehler, B.; Tranvik, L.J. Reactivity continuum modeling of leaf, root, and wood decomposition across biomes. J. Geophys. Res. Biogeosciences 2015, 120, 1196–1214. [Google Scholar] [CrossRef] [Green Version]
- Waring, R.H.; Schlesinger, W.H. Forest ecosystems. In Analysis at Multiples Scales; Elsevier: Amsterdam, The Netherlands, 1985; p. 55. [Google Scholar]
- Chen, Y.; Ma, S.; Jiang, H.; Yangzom, D.; Cheng, G.; Lu, X. Decomposition time, chemical traits and climatic factors determine litter-mixing effects on decomposition in an alpine steppe ecosystem in Northern Tibet. Plant Soil 2019, 459, 23–35. [Google Scholar] [CrossRef]
- Moinet, G.Y.K.; Moinet, M.; Hunt, J.E.; Rumpel, C.; Chabbi, A.; Millard, P. Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Sci. Total. Environ. 2020, 704, 135460. [Google Scholar] [CrossRef] [PubMed]
- Wall, D.H.; Bradford, M.A.; John, M.G.S.; Behan-Pelletier, V.; Bignell, D.E.; Dangerfield, J.M.; Parton, W.J.; Rusek, J.; Voigt, W.; Wolters, V.; et al. Global decomposition experiment shows soil animal impacts on decomposition are climate dependent. Glob. Chang. Biol. 2008, 14, 2661–2677. [Google Scholar] [CrossRef] [Green Version]
- Prescott, C.E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 2010, 101, 133–149. [Google Scholar] [CrossRef]
- Röderstein, M.; Hertel, D.; Leuschner, C. Above- and below-ground litter production in three tropical montane forests in southern Ecuador. J. Trop. Ecol. 2005, 21, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Vogt, K.A.; Grier, C.C.; Vogt, D.J. Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Adv. Ecol. Res. 1986, 15, 303–377. [Google Scholar] [CrossRef]
- Gill, R.A.; Jackson, R.B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 2000, 147, 13–31. [Google Scholar] [CrossRef]
- Goebel, M.; Hobbie, S.E.; Bulaj, B.; Zadworny, M.; Archibald, D.D.; Oleksyn, J.; Reich, P.B.; Eissenstat, D.M. Decomposition of the finest root branching orders: Linking carbon and nutrient dynamics belowground to fine root function and structure. Ecol. Monogr. 2011, 81, 89–102. [Google Scholar] [CrossRef]
- Freschet, G.T.; Cornwell, W.K.; Wardle, D.A.; Elumeeva, T.G.; Liu, W.; Jackson, B.G.; Onipchenko, V.G.; Soudzilovskaia, N.A.; Tao, J.; Cornelissen, J.H. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J. Ecol. 2013, 101, 943–952. [Google Scholar] [CrossRef]
- Silver, W.L.; Miya, R.K. Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia 2001, 129, 407–419. [Google Scholar] [CrossRef]
- Wardle, D.A.; Bardgett, R.D.; Walker, L.R.; Bonner, K.I. Among- and within-species variation in litter decomposition in contrasting long-term chronosequences. Funct. Ecol. 2009, 23, 442–453. [Google Scholar] [CrossRef]
- Brunner, I.; Godbold, D.L. Tree roots in a changing world. J. For. Res. 2007, 12, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Harmon, M.E.; Sexton, J.; Fasth, B. Fine root decomposition and N dynamics in coniferous forests of the Pacific Northwest, USA. J. For. Res. 2002, 32, 320–331. [Google Scholar] [CrossRef]
- Berbeco, M.R.; Melillo, J.M.; Orians, C.M. Soil warming accelerates decomposition of fine woody debris. Plant Soil 2012, 356, 405–417. [Google Scholar] [CrossRef]
- Allison, S.D.; Treseder, K.K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob. Chang. Biol. 2008, 14, 2898–2909. [Google Scholar] [CrossRef] [Green Version]
- Francos, M.; Úbeda, X.; Pereira, P.; Alcaniz, M. Long-term impact of wild fire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). Sci. Total Environ. 2018, 615, 664–671. [Google Scholar] [CrossRef]
- Kong, J.J.; Yang, J.; Bai, E. Long-term effects of wild fire on available soil nutrient composition and stoichiometry in a Chinese boreal forest. Sci. Total Environ. 2018, 642, 1353–1361. [Google Scholar] [CrossRef]
- Simard, D.G.; Fyles, J.W.; Pare, D.; Nguyen, T. Impacts of clear cut harvesting and wild fire on soil nutrient status in the Quebec boreal forest. Can. J. Soil. Sci. 2001, 81, 229–237. [Google Scholar] [CrossRef] [Green Version]
- De Long, J.R.; Dorrepaal, E.; Kardol, P.; Nilsson, M.-C.; Teuber, L.M.; Wardle, D.A. Understory plant functional groups and litter species identity are stronger drivers of litter decomposition than warming along a boreal forest post fire successional gradient. Soil Biol. Biochem. 2016, 98, 159–170. [Google Scholar] [CrossRef]
- Lavoie, M.; Mack, M.C. Spatial heterogeneity of understory vegetation and soil in an Alaskan upland boreal forest fire chronosequence. Biogeochemistry 2012, 107, 227–239. [Google Scholar] [CrossRef]
- Longo, M.S.; Urcelay, C.; Nouhra, E. Long term effects of fire on ectomycorrhizas and soil properties in Nothofaguspumilio forests in Argentina. For. Ecol. Manag. 2011, 262, 348–354. [Google Scholar] [CrossRef]
- Brais, S.; David, P.; Ouimet, R. Impact of wildfire severity and salvage harvesting onthe nutrient balance of jack pine and black spruce boreal stands. For. Ecol. Manag. 2000, 137, 231–243. [Google Scholar] [CrossRef]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Turner, M.G.; Smithwick, E.A.; Metzger, K.L.; Tinker, D.B.; Romme, W.H. Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone eco-system. Proc. Natl. Acad. Sci. USA 2007, 104, 4782–4789. [Google Scholar] [CrossRef] [Green Version]
- Fox, D.M.; Darboux, F.; Carrega, P. Topographic controls on soil properties affectingpost-fire erosion and sediment redistribution in a mixed forested-agricultural Medi-terranean catchment. Geophys. Res. Abstr. 2006, 8, 3–4. [Google Scholar]
- Müller, K.; Mason, K.; Strozzi, A.G.; Simpson, R.; Komatsu, T.; Kawamoto, K.; Kawamoto, K.; Clothier, B. Run off and nutrient loss from a water-repellent soil. Geoderma 2018, 322, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.K.; Lal, R. Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma 2011, 161, 168–176. [Google Scholar] [CrossRef]
- Macdonald, S.E.; Landhausser, S.M.; Skousen, J.; Franklin, J.; Frouz, J.; Hall, S.; Jacobs, D.F.; Quideau, S. Forest restoration following surface mining disturbance: Challenges and solutions. New For. 2015, 46, 703–732. [Google Scholar] [CrossRef] [Green Version]
- Świątek, B.; Chodak, M.; Pietrzykowski, M. Estimation of Fine Root Biomass of Alders Growing on Technosols Using Two Different Methods. Commun. Soil Sci. Plant Anal. 2019, 50, 474–481. [Google Scholar] [CrossRef]
- Horodecki, P.; Jagodziński, A.M. Tree species effects on litter decomposition in pure stands on afforested post-mining sites. For. Ecol. Manag. 2017, 406, 23–35. [Google Scholar] [CrossRef]
- Świątek, B.; Pietrzykowski, M. Soil factors determining the fine-root biomass in soil regeneration after a post-fire and soil reconstruction in reclaimed post-mining sites under different tree species. Catena 2021, 204, 105449. [Google Scholar] [CrossRef]
- Wang, S.J.; Ruan, H.H.; Han, Y. Effects of microclimate, litter type, and mesh size on leaf litter decomposition along an elevation gradient in the Wuyi Mountains, China. Ecol. Res. 2010, 25, 1113–1120. [Google Scholar] [CrossRef]
- Slade, E.M.; Riutta, T. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl. Ecol. 2012, 13, 423–431. [Google Scholar] [CrossRef]
- Bokhorst, S.; Wardle, D.A. Microclimate within litter bags of different mesh size: Implications for the ‘arthropod effect’ on litter decomposition. Soil Biol. Biochem. 2013, 58, 147–152. [Google Scholar] [CrossRef]
- Mo, J.; Brown, S.; Xue, J.; Fang, Y.; Li, Z. Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China. Plant Soil 2006, 282, 135–151. [Google Scholar] [CrossRef]
- Chodak, M.; Pietrzykowski, M.; Niklińska, M. Development of microbial properties in a chronosequence of sandy mine soils. Appl. Soil Ecol. 2009, 41, 259–268. [Google Scholar] [CrossRef]
- Frouz, J.; Roubíčková, A.; Heděnec, P.; Tajovský, K. Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. Eur. J. Soil Biol. 2015, 68, 18–24. [Google Scholar] [CrossRef]
- Świątek, B.; Woś, B.; Chodak, M.; Maiti, S.K.; Józefowska, A.; Pietrzykowski, M. Fine root biomass and the associated C and nutrient pool under the alder (Alnus spp.) plantings on reclaimed technosols. Geoderma 2019, 337, 1021–1027. [Google Scholar] [CrossRef]
- Berg, B.; Johansson, M.-B.; Nilsson, A.; Gundersen, P.; Norell, L. Sequestration of carbon in the humus layer of Swedish forests—direct measurements. Can. J. For. Res. 2009, 39, 962–975. [Google Scholar] [CrossRef]
- Grandy, A.S.; Neff, J.C. Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci. Total Environ. 2008, 404, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Gutknecht, J.L.M.; Herman, D.J.; Keck, D.C.; Firestone, M.K.; Cheng, W. Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol. Biochem. 2014, 76, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Meier, I.C.; Pritchard, S.G.; Brzostek, E.R.; Mccormack, M.L.; Phillips, R.P. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2. New Phytol. 2015, 205, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, F.A.; Bader, N.E.; Johnson, D.W.; Cheng, W. Does accelerated soil organic matter decomposition in the presence of plants increase plant N availability? Soil Biol. Biochem. 2009, 41, 1080–1087. [Google Scholar] [CrossRef]
- Finzi, A.C.; Abramoff, R.Z.; Spiller, K.S.; Brzostek, E.R.; Darby, B.A.; Kramer, M.A.; Phillips, R.P. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Chang. Biol. 2015, 21, 2082–2094. [Google Scholar] [CrossRef]
- Moore, T.R.; Trofymow, J.A.; Prescott, C.E.; Titus, B.D. Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests. Plant Soil 2011, 339, 163–175. [Google Scholar] [CrossRef]
- Ahtiainen, M.; Huttunen, P. Long-term effects of forestry managements on water quality and loading in brooks. Boreal Environ. Res. 1999, 4, 101–114. [Google Scholar]
- Devi, A.S.; Yadava, P.S. Wood and leaf litter decomposition of Dipterocarpus tuberculatus Roxb. In a tropical deciduous forest of Manipur. North East India. Curr. Sci. 2007, 93, 243–246. [Google Scholar]
- Güsewell, S.; Verhoeven, J.T.A. Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant Soil 2006, 287, 131–143. [Google Scholar] [CrossRef] [Green Version]
PM | PF | CS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Birch | Larch | Pine | Birch | Larch | Pine | Birch | Larch | Pine | ||
0–10 cm | pH KCl | 3.89 ± 0.05 | 3.9 ± 0.01 | 3.89 ± 0.03 | 4.15 ± 0.07 | 4.28 ± 0.03 | 4.25 ± 0.04 | 3.94 ± 0.02 | 4.78 ± 0.16 | 3.52 ± 0 |
Sand (%) | 80.05 ± 2.53 | 67.53 ± 4.35 | 96.58 ± 0.45 | 93.7 ± 0.25 | 88.5 ± 2.05 | 83.98 ± 2.22 | 93.98 ± 0.27 | 90.8 ± 0.21 | 92.88 ± 0.14 | |
Silt (%) | 15.47 ± 1.69 | 24.6 ± 3.74 | 2.9 ± 0.38 | 5.42 ± 0.24 | 9.75 ± 1.7 | 13.15 ± 1.63 | 5.16 ± 0.23 | 8.05 ± 0.2 | 6.29 ± 0.12 | |
Clay (%) | 4.42 ± 0.82 | 7.9 ± 0.63 | 0.53 ± 0.06 | 0.85 ± 0.03 | 1.72 ± 0.33 | 2.86 ± 0.59 | 0.85 ± 0.05 | 1.18 ± 0.02 | 0.89 ± 0.04 | |
N (%) | 0.08 ± 0 | 0.06 ± 0 | 0.05 ± 0 | 0.09 ± 0 | 0.16 ± 0.02 | 0.12 ± 0 | 0.12 ± 0.02 | 0.11 ± 0.01 | 0.1 ± 0.01 | |
C (%) | 0.96 ± 0.07 | 0.47 ± 0.03 | 0.39 ± 0.07 | 0.9 ± 0.01 | 1.99 ± 0.38 | 1.33 ± 0.07 | 1.62 ± 0.37 | 1.5 ± 0.08 | 1.2 ± 0.09 | |
P (%) | 0.01 ± 0 | 0.01 ± 0 | 0.00 ± 0 | 0.01 ± 0 | 0.02 ± 0 | 0.01 ± 0 | 0.01 ± 0 | 0.00 ± 0 | 0.00 ± 0 | |
K (%) | 0.08 ± 0 | 0.10 ± 0 | 0.04 ± 0 | 0.03 ± 0 | 0.04 ± 0 | 0.04 ± 0 | 0.04 ± 0 | 0.03 ± 0 | 0.03 ± 0 | |
Mg (%) | 0.04 ± 0 | 0.05 ± 0 | 0.02 ± 0 | 0.01 ± 0 | 0.02 ± 0 | 0.02 ± 0 | 0.02 ± 0 | 0.04 ± 0 | 0.01 ± 0 | |
10–30 cm | pH KCl | 4.15 ± 0.06 | 4.15 ± 0.05 | 4.13 ± 0.03 | 4.5 ± 0.07 | 4.68 ± 0.07 | 4.63 ± 0.08 | 4.21 ± 0.05 | 4.94 ± 0.24 | 3.81 ± 0.02 |
Sand (%) | 68.99 ± 3.31 | 71.34 ± 5.36 | 94.03 ± 0.26 | 95.73 ± 0.18 | 96.78 ± 0.19 | 93.3 ± 0.45 | 96.06 ± 0.13 | 89.87 ± 1.32 | 94.8 ± 0.2 | |
Silt (%) | 6.65 ± 0.72 | 6.06 ± 1.04 | 1.15 ± 0.05 | 0.77 ± 0.04 | 0.56 ± 0.05 | 0.98 ± 0.06 | 0.65 ± 0.01 | 2.17 ± 0.35 | 0.88 ± 0.04 | |
Clay (%) | 24.36 ± 2.6 | 22.58 ± 4.36 | 4.76 ± 0.2 | 3.53 ± 0.16 | 2.65 ± 0.14 | 5.68 ± 0.39 | 3.27 ± 0.11 | 8.03 ± 0.96 | 4.27 ± 0.14 | |
N (%) | 0.04 ± 0 | 0.04 ± 0 | 0.04 ± 0 | 0.05 ± 0 | 0.04 ± 0 | 0.06 ± 0 | 0.06 ± 0.01 | 0.07 ± 0.01 | 0.05 ± 0 | |
C (%) | 0.38 ± 0.03 | 0.35 ± 0.01 | 0.21 ± 0.01 | 0.49 ± 0.02 | 0.41 ± 0.07 | 0.67 ± 0.05 | 0.53 ± 0.07 | 1.02 ± 0.14 | 0.55 ± 0.01 | |
P (%) | 0.00 ± 0 | 0.00 ± 0 | 0.00 ± 0 | 0.00 ± 0 | 0.00 ± 0 | 0.00 ± 0 | 0.01 ± 0 | 0.01 ± 0 | 0.00 ± 0 | |
K (%) | 0.12 ± 0.03 | 0.15 ± 0.06 | 0.05 ± 0 | 0.03 ± 0 | 0.03 ± 0 | 0.03 ± 0 | 0.03 ± 0 | 0.03 ± 0 | 0.03 ± 0 | |
Mg (%) | 0.05 ± 0.01 | 0.06 ± 0.02 | 0.02 ± 0 | 0.01 ± 0 | 0.01 ± 0 | 0.01 ± 0 | 0.01 ± 0 | 0.06 ± 0.01 | 0.01 ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świątek, B.; Pietrzykowski, M. Impact of Leaf Litter and Fine Roots in the Pool of Carbon, Nitrogen and Phosphorus Accumulated in Soil in Various Scenarios of Regeneration and Reconstruction of Forest Ecosystems. Forests 2022, 13, 1207. https://doi.org/10.3390/f13081207
Świątek B, Pietrzykowski M. Impact of Leaf Litter and Fine Roots in the Pool of Carbon, Nitrogen and Phosphorus Accumulated in Soil in Various Scenarios of Regeneration and Reconstruction of Forest Ecosystems. Forests. 2022; 13(8):1207. https://doi.org/10.3390/f13081207
Chicago/Turabian StyleŚwiątek, Bartłomiej, and Marcin Pietrzykowski. 2022. "Impact of Leaf Litter and Fine Roots in the Pool of Carbon, Nitrogen and Phosphorus Accumulated in Soil in Various Scenarios of Regeneration and Reconstruction of Forest Ecosystems" Forests 13, no. 8: 1207. https://doi.org/10.3390/f13081207
APA StyleŚwiątek, B., & Pietrzykowski, M. (2022). Impact of Leaf Litter and Fine Roots in the Pool of Carbon, Nitrogen and Phosphorus Accumulated in Soil in Various Scenarios of Regeneration and Reconstruction of Forest Ecosystems. Forests, 13(8), 1207. https://doi.org/10.3390/f13081207