Driving Forces of Forest Expansion Dynamics across the Iberian Peninsula (1987–2017): A Spatio-Temporal Transect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.2.1. Land Cover Map Production
2.2.2. New Forests’ Occurrence Extraction, Sampling on Each BR, and Filtering
2.2.3. Land Cover Change Modeling
Explanatory Variables
Collinearity Analysis
Data Analysis: Boosted Regression Trees
Model Fitting and Parametrization
Model Inference
3. Results
3.1. New Forests Occurrence over the Last Thirty Years
3.2. Model Validation
3.3. New Forests’ Main Drivers
4. Discussion
4.1. Land Cover Change Locations Extraction and Sampling Strategies in the Methodological Framework
4.2. Driving Forces Modeling
4.2.1. Drivers of Forestation from Croplands
4.2.2. Drivers of Forestation from Grasslands
4.2.3. Drivers of Forestation from Shrublands
4.3. Answers to the Hypotheses
4.4. Future Research Lines
5. Conclusions
- Driving forces involved in new BDF. (i) From crop categories: distance to the hydrographic network, distance to forests, distance to provincial capitals, precipitation, and distance to urban settlements. Unexpectedly, remoteness through the distance to roads little explained crop abandonment. (ii) From grasslands: distance to forests, temperature, solar radiation, precipitation, and distance to provincial capitals. The proximity to forests was the main driver in humid mountainous regions. (iii) From shrublands: precipitation, temperature, distance to forests, solar radiation, and distance to provincial capitals. Topoclimatic (water availability) drivers were the main ones in humid mountainous regions.
- Driving forces involved in new BEF. (i) From crop categories: distance to forests, temperature, soil erosion, precipitation, and slope. Remoteness was hardly relevant, and socioeconomic drivers (population density, workers in building/service sectors) played a secondary role in the Supramediterranean and Southern Mesomediterranean BRs. (ii) From grasslands: precipitation, distance to forests, distance to provincial capitals, temperature, and solar radiation. Lower humidity conditions at lower altitudes on steep hillsides favored the transition. (iii) From shrublands: distance to forests, precipitation, solar radiation, temperature, and distance to provincial capitals. The proximity to forests showed a significant forest encroachment and expansion process in the mountainous regions.
- Driving forces involved in new NEF. (i) From crop categories: distance to provincial capitals, the number of holdings, distance to forests, distance to main roads, and precipitation. Remoteness and socioeconomic drivers (number of holdings, livestock units and the utilized agricultural area) played a secondary role in the Southern Mesomediterranean region, and an unexpected positive trend was related to livestock units. (ii) From grasslands: distance to forests, precipitation, slope, distance to provincial capitals, and temperature. The proximity to forests showed a densification and expansion in mountainous regions, associated with lower humidity requirements and slope steepness. (iii) From shrublands: distance to forests, precipitation, solar radiation, slope, and distance to provincial capitals. In terms of climatic conditions, forest densification and expansion occurred from the humid northern conditions (Pinus sylvestris, P. nigra) to the more xeric southern conditions (P. halepensis), with the latter being unexpectedly favored by lower precipitation rates.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020; ISBN 978-92-5-132974-0. [Google Scholar]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Stehman, S.V.; Pittman, K.; Turubanova, S. Gross forest cover loss in temperate forests: Biome-wide monitoring results using MODIS and Landsat data. J. Appl. Remote Sens. 2009, 3, 1–23. [Google Scholar] [CrossRef]
- Vidal-Macua, J.J.; Ninyerola, M.; Zabala, A.; Domingo-Marimon, C.; Pons, X. Factors affecting forest dynamics in the Iberian Peninsula from 1987 to 2012. The role of topography and drought. For. Ecol. Manag. 2017, 406, 290–306. [Google Scholar] [CrossRef]
- Jones, N.; de Graaff, J.; Rodrigo, I.; Duarte, F. Historical review of land use changes in Portugal (before and after EU integration in 1986) and their implications for land degradation and conservation, with a focus on Centro and Alentejo regions. Appl. Geogr. 2011, 31, 1036–1048. [Google Scholar] [CrossRef]
- Weissteiner, C.J.; Boschetti, M.; Böttcher, K.; Carrara, P.; Bordogna, G.; Brivio, P.A. Spatial explicit assessment of rural land abandonment in the Mediterranean area. Glob. Planet. Chang. 2011, 79, 20–36. [Google Scholar] [CrossRef]
- Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ostafin, K.; Ostapowicz, K.; Wężyk, P.; Price, B. Understanding farmland abandonment in the Polish Carpathians. Appl. Geogr. 2017, 88, 62–72. [Google Scholar] [CrossRef]
- Macdonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Regos, A.; Ninyerola, M.; Moré, G.; Pons, X. Linking land cover dynamics with driving forces in mountain landscape of the Northwestern Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 1–14. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space–time process and drivers of land abandonment in Europe. Catena 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal-Romero, E.; Khorchani, M.; Romero-Díaz, A. Una revisión sobre las tierras abandonadas en España: De los paisajes locales a las estrategias globales de gestion. Cuad. Investig. Geográfica 2021, 47, 477–521. [Google Scholar] [CrossRef]
- Serra, P.; Vera, A.; Tulla, A.F.; Salvati, L. Beyond urban–rural dichotomy: Exploring socioeconomic and land-use processes of change in Spain (1991–2011). Appl. Geogr. 2014, 55, 71–81. [Google Scholar] [CrossRef]
- Ninyerola, M.; Pons, X.; Roure, J.M. A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int. J. Clim. 2000, 20, 1823–1841. [Google Scholar] [CrossRef]
- Hill, J.; Stellmes, M.; Udelhoven, T.; Röder, A.; Sommer, S. Mediterranean desertification and land degradation: Mapping related land use change syndromes based on satellite observations. Glob. Planet. Chang. 2008, 64, 146–157. [Google Scholar] [CrossRef]
- Del Barrio, G.; Puigdefábregas, J.; Sanjuán, M.E.; Stellmes, M.; Ruiz, A. Assessment and monitoring of land condition in the Iberian Peninsula, 1989–2000. Remote Sens. Environ. 2010, 114, 1817–1832. [Google Scholar] [CrossRef]
- Vilà-Cabrera, A.; Espelta, J.M.; Vayreda, J.; Pino, J. “New Forests” from the Twentieth Century are a Relevant Contribution for C Storage in the Iberian Peninsula. Ecosystems 2017, 20, 130–143. [Google Scholar] [CrossRef]
- Serra, P.; Pons, X.; Saurí, D. Land-cover and land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors. Appl. Geogr. 2008, 28, 189–209. [Google Scholar] [CrossRef]
- Bielsa, I.; Pons, X.; Bunce, B. Agricultural Abandonment in the North Eastern Iberian Peninsula: The Use of Basic Landscape Metrics to Support Planning. J. Environ. Plan. Manag. 2005, 48, 85–102. [Google Scholar] [CrossRef]
- Vidal-Macua, J.J.; Ninyerola, M.; Zabala, A.; Domingo-Marimon, C.; Gonzalez-Guerrero, O.; Pons, X. Environmental and socioeconomic factors of abandonment of rainfed and irrigated crops in northeast Spain. Appl. Geogr. 2018, 90, 155–174. [Google Scholar] [CrossRef]
- Gelabert, P.J.; Rodrigues, M.; de la Riva, J.; Ameztegui, A.; Sebastià, M.; Vega-Garcia, C. LandTrendr smoothed spectral profiles enhance woody encroachment monitoring. Remote Sens. Environ. 2021, 262, 112521. [Google Scholar] [CrossRef]
- Palmero-Iniesta, M.; Espelta, J.M.; Padial-Iglesias, M.; Gonzàlez-Guerrero, Ò.; Pesquer, L.; Domingo-Marimon, C.; Ninyerola, M.; Pons, X.; Pino, J. The Role of Recent (1985–2014) Patterns of Land Abandonment and Environmental Factors in the Establishment and Growth of Secondary Forests in the Iberian Peninsula. Land 2021, 10, 817. [Google Scholar] [CrossRef]
- Mantovani, A.C.D.M.; Setzer, A.W. Deforestation detection in the Amazon with an AVHRR-based system. Int. J. Remote Sens. 1997, 18, 273–286. [Google Scholar] [CrossRef]
- Gonzalez-Hidalgo, J.C.; Peña-Angulo, D.; Brunetti, M.; Cortesi, N. Recent trend in temperature evolution in Spanish mainland (1951–2010): From warming to hiatus. Int. J. Clim. 2016, 36, 2405–2416. [Google Scholar] [CrossRef]
- Pérez, F.F.; Boscolo, R. (Eds.) Climate in Spain: Past, Present and Future; Regional Climate Change Assesment Report; CLIVAR, Ministerio de Medio Ambiente y Medio Rural y Marino, Ministerio de Ciencia e Innovación (MICINN): Madrid, 2010; 83p, ISBN 978-84-614-8115-6. [Google Scholar]
- del Río, S.; Herrero, L.; Fraile, R.; Penas, A. Spatial distribution of recent rainfall trends in Spain (1961–2006). Int. J. Clim. 2011, 31, 656–667. [Google Scholar] [CrossRef]
- Acero, F.J.; Gallego, M.C.; Garcia, J.A. Multi-day rainfall trends over the Iberian Peninsula. Theor. Appl. Climatol. 2012, 108, 411–423. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Rodríguez-Camino, E.; Dominguez-Castro, F.; El Kenawy, A.; Azorín-Molina, C. An updated review on recent trends in observational surface atmospheric variables and their extremes over Spain. Cuad. Investig. Geográfica 2017, 43, 209–232. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Lorenzo, A.; Calbó, J.; Wild, M. Global and diffuse solar radiation in Spain: Building a homogeneous dataset and assessing their trends. Glob. Planet. Chang. 2013, 100, 343–352. [Google Scholar] [CrossRef]
- Gerard, F.; Petit, S.; Smith, G.; Thomson, A.; Brown, N.; Manchester, S.; Wadsworth, R.; Bugár, G.; Halada, L.; Bezák, P.; et al. Land cover change in Europe between 1950 and 2000 determined employing aerial photography. Prog. Phys. Geogr. Earth Environ. 2010, 34, 183–205. [Google Scholar] [CrossRef] [Green Version]
- Pazúr, R.; Bolliger, J. Land changes in Slovakia: Past processes and future directions. Appl. Geogr. 2017, 85, 163–175. [Google Scholar] [CrossRef]
- Hellwig, N.; Walz, A.; Markovic, D. Climatic and socioeconomic effects on land cover changes across Europe: Does protected area designation matter? PLoS ONE 2019, 14, e0219374. [Google Scholar] [CrossRef] [Green Version]
- Stellmes, M.; Röder, A.; Udelhoven, T.; Hill, J. Mapping syndromes of land change in Spain with remote sensing time series, demographic and climatic data. Land Use Policy 2013, 30, 685–702. [Google Scholar] [CrossRef]
- Müller, D.; Leitão, P.J.; Sikor, T. Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agric. Syst. 2013, 117, 66–77. [Google Scholar] [CrossRef]
- de Espindola, G.M.; de Aguiar, A.P.D.; Pebesma, E.; Camara, G.; Fonseca, L. Agricultural land use dynamics in the Brazilian Amazon based on remote sensing and census data. Appl. Geogr. 2012, 32, 240–252. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67–83. [Google Scholar] [CrossRef]
- Sun, B.; Robinson, D.T. Comparisons of Statistical Approaches for Modelling Land-Use Change. Land 2018, 7, 144. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, J.; Felicísimo, Á.M. Comparison of statistical methods commonly used in predictive modelling. J. Veg. Sci. 2004, 15, 285–292. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Müller, D.; Dubinin, M.; Baumann, M.; Radeloff, V.C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 2013, 30, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Díaz, G.I.; Nahuelhual, L.; Echeverría, C.; Marín, S. Drivers of land abandonment in Southern Chile and implications for landscape planning. Landsc. Urban Plan. 2011, 99, 207–217. [Google Scholar] [CrossRef]
- Kosmas, C.; Kairis, O.; Karavitis, C.; Acikalin, S.; Alcalá, M.; Alfama, P.; Atlhopheng, J.; Barrera, J.; Belgacem, A.; Solé-Benet, A.; et al. An exploratory analysis of land abandonment drivers in areas prone to desertification. Catena 2015, 128, 252–261. [Google Scholar] [CrossRef]
- Müller, D.; Munroe, D.K. Changing Rural Landscapes in Albania: Cropland Abandonment and Forest Clearing in the Postsocialist Transition. Ann. Assoc. Am. Geogr. 2008, 98, 855–876. [Google Scholar] [CrossRef]
- Yee, T.W.; Mitchell, N.D. Generalized additive models in plant ecology. J. Veg. Sci. 1991, 2, 587–602. [Google Scholar] [CrossRef]
- Pedersen, E.J.; Miller, D.L.; Simpson, G.L.; Ross, N. Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ 2019, 7, e6876. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, A.Y.M.; Masrur, A.; Gani Adnan, M.S.; Al Baky, M.A.; Hassan, Q.K.; Dewan, A. Spatio-temporal Patterns of Land Use/Land Cover Change in the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017. Remote Sens. 2019, 11, 790. [Google Scholar] [CrossRef] [Green Version]
- Colin, B.; Clifford, S.; Wu, P.; Rathmanner, S.; Mengersen, K. Using Boosted Regression Trees and Remotely Sensed Data to Drive Decision-Making. Open J. Stat. 2017, 07, 859–875. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Gu, H.; Wang, J.; Ma, L.; Shang, Z.; Zhang, Q. Insights into the BRT (Boosted Regression Trees) Method in the Study of the Climate-Growth Relationship of Masson Pine in Subtropical China. Forests 2019, 10, 228. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Nogueira, D.; Corbelle-Rico, E. Land Use Changes in Iberian Peninsula 1990–2012. Land 2018, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Rivas Martínez, S. Pisos bioclimáticos de España. Lazaroa 1983, 5, 33–43. [Google Scholar]
- U.S. Geological Survey. EarthExplorer. Available online: https://earthexplorer.usgs.gov (accessed on 11 May 2018).
- Pons, X. MiraMon. Geographic Information System and Remote Sensing Software. Centre de Recerca Ecològica i Aplicacions Forestals, CREAF. Bellaterra. 2004. Available online: https://www.miramon.cat/Index_usa.htm (accessed on 12 January 2022).
- Padial-Iglesias, M.; Serra, P.; Ninyerola, M.; Pons, X. A Framework of Filtering Rules over Ground Truth Samples to Achieve Higher Accuracy in Land Cover Maps. Remote Sens. 2021, 13, 2662. [Google Scholar] [CrossRef]
- Vidal-Macua, J.J.; Zabala, A.; Ninyerola, M.; Pons, X. Developing spatially and thematically detailed backdated maps for land cover studies. Int. J. Digit. Earth 2017, 10, 175–206. [Google Scholar] [CrossRef] [Green Version]
- González-Guerrero, O.; Pons, X. The 2017 Land Use/Land Cover Map of Catalonia based on Sentinel-2 images and auxiliary data. Revista Teledetección 2020, 55, 81–92. [Google Scholar] [CrossRef]
- Álvarez Martínez, J.-M.; Suárez-Seoane, S.; De Luis Calabuig, E. Modelling the risk of land cover change from environmental and socio-economic drivers in heterogeneous and changing landscapes: The role of uncertainty. Landsc. Urban Plan. 2011, 101, 108–119. [Google Scholar] [CrossRef]
- Álvarez-Martínez, J.M.; Stoorvogel, J.J.; Suárez-Seoane, S.; de Luis Calabuig, E. Uncertainty analysis as a tool for refining land dynamics modelling on changing landscapes: A case study in a Spanish Natural Park. Landsc. Ecol. 2010, 25, 1385–1404. [Google Scholar] [CrossRef]
- Ninyerola, M.; Pons, X.; Roure, J.M. Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System. Theor. Appl. Climatol. 2007, 89, 195–209. [Google Scholar] [CrossRef] [Green Version]
- Stokland, J.N.; Halvorsen, R.; Støa, B. Species distribution modelling—Effect of design and sample size of pseudo-absence observations. Ecol. Model. 2011, 222, 1800–1809. [Google Scholar] [CrossRef]
- Moudrý, V.; Šímová, P. Influence of positional accuracy, sample size and scale on modelling species distributions: A review. Int. J. Geogr. Inf. Sci. 2012, 26, 2083–2095. [Google Scholar] [CrossRef]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A.; NCEAS Predicting Species Distributions Working Group. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Stockwell, D.R.; Peterson, A.T. Effects of sample size on accuracy of species distribution models. Ecol. Model. 2002, 148, 1–13. [Google Scholar] [CrossRef]
- Pazúr, R.; Lieskovský, J.; Bürgi, M.; Müller, D.; Lieskovský, T.; Zhang, Z.; Prischchepov, A.V. Abandonment and Recultivation of Agricultural Lands in Slovakia—Patterns and Determinants from the Past to the Future. Land 2020, 9, 316. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Borda-Niño, M.; Meli, P.; Brancalion, P.H.S. Drivers of tropical forest cover increase: A systematic review. Land Degrad. Dev. 2019, 31, 1366–1379. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; Lindeskog, M.; Smith, B.; Poulter, B.; Arneth, A.; Haverd, V.; Calle, L. Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 4382–4387. [Google Scholar] [CrossRef] [Green Version]
- Kondo, M.; Ichii, K.; Patra, P.K.; Poulter, B.; Calle, L.; Koven, C.; Pugh, T.A.M.; Kato, E.; Harper, A.; Zaehle, S.; et al. Plant Regrowth as a Driver of Recent Enhancement of Terrestrial CO2 Uptake. Geophys. Res. Lett. 2018, 45, 4820–4830. [Google Scholar] [CrossRef] [Green Version]
- Rubiano, K.; Clerici, N.; Norden, N.; Etter, A. Secondary Forest and Shrubland Dynamics in a Highly Transformed Landscape in the Northern Andes of Colombia (1985–2015). Forests 2017, 8, 216. [Google Scholar] [CrossRef] [Green Version]
- Borda-Niño, M.; Ceccon, E.; Meli, P.; Hernández-Muciño, D.; Mas, J.-F.; Brancalion, P.H. Integrating farmers’ decisions on the assessment of forest regeneration drivers in a rural landscape of Southeastern Brazil. Perspect. Ecol. Conserv. 2021, 19, 338–344. [Google Scholar] [CrossRef]
- Aerial Orthophotography National Plan (PNOA). Available online: https://pnoa.ign.es/el-proyecto-pnoa-lidar (accessed on 1 July 2021).
- Florinsky, I.; Kuryakova, G. Influence of topography on some vegetation cover properties. Catena 1996, 27, 123–141. [Google Scholar] [CrossRef]
- Pons, X.; Ninyerola, M. Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data. Int. J. Clim. 2008, 28, 1821–1834. [Google Scholar] [CrossRef]
- Ninyerola, M.; Pons, X.; Roure, J.M. Atlas Climático Digital de la Península Ibérica. Metodología y Aplicaciones en Bioclimatología y Geobotánica; CREAF, Centre de Recerca Ecológica i Aplicacions Forestals: Bellaterra, Spain, 2005; ISBN 932860-8-7. [Google Scholar]
- Domingo-Marimon, C. Contributions to the knowledge of the multitemporal spatial patterns of the Iberian Peninsula droughts from a Geographic Information Science perspective. Rev. Teledetección 2016, 171. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Pasho, E.; Camarero, J.J.; de Luis, M.; Vicente-Serrano, S.M. Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agric. For. Meteorol. 2011, 151, 1800–1811. [Google Scholar] [CrossRef]
- Inventario Nacional de Erosion de Suelos (INES). Available online: https://www.miteco.gob.es/en/biodiversidad/temas/inventarios-nacionales/inventario-nacional-erosion-suelos/default.aspx (accessed on 1 July 2021).
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); US Department of Agriculture: Washington, DC, USA, 1997; ISBN 0160489385.
- Lasanta, T.; Sánchez-Navarrete, P.; Medrano-Moreno, L.M.; Khorchani, M.; Nadal-Romero, E. Soil quality and soil organic carbon storage in abandoned agricultural lands: Effects of revegetation processes in a Mediterranean mid-mountain area. Land Degrad. Dev. 2020, 31, 2830–2845. [Google Scholar] [CrossRef]
- Benayas, J.M.R.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J. Changes in soil microbial community structure following the abandonment of agricultural terraces in mountainous areas of Eastern Spain. Appl. Soil Ecol. 2009, 42, 315–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Delgado, R.; Lloret, F.; Pons, X. Influence of fire severity on plant regeneration by means of remote sensing imagery. Int. J. Remote Sens. 2003, 24, 1751–1763. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Heinrich, V.H.A.; Dalagnol, R.; Cassol, H.L.G.; Rosan, T.M.; de Almeida, C.T.; Silva Junior, C.H.L.; Campanharo, W.A.; House, J.I.; Sitch, S.; Hales, T.C.; et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Hosseini, F.S.; Malekian, A.; Choubin, B.; Rahmati, O.; Cipullo, S.; Coulon, F.; Pradhan, B. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci. Total Environ. 2018, 644, 954–962. [Google Scholar] [CrossRef] [Green Version]
- Maskooni, E.K.; Naghibi, S.A.; Hashemi, H.; Berndtsson, R. Application of Advanced Machine Learning Algorithms to Assess Groundwater Potential Using Remote Sensing-Derived Data. Remote Sens. 2020, 12, 1–25. [Google Scholar] [CrossRef]
- Dedman, S.; Officer, R.; Clarke, M.; Reid, D.G.; Brophy, D. Gbm.auto: A software tool to simplify spatial modelling and Marine Protected Area planning. PLoS ONE 2017, 12, e0188955. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Greenwell, B.; Boehmke, B.; Cunningham, J.; GBM Developers. Generalized Boosted Regression Models. 2020. Available online: https://CRAN.R-project.org/package=gbm (accessed on 15 February 2022).
- Kuhn, M. Caret: Classification and Regression Training. 2021. Available online: https://CRAN.R-project.org/package=caret (accessed on 15 January 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 15 January 2022).
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepe, M.S. Receiver Operating Characteristic Methodology. J. Am. Stat. Assoc. 2000, 95, 308–311. [Google Scholar] [CrossRef]
- Pontius, R.G.; Parmentier, B. Recommendations for using the relative operating characteristic (ROC). Landsc. Ecol. 2014, 29, 367–382. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 2012, 21, 498–507. [Google Scholar] [CrossRef]
- Friedman, J.H.; Meulman, J.J. Multiple additive regression trees with application in epidemiology. Stat. Med. 2003, 22, 1365–1381. [Google Scholar] [CrossRef] [PubMed]
- Moua, Y.; Roux, E.; Seyler, F.; Briolant, S. Correcting the effect of sampling bias in species distribution modeling—A new method in the case of a low number of presence data. Ecol. Inform. 2020, 57, 101086. [Google Scholar] [CrossRef]
- Anderson, R.P.; Gonzalez, I., Jr. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Model. 2011, 222, 2796–2811. [Google Scholar] [CrossRef]
- Openshaw, S. The Modifiable Areal Unit Problem, 38th ed.; Geo Book: Norwich, UK, 1984; ISBN 0306-6142. [Google Scholar]
- Tuson, M.; Yap, M.; Kok, M.R.; Murray, K.; Turlach, B.; Whyatt, D. Incorporating geography into a new generalized theoretical and statistical framework addressing the modifiable areal unit problem. Int. J. Health Geogr. 2019, 18, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Jelinski, D.E.; Wu, J. The modifiable areal unit problem and implications for landscape ecology. Landsc. Ecol. 1996, 11, 129–140. [Google Scholar] [CrossRef]
- Hatna, E.; Bakker, M.M. Abandonment and Expansion of Arable Land in Europe. Ecosystems 2011, 14, 720–731. [Google Scholar] [CrossRef] [Green Version]
- Zaragozí, B.; Rabasa, A.; Rodríguez-Sala, J.J.; Navarro, J.T.; Belda, A.; Ramón, A. Modelling farmland abandonment: A study combining GIS and data mining techniques. Agric. Ecosyst. Environ. 2012, 155, 124–132. [Google Scholar] [CrossRef]
- Palmero-Iniesta, M.; Pino, J.; Pesquer, L.; Espelta, J.M. Recent forest area increase in Europe: Expanding and regenerating forests differ in their regional patterns, drivers and productivity trends. Eur. J. For. Res. 2021, 140, 793–805. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal-Romero, E.; Arnáez, J. Managing abandoned farmland to control the impact of re-vegetation on the environment. The state of the art in Europe. Environ. Sci. Policy 2015, 52, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, J.; de Groot, H.L.F.; Rietveld, P.; Verburg, P.H. Manifestations and underlying drivers of agricultural land use change in Europe. Landsc. Urban Plan. 2015, 133, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Gellrich, M.; Zimmermann, N.E. Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: A spatial statistical modelling approach. Landsc. Urban Plan. 2007, 79, 65–76. [Google Scholar] [CrossRef]
- Tasser, E.; Walde, J.; Tappeiner, U.; Teutsch, A.; Noggler, W. Land-use changes and natural reforestation in the Eastern Central Alps. Agric. Ecosyst. Environ. 2007, 118, 115–129. [Google Scholar] [CrossRef]
- Lasanta, T.; Errea, M.P.; Nadal-Romero, E. Traditional Agrarian Landscape in the Mediterranean Mountains. A Regional and Local Factor Analysis in the Central Spanish Pyrenees. Land Degrad. Dev. 2017, 28, 1626–1640. [Google Scholar] [CrossRef]
- Douglas, T.; Critchley, D.; Park, G. The Deintensification of Terraced Agricultural Land Near Trevelez, Sierra Nevada, Spain. Glob. Ecol. Biogeogr. Lett. 1996, 5, 258. [Google Scholar] [CrossRef]
- Lieskovský, J.; Bezák, P.; Špulerová, J.; Lieskovský, T.; Koleda, P.; Dobrovodská, M.; Bürgi, M.; Gimmi, U. The abandonment of traditional agricultural landscape in Slovakia–Analysis of extent and driving forces. J. Rural Stud. 2015, 37, 75–84. [Google Scholar] [CrossRef]
- Gellrich, M.; Baur, P.; Koch, B.; Zimmermann, N.E. Agricultural land abandonment and natural forest re-growth in the Swiss mountains: A spatially explicit economic analysis. Agric. Ecosyst. Environ. 2007, 118, 93–108. [Google Scholar] [CrossRef]
- Schulz, J.J.; Cayuela, L.; Rey-Benayas, J.M.; Schröder, B. Factors influencing vegetation cover change in Mediterranean Central Chile (1975-2008). Appl. Veg. Sci. 2011, 14, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Abadie, J.; Dupouey, J.-L.; Avon, C.; Rochel, X.; Tatoni, T.; Bergès, L. Forest recovery since 1860 in a Mediterranean region: Drivers and implications for land use and land cover spatial distribution. Landsc. Ecol. 2017, 33, 289–305. [Google Scholar] [CrossRef]
- Propopulus. Available online: https://propopulus.eu/en (accessed on 1 July 2021).
- De Rezende, C.L.; Uezu, A.; Scarano, F.R.; Araujo, D.S.D. Atlantic Forest spontaneous regeneration at landscape scale. Biodivers. Conserv. 2015, 24, 2255–2272. [Google Scholar] [CrossRef]
- Peña-Angulo, D.; Khorchani, M.; Errea, P.; Lasanta, T.; Martínez-Arnáiz, M.; Nadal-Romero, E. Factors explaining the diversity of land cover in abandoned fields in a Mediterranean mountain area. Catena 2019, 181, 104064. [Google Scholar] [CrossRef]
- Alonso-Sarría, F.; Martínez-Hernández, C.; Romero-Diaz, A.; Cánovas-García, F.; Gomariz-Castillo, F. Main Environmental Features Leading to Recent Land Abandonment in Murcia Region (Southeast Spain). Land Degrad. Dev. 2016, 27, 654–670. [Google Scholar] [CrossRef]
- Pazúr, R.; Lieskovský, J.; Feranec, J.; Oťaheľ, J. Spatial determinants of abandonment of large-scale arable lands and managed grasslands in Slovakia during the periods of post-socialist transition and European Union accession. Appl. Geogr. 2014, 54, 118–128. [Google Scholar] [CrossRef]
- Zgłobicki, W.; Karczmarczuk, K.; Baran-Zgłobicka, B. Intensity and Driving Forces of Land Abandonment in Eastern Poland. Appl. Sci. 2020, 10, 3500. [Google Scholar] [CrossRef]
- Nash, M.; Chaloud, D.; Kepner, W.; Sarri, S. Regional Assessment of Landscape and Land Use Change in the Mediterranean Region: Morocco Case Study (1981–2003). In Environmental Change and Human Security; Springer Science + Business Media B.V.: Berlin/Heidelberg, Germany, 2008; pp. 143–165. ISBN 978-1-4020-8549-9. [Google Scholar]
- Zgłobicki, W.; Gawrysiak, L.; Baran-Zgłobicka, B.; Telecka, M. Long-term forest cover changes, within an agricultural region, in relation to environmental variables, Lubelskie province, Eastern Poland. Environ. Earth Sci. 2016, 75, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Poyatos, R.; Latron, J.; Llorens, P. Land Use and Land Cover Change After Agricultural Abandonment. Mt. Res. Dev. 2003, 23, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Lieskovský, J.; Kenderessy, P.; Špulerová, J.; Lieskovský, T.; Koleda, P.; Kienast, F.; Gimmi, U. Factors affecting the persistence of traditional agricultural landscapes in Slovakia during the collectivization of agriculture. Landsc. Ecol. 2014, 29, 867–877. [Google Scholar] [CrossRef] [Green Version]
- Kosmas, C.; Danalatos, N.; Cammeraat, L.H.; Chabart, M.; Diamantopoulos, J.; Farand, R.; Gutierrez, L.; Jacob, A.; Marques, H.; Martinez-Fernandez, J.; et al. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 1997, 29, 45–59. [Google Scholar] [CrossRef]
- Thornes, J.B.; Wainwright, J. Environmental Issues in the Mediterranean. Processes and Perspectives from the Past and Present; Routledge: London, UK, 2004; ISBN 9781134729869. [Google Scholar]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Kok, K.; Verburg, P.H.; Cammeraat, L.H. Identification of vulnerable areas for gully erosion under different scenarios of land abandonment in Southeast Spain. Catena 2007, 71, 110–121. [Google Scholar] [CrossRef]
- Bakker, M.M.; Govers, G.; Kosmas, C.; Vanacker, V.; van Oost, K.; Rounsevell, M. Soil erosion as a driver of land-use change. Agric. Ecosyst. Environ. 2005, 105, 467–481. [Google Scholar] [CrossRef]
- Bakker, M.M.; Govers, G.; van Doorn, A.; Quetier, F.; Chouvardas, D.; Rounsevell, M. The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology 2008, 98, 213–226. [Google Scholar] [CrossRef]
- Melendez-Pastor, I.; Hernández, E.I.; Navarro-Pedreño, J.; Gómez, I. Socioeconomic factors influencing land cover changes in rural areas: The case of the Sierra de Albarracín (Spain). Appl. Geogr. 2014, 52, 34–45. [Google Scholar] [CrossRef]
- Plieninger, T.; Draux, H.; Fagerholm, N.; Bieling, C.; Bürgi, M.; Kizos, T.; Kuemmerle, T.; Primdahl, J.; Verburg, P.H. The driving forces of landscape change in Europe: A systematic review of the evidence. Land Use Policy 2016, 57, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Doblas-Miranda, E.; Alonso, R.; Arnan, X.; Bermejo, V.; Brotons, L.; de las Heras, J.; Estiarte, M.; Hódar, J.A.; Llorens, P.; Lloret, F.; et al. A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: Beyond drought effects. Glob. Planet. Chang. 2017, 148, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Meneses, B.M.; Reis, E.; Pereira, S.; Vale, M.J.; Reis, R. Understanding Driving Forces and Implications Associated with the Land Use and Land Cover Changes in Portugal. Sustainability 2017, 9, 351. [Google Scholar] [CrossRef] [Green Version]
- Mottet, A.; Ladet, S.; Coqué, N.; Gibon, A. Agricultural land-use change and its drivers in mountain landscapes: A case study in the Pyrenees. Agric. Ecosyst. Environ. 2006, 114, 296–310. [Google Scholar] [CrossRef]
- Díaz-Delgado, R.; Lloret, F.; Pons, X.; Terradas, J. Satellite evidence of decreasing resilience in mediterranean plant communities after recurrent wildfires. Ecology 2002, 83, 2293–2303. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Luque, A.J.; Bonet-García, F.J.; Zamora, R. Colonization Pattern of Abandoned Croplands by Quercus pyrenaica in a Mediterranean Mountain Region. Forests 2021, 12, 1584. [Google Scholar] [CrossRef]
- Kozak, J. Forest Cover Changes and Their Drivers in the Polish Carpathian Mountains Since 1800. Landsc. Ser. 2009, 253–273. [Google Scholar] [CrossRef]
- Clement, F.; Orange, D.; Williams, M.; Mulley, C.; Epprecht, M. Drivers of afforestation in Northern Vietnam: Assessing local variations using geographically weighted regression. Appl. Geogr. 2009, 29, 561–576. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lasanta, T.; Romo, A. Analysis of Spatial and Temporal Evolution of Vegetation Cover in the Spanish Central Pyrenees: Role of Human Management. Environ. Manag. 2004, 34, 802–818. [Google Scholar] [CrossRef]
- Sanjuán, Y.; Arnáez, J.; Beguería, S.; Lana-Renault, N.; Lasanta, T.; Gómez-Villar, A.; Álvarez-Martínez, J.; Coba-Pérez, P.; García-Ruiz, J.M. Woody plant encroachment following grazing abandonment in the subalpine belt: A case study in northern Spain. Reg. Environ. Chang. 2018, 18, 1103–1115. [Google Scholar] [CrossRef]
- Dinca, L.; Nita, M.D.; Hofgaard, A.; Alados, C.L.; Broll, G.; Borz, S.A.; Wertz, B.; Monteiro, A.T. Forests dynamics in the montane–alpine boundary: A comparative study using satellite imagery and climate data. Clim. Res. 2017, 73, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Camarero, J.J.; Gutierrez, E. Pace and Pattern of Recent Treeline Dynamics: Response of Ecotones to Climatic Variability in the Spanish Pyrenees. Clim. Chang. 2004, 63, 181–200. [Google Scholar] [CrossRef]
- Sanz-Elorza, M.; Dana, E.D.; González, A.; Sobrino, E. Changes in the High-mountain Vegetation of the Central Iberian Peninsula as a Probable Sign of Global Warming. Ann. Bot. 2003, 92, 273–280. [Google Scholar] [CrossRef]
- Roura-Pascual, N.; Pons, P.; Etienne, M.; Lambert, B. Transformation of a Rural Landscape in the Eastern Pyrenees Between 1953 and 2000. Mt. Res. Dev. 2005, 25, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Améztegui, A.; Brotons, L.; Coll, L. Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob. Ecol. Biogeogr. 2010, 19, 632–641. [Google Scholar] [CrossRef] [Green Version]
- Nadal-Romero, E.; Otal-Laín, I.; Lasanta, T.; Sánchez-Navarrete, P.; Errea, P.; Cammeraat, E. Woody encroachment and soil carbon stocks in subalpine areas in the Central Spanish Pyrenees. Sci. Total Environ. 2018, 636, 727–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehrig-Fasel, J.; Guisan, A.; Zimmermann, N.E. Tree line shifts in the Swiss Alps: Climate change or land abandonment? J. Veg. Sci. 2007, 18, 571–582. [Google Scholar] [CrossRef]
- Lasanta, T.; Vicente-Serrano, S.M. Cambios en la cubierta vegetal en el Pirineo aragonés en los últimos 50 años. Pirineos 2007, 162, 125–154. [Google Scholar] [CrossRef]
- Perpiña Castillo, C.; Coll Aliaga, E.; Lavalle, C.; Martínez Llario, J.C. An Assessment and Spatial Modelling of Agricultural Land Abandonment in Spain (2015–2030). Sustainability 2020, 12, 560. [Google Scholar] [CrossRef] [Green Version]
Biogeographical Region | Bioclimatic Region (BR) | Main Forest Species 1 | |
---|---|---|---|
Eurosiberian | (1) | Alpine | - |
Subalpine | Pinus uncinata, P. sylvestris (NEF) | ||
(2) | Montane | Fagus sylvatica (BDF), P. sylvestris (NEF), Quercus pubescens (BDF), P. nigra (NEF), Q. pyrenaica (BDF), Q. petraea (BDF). | |
(3) | Coline | P. radiata (NEF), Q. robur (BDF), F. sylvatica (BDF), Q. rubra (BDF), Castanea sativa (BDF). | |
Mediterranean | (4) | Cryoromediterranean | - |
Oromediterranean | P. uncinata, P. sylvestris (NEF) | ||
(5) | Supramediterranean | Q. ilex (BEF), P. nigra, P. sylvestris, P. pinaster (NEF) Q. pyrenaica (BDF), Q. faginea (BDF), Juniperus thurifera (NEF), P. halepensis (NEF). | |
(6,8) | Mesomediterranean | Q. ilex (BEF); P. halepensis, P. pinaster, P. pinea, P. nigra (NEF). | |
(7) | Thermomediterranean | P. halepensis (NEF); Q. ilex and Olea europea (BEF). |
Group | Variable | Abbreviation | Units |
---|---|---|---|
Topoclimatic | Slope | Slope | Degrees |
General curvature | General_Curv | Dimensionless | |
Potential radiation in winter solstice | Pot_Rad_Wint | 10 kJ/(m2 × day × µm) | |
Averaged annual accumulated rainfall | Ac_Rain | dmm | |
Averaged mean annual temperature | Av_Me_Temp | d °C | |
Number of drought episodes (DE*) | DE*_S3/6/12 | Counts | |
Number of humid episodes (HE*) | HE*_S3/6/12 | Counts | |
Distances | Euclidean dist. to forests | Eu_Dist_Forests | Meters |
and | Euclidean dist. to hydrography | Eu_Dist_Hyd | Meters |
accessibility | Euclidean dist. to protected areas | Eu_Dist_Protect | Meters |
Cost dist. to provincial capitals | Co_Dist_Cap | Meters | |
Cost dist. to urban areas | Co_Dist_Urb | Meters | |
Cost dist. to main roads | Co_Dist_M_Roads | Meters | |
Cost dist. to secondary roads | Co_Dist_S_Roads | Meters | |
Geology | Lithological substrate | Lithology | Acidic, mixed, alkaline |
Sheet and rill erosion | Soil_Erosion | Mg/(ha × year) | |
Socioeconomic | Protected areas | Protect_Areas | Protected-Non protected |
Total population | Inhabitants | Inh | |
Population density | Pop_Density | inh/km2 | |
% of population 0–16 years | Pop_0_16y | 0–16/inh * 100 | |
% of population 16–64 years | Pop_16_64y | 16–64/inh * 100 | |
% of population >64 years | Pop_65y | >65/inh * 100 | |
Ageing index | Ageing_index | >65/(0–16) * 100 | |
% of agriculture workers | W_Agriculture | W_A/inh * 100 | |
% of industry workers | W_Industry | W_I/inh * 100 | |
% of building workers | W_Building | W_B/inh * 100 | |
% of services workers | W_Services | W_S/inh * 100 | |
Annual work units | AWU | Work Units | |
Number of holdings | Num_Hold | No. of holdings | |
Livestock units | LSU | Animals | |
Utilized agricultural area | UAA | Hectares |
Bio.Region | BR.2 | BR.3 | BR.5 | BR.6 | BR.7 | BR.8 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Target Cat. | P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | P2 | P1 | P2 |
NEF | 4856.6 | 4488.8 | 7933.3 | 6425.6 | 31,413.3 | 24,529.0 | 18,379.1 | 20,186.6 | 1247.8 | 5743.6 | 13,973.4 |
BDF | 11,924.0 | 12,806.6 | 8128.4 | 4250.1 | 15,163.6 | 25,039.0 | 3089.3 | 6451.8 | 1229.9 | 1742.3 | 4817.6 |
BEF | 9434.1 | 6220.0 | 1333.9 | 314.4 | 121,223.1 | 117,453.6 | 88,802.9 | 114,093.5 | 323.9 | 2049.7 | 2157.9 |
Abs. Δ NF 1 | 26,214.7 | 23,515.4 | 17,395.6 | 10,990.1 | 167,800.0 | 167,021.6 | 110,271.3 | 140,731.9 | 2801.6 | 9535.6 | 20,948.9 |
Source cat. | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ |
Shl | 11,969.0 | 11,773.8 | 1035.2 | 1715.7 | 139,591.7 | 122,779.5 | 62,408.0 | 57,933.2 | 1042.4 | 7069.1 | 13,814.9 |
Grl | 13,860.7 | 10,759.6 | 14,732.6 | 7196.9 | 23,158.9 | 35,400.5 | 26,647.5 | 48,429.4 | 143.6 | 400.7 | 1086.5 |
BrS | 1.4 | 3.7 | 9.8 | 6.8 | 594.7 | 418.6 | 691.5 | 897.7 | 44.2 | 10.0 | 24.8 |
IHC | 96.3 | 47.3 | 974.7 | 810.2 | 770.2 | 739.8 | 1347.5 | 1881.2 | 54.9 | 402.5 | 1294.9 |
RHC | 129.0 | 690.0 | 5.5 | 235.5 | 871.1 | 4468.6 | 693.6 | 4054.6 | 18.9 | 190.4 | 906.6 |
IWC | 87.9 | 118.4 | 474.4 | 775.4 | 2020.4 | 1578.8 | 13,322.3 | 12,447.4 | 1288.2 | 1202.1 | 2946.9 |
RWC | - | 0.1 | - | 0.7 | 748.7 | 1551.2 | 5084.0 | 14,748.0 | 147.8 | 18.2 | 151.9 |
Others | 70.5 | 122.5 | 163.4 | 248.9 | 44.4 | 84.6 | 76.9 | 340.3 | 61.6 | 242.6 | 722.4 |
All forests | 388,843.3 | 375,619.7 | 89,993.1 | 92,705.1 | 1,154,511.0 | 1,269,076.1 | 591,780.2 | 646,504.6 | 5261.0 | 58,641.8 | 57,578.7 |
NEF | 97,215.0 | 108,544.5 | 41,852.3 | 48,364.0 | 439,790.3 | 465,941.1 | 173,548.1 | 169,650.5 | 3424.0 | 43,307.5 | 39,989.2 |
BDF | 219,789.8 | 202,775.8 | 31,018.7 | 33,119.4 | 188,810.0 | 181,902.2 | 31,272.1 | 24,467.9 | 412.9 | 6108.2 | 6777.3 |
BEF | 71,838.5 | 64,299.4 | 17,122.1 | 11,221.7 | 525,910.7 | 621,232.8 | 386,960.0 | 452,386.2 | 1424.1 | 9226.1 | 10,812.2 |
Shl | 78,474.5 | 68,619.4 | 5341.4 | 11,045.0 | 1,011,593.4 | 908,174.3 | 458,904.8 | 446,259.5 | 33,579.5 | 242,900.8 | 271,144.4 |
Grl | 77,531.0 | 100,007.2 | 43,718.1 | 37,472.8 | 657,331.5 | 629,819.3 | 907,027.6 | 813,254.9 | 86,335.2 | 103,983.7 | 131,507.4 |
Brs | 988.1 | 847.5 | 122.1 | 169.8 | 53,807.0 | 54,331.7 | 135,633.7 | 130,237.9 | 38,382.1 | 53,041.3 | 49,668.7 |
IHC | 5871.7 | 1092.4 | 14,494.5 | 8412.7 | 11,197.8 | 8053.4 | 165,911.8 | 104,488.2 | 7209.4 | 127,504.4 | 108,455.7 |
RHC | 49,705.1 | 53,484.9 | 202.4 | 3787.7 | 793,903.2 | 816,432.4 | 1,878,760.7 | 1,995,948.0 | 19,286.3 | 598,332.8 | 552,903.8 |
IWC | 1054.2 | 1646.1 | 7911.3 | 7514.0 | 8755.8 | 7762.4 | 271,217.7 | 246,390.4 | 32,907.6 | 88,430.6 | 100,804.7 |
RWC | 25.3 | 50.2 | 0.5 | 4.7 | 40,612.4 | 37,109.3 | 1,202,153.8 | 1,217,517.8 | 142,547.0 | 110,433.6 | 100,577.1 |
Others | 1808.7 | 2934.3 | 2915.1 | 3586.9 | 7206.5 | 8159.9 | 35,334.7 | 46,123.4 | 37,645.0 | 28,340.7 | 38,969.1 |
Rel. Δ NF 2 | 6.7% | 6.3% | 19.3% | 11.9% | 14.5% | 13.2% | 18.6% | 21.8% | 53.3% | 16.3% | 36.4% |
Target Forest Categories → | BDF | BEF | NEF | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source Categories → | Rainfed | Irrigated | Grasslands | Shrublands | Rainfed | Irrigated | Grasslands | Shrublands | Rainfed | Irrigated | Grasslands | Shrublands | ||||||||||||
Periods → Variable ↓ | P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 |
Slope | - | - | 5.9 | 6.9 | 7.9 | 7.2 | - | - | 9.7 | 5.3 | - | 18.1 | 8.3 | 3.3 | 9.0 | 2.4 | - | - | - | - | 5.5 | 14.2 | 4.5 | 11.9 |
General Curvature | - | 1.0 | 4.3 | 5.2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Pot_Rad_Wint | - | - | - | 1.5 | 10.7 | 7.9 | 2.8 | 14.6 | - | 2.5 | 13.4 | - | 13.6 | 2.4 | 18.9 | 15.7 | - | 4.9 | - | 8.6 | 7.3 | 1.0 | 15.0 | 3.4 |
Ac_Rain | 21.9 | 12.0 | 1.3 | 2.3 | 11.2 | 6.5 | 28.1 | 23.7 | 19.5 | 14.4 | - | - | 17.8 | 19.7 | 13.5 | 22.3 | - | 4.3 | 16.1 | 23.0 | 7.8 | 12.2 | 22.0 | 26.7 |
Av_Me_Temp | - | 4.7 | 2.5 | 9.3 | 14.5 | 10.1 | 18.7 | 31.0 | 3.9 | 6.8 | 20.4 | 27.3 | 12.8 | 11.1 | 14.5 | 17.0 | - | - | - | - | 3.8 | 15.5 | 3.9 | 2.3 |
DE6_S6 | - | - | - | - | - | - | 3.3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.7 |
DE9_S6 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 2.2 | - | - | - | - | - | - |
DE3_S12 | - | - | - | - | - | - | - | - | - | 1.5 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
DE3_S24 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.1 |
HE3_S12 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.2 |
Co_Dist_M_Roads | - | - | 5.3 | 1.1 | 1.2 | - | - | - | - | - | - | - | - | - | - | - | 16.1 | 3.4 | 24.2 | - | - | - | 1.5 | - |
Co_Dist_S_Roads | - | 1.6 | 2.2 | - | - | - | - | - | - | - | 16.1 | - | - | - | - | 1.2 | - | 4.3 | - | 2.1 | - | - | - | - |
Co_Dist_Urb | 12.7 | 5.8 | 2.2 | 1.8 | 2.2 | 5.2 | 3.9 | 3.9 | 1.8 | - | - | - | - | - | 5.8 | - | - | - | - | - | 8.6 | - | 1.9 | - |
Co_Dist_Cap | 18.7 | 6.4 | 6.9 | 8.7 | 2.8 | 12.8 | 4.8 | 3.6 | - | - | - | - | 2.0 | 27.7 | - | 12.6 | 31.5 | 30.6 | - | 20.7 | 8.0 | 11.4 | 2.0 | 9.2 |
Eu_Dist_Forest | 26.0 | 20.9 | 18.9 | 11.8 | 22.5 | 10.5 | 24.1 | 4.2 | 35.1 | 35.7 | 21.2 | 20.7 | 24.3 | 8.9 | 30.9 | 14.0 | 20.9 | 20.1 | - | 3.6 | 28.6 | 17.2 | 30.3 | 18.5 |
Eu_Dist_Hyd | 20.6 | 24.7 | 25.9 | 21.3 | - | 5.6 | - | 3.8 | 2.0 | 4.9 | - | - | - | 3.1 | - | - | 5.8 | - | 10.5 | - | - | 1.9 | 4.0 | - |
Soil_Erosion | - | - | 1.6 | 2.9 | 3.0 | 1.8 | - | - | 5.4 | 4.8 | 28.9 | 16.7 | 4.4 | - | - | - | 12.3 | - | 24.4 | 3.6 | - | - | 1.5 | 1.0 |
Protected_Areas | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.8 | - | - | - |
Pop_density | - | - | - | 1.0 | - | - | - | - | - | 2.5 | - | 17.1 | - | - | - | - | - | - | - | - | - | - | - | - |
W_Building | - | - | - | - | - | - | - | - | 2.3 | 1.7 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
W_Services | - | - | - | - | - | - | - | - | 2.2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
W_Industry | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.9 | - | - | - | - | - | - | - | 4.4 | - | - |
Num_Hold | - | 4.9 | - | - | 1.9 | 2.5 | - | - | - | - | - | - | - | 2.4 | - | - | 19.3 | - | 21.9 | 3.5 | - | - | - | - |
LSU | - | - | - | - | - | - | - | - | - | - | - | - | 1.9 | - | - | - | - | - | 13.4 | 2.7 | - | - | - | - |
UAA | - | - | - | - | - | - | - | - | 1.7 | - | - | - | - | - | - | - | - | - | - | - | 3.2 | 3.1 | - | - |
Num. BRs Grouped | 1 | 4 | 5 | 6 | 4 | 4 | 2 | 2 | 4 | 4 | 1 | 1 | 4 | 3 | 4 | 4 | 1 | 2 | 1 | 3 | 3 | 3 | 4 | 5 |
BRs Grouped (distinct) | 5 | 5,6 *,8 | 3,6 *,8 * | 3,6 *,7,8 * | 2,3,5,6 | 2,3,5,6 | 2,5 | 2,5 | 5 *,6 * | 5 *,6 * | 6 | 6 | 2,3,5,6 | 2,5,6 | 2,5,6,8 | 2,5,6,8 | 6 | 6,8 | 6 | 6,8* | 2,5,6 | 2,5,6 | 2,5,6,8 | 2,5,6,7,8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padial-Iglesias, M.; Ninyerola, M.; Serra, P.; González-Guerrero, Ò.; Espelta, J.M.; Pino, J.; Pons, X. Driving Forces of Forest Expansion Dynamics across the Iberian Peninsula (1987–2017): A Spatio-Temporal Transect. Forests 2022, 13, 475. https://doi.org/10.3390/f13030475
Padial-Iglesias M, Ninyerola M, Serra P, González-Guerrero Ò, Espelta JM, Pino J, Pons X. Driving Forces of Forest Expansion Dynamics across the Iberian Peninsula (1987–2017): A Spatio-Temporal Transect. Forests. 2022; 13(3):475. https://doi.org/10.3390/f13030475
Chicago/Turabian StylePadial-Iglesias, Mario, Miquel Ninyerola, Pere Serra, Òscar González-Guerrero, Josep Maria Espelta, Joan Pino, and Xavier Pons. 2022. "Driving Forces of Forest Expansion Dynamics across the Iberian Peninsula (1987–2017): A Spatio-Temporal Transect" Forests 13, no. 3: 475. https://doi.org/10.3390/f13030475
APA StylePadial-Iglesias, M., Ninyerola, M., Serra, P., González-Guerrero, Ò., Espelta, J. M., Pino, J., & Pons, X. (2022). Driving Forces of Forest Expansion Dynamics across the Iberian Peninsula (1987–2017): A Spatio-Temporal Transect. Forests, 13(3), 475. https://doi.org/10.3390/f13030475