Importance of Dead Wood in Virgin Forest Ecosystem Functioning in Southern Carpathians
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Sampling of DW and Living Trees
2.3. Data Analysis
3. Results
3.1. Descriptive Statistic
3.2. Dead Wood Distribution according to the Category of Decay and Its Volume according to Species and Living Trees
3.3. Fitting of Experimental Dead Wood (DW) Volume Distribution
3.4. Estimating the above Ground Biomass and Carbon Stock. Quantity of AGB and CS of DW in Relation to Altitude
3.5. The Relation between Surface and Volume of DW and Surface-to-Volume (SV) Ratio Related to the Decay Class of DW
4. Discussion
Descriptive Statistics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hararuk, O.; Kurz, W.A.; Didion, M. Dynamics of Dead Wood Decay in Swiss Forests. For. Ecosyst. 2020, 7, 36. [Google Scholar] [CrossRef]
- Lo Monaco, A.; Luziatelli, G.; Latterini, F.; Tavankar, F.; Picchio, R. Structure and Dynamics of Deadwood in Pine and Oak Stands and Their Role in CO2 Sequestration in Lowland Forests of Central Italy. Forests 2020, 11, 253. [Google Scholar] [CrossRef] [Green Version]
- Bujoczek, L.; Bujoczek, M.; Zięba, S. How Much, Why and Where? Deadwood in Forest Ecosystems: The Case of Poland. Ecol. Indic. 2021, 121, 107027. [Google Scholar] [CrossRef]
- Parviainen, J. Virgin and Natural Forests in the Temperate Zone of Europe. For. Snow Landsc. Res. 2005, 79, 10. [Google Scholar]
- Vacek, S.; Vacek, Z.; Podrázskỳ, V.; Bílek, L.; Bulušek, D.; Štefančík, I.; Remeš, J.; Štícha, V.; Ambrož, R. Structural Diversity of Autochthonous Beech Forests in Broumovské Stěny National Nature Reserve, Czech Republic Strukturelle Diversität von Autochthonen Buchenwäldern Im Nationalen Naturschutzgebiet Broumovské Stěny, Tschechische Republik. Austrian J. For. Sci. 2014, 4, 191. [Google Scholar]
- Chivulescu, S.; Ciceu, A.; Leca, S.; Apostol, B.; Popescu, O.; Badea, O. Development Phases and Structural Characteristics of the Penteleu-Viforta Virgin Forest in the Curvature Carpathians. iForest 2020, 13, 389–395. [Google Scholar] [CrossRef]
- Matović, B.; Koprivica, M.; Kisin, B.; Stojanović, D.; Kneginjić, I.; Stjepanović, S. Comparison of Stand Structure in Managed and Virgin European Beech Forests in Serbia. Šumarski List 2018, 142, 47–57. [Google Scholar] [CrossRef]
- Westphal, C.; Tremer, N.; von Oheimb, G.; Hansen, J.; von Gadow, K.; Härdtle, W. Is the Reverse J-Shaped Diameter Distribution Universally Applicable in European Virgin Beech Forests? For. Ecol. Manag. 2006, 223, 75–83. [Google Scholar] [CrossRef]
- Burton, J.E.; Bennett, L.T.; Kasel, S.; Nitschke, C.R.; Tanase, M.A.; Fairman, T.A.; Parker, L.; Fedrigo, M.; Aponte, C. Fire, Drought and Productivity as Drivers of Dead Wood Biomass in Eucalypt Forests of South-Eastern Australia. For. Ecol. Manag. 2021, 482, 118859. [Google Scholar] [CrossRef]
- Bücking, W. Naturwaldreservate:” Urwald” in Deutschland; AID: Bonn, Deutschland, 2003. [Google Scholar]
- André, J. Activité et Diversité Des Organismes Hétérotrophes: Les Clés Du Bouclage Des Cycles Biogéochimiques et Sylvigénétiques. Bois Mort et à Cavité-une Clé pour les Vivantes; Lavoisier: Paris, France, 2005; pp. 89–98. [Google Scholar]
- Radu, S.; Coanda, C. Lemnul Mort și Rolul Acestora în Ecositemele Forestiere Virgine și Cvasivirgine. In Pădurile Virgine și Cvasivirgine ale Romaniei; Editura Academiei Române: Bucharest, Romania, 2013. [Google Scholar]
- Giurgiu, V. Protejarea si Dezvoltarea Durabila a Padurilor României; Editura Arta Grafica: Bucuresti, Romania, 1995; p. 400. [Google Scholar]
- Jonsell, M.; Nittérus, K.; Stighäll, K. Saproxylic Beetles in Natural and Man-Made Deciduous High Stumps Retained for Conservation. Biol. Conserv. 2004, 118, 163–173. [Google Scholar] [CrossRef]
- Ranius, T.; Ekvall, H.; Jonsson, M.; Bostedt, G. Cost-Efficiency of Measures to Increase the Amount of Coarse Woody Debris in Managed Norway Spruce Forests. For. Ecol. Manag. 2005, 206, 119–133. [Google Scholar] [CrossRef]
- Abrahamsson, M.; Lindbladh, M. A Comparison of Saproxylic Beetle Occurrence between Man-Made High-and Low-Stumps of Spruce (Picea Abies). For. Ecol. Manag. 2006, 226, 230–237. [Google Scholar] [CrossRef]
- Keeton, W.S. Managing for Late-Successional/Old-Growth Characteristics in Northern Hardwood-Conifer Forests. For. Ecol. Manag. 2006, 235, 129–142. [Google Scholar] [CrossRef]
- Bauhus, J.; Puettmann, K.; Messier, C. Silviculture for Old-Growth Attributes. For. Ecol. Manag. 2009, 258, 525–537. [Google Scholar] [CrossRef] [Green Version]
- Seidling, W.; Travaglini, D.; Meyer, P.; Waldner, P.; Fischer, R.; Granke, O.; Chirici, G.; Corona, P. Dead Wood and Stand Structure—Relationships for Forest Plots across Europe. iForest 2014, 7, 269–281. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Stathaki, T.; Kamperidou, V. Monitoring of Trees’ Health Condition Using a Uav Equipped with Low-Cost Digital Camera. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8291–8295. [Google Scholar]
- Tomescu, R.; Târziu, D.R.; Turcu, D.O. The Importance of Dead Wood in the Forest. ProEnvironment Promediu 2011, 4, 10–19. [Google Scholar]
- Chivulescu, Ș.; Leca, Ș.; Silaghi, D.; Cristea, V. Structural biodiversity and dead wood in virgin forests from eastern carpathians. Agric. For. 2018, 64, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Węgiel, A.; Polowy, K. Aboveground Carbon Content and Storage in Mature Scots Pine Stands of Different Densities. Forests 2020, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Barrufol, M.; Schmid, B.; Bruelheide, H.; Chi, X.; Hector, A.; Ma, K.; Michalski, S.; Tang, Z.; Niklaus, P.A. Biodiversity Promotes Tree Growth during Succession in Subtropical Forest. PLoS ONE 2013, 8, e81246. [Google Scholar] [CrossRef] [Green Version]
- Leskinen, P.; Cardellini, G.; González-García, S.; Hurmekoski, E.; Sathre, R.; Seppälä, J.; Smyth, C.; Stern, T.; Verkerk, P.J. Substitution Effects of Wood-Based Products in Climate Change Mitigation. Eur. For. Inst. 2018, 7, 28. [Google Scholar]
- Weggler, K.; Dobbertin, M.; Jüngling, E.; Kaufmann, E.; Thürig, E. Dead Wood Volume to Dead Wood Carbon: The Issue of Conversion Factors. Eur. J. For. Res. 2012, 131, 1423–1438. [Google Scholar] [CrossRef]
- Kueppers, L.M.; Southon, J.; Baer, P.; Harte, J. Dead Wood Biomass and Turnover Time, Measured by Radiocarbon, along a Subalpine Elevation Gradient. Oecologia 2004, 141, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Fung, I.; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G.; Stone, P. Global Climate Changes as Forecast by Goddard Institute for Space Studies Three-Dimensional Model. J. Geophys. Res. 1988, 93, 9341. [Google Scholar] [CrossRef]
- García-Oliva, F.; Masera, O.R. Assessment and Measurement Issues Related to Soil Carbon Sequestration in Land-Use, Land-Use Change, and Forestry (LULUCF) Projects under the Kyoto Protocol. Clim. Chang. 2004, 65, 347–364. [Google Scholar] [CrossRef]
- Savaresi, A. The Paris Agreement: A New Beginning? J. Energy Nat. Resour. Law 2016, 34, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Reddy, Y.M.; Rajeev, R. Developing Glasgow Accord for COP-26 Using Game Theory. J. Clim. Chang. 2021, 7, 1–8. [Google Scholar]
- Romppanen, S. The LULUCF Regulation: The New Role of Land and Forests in the EU Climate and Policy Framework. J. Energy Nat. Resour. Law 2020, 38, 261–287. [Google Scholar] [CrossRef]
- Teran, T.; Lamon, L.; Marcomini, A. Climate Change Effects on POPs’ Environmental Behaviour: A Scientific Perspective for Future Regulatory Actions. Atmos. Pollut. Res. 2012, 3, 466–476. [Google Scholar] [CrossRef] [Green Version]
- Schlamadinger, B.; Bird, N.; Johns, T.; Brown, S.; Canadell, J.; Ciccarese, L.; Dutschke, M.; Fiedler, J.; Fischlin, A.; Fearnside, P.; et al. A Synopsis of Land Use, Land-Use Change and Forestry (LULUCF) under the Kyoto Protocol and Marrakech Accords. Environ. Sci. Policy 2007, 10, 271–282. [Google Scholar] [CrossRef]
- Paletto, A.; Ferretti, F.; De Meo, I.; Cantiani, P.; Focacci, M. Ecological and Environmental Role of Deadwood in Managed and Unmanaged Forests. Sustain. For. Manag.–Curr. Res. 2012, 219–238. [Google Scholar] [CrossRef]
- Korpel, Š. Obnova lesnych porastov v rubáňovom sposobe hospodárenia.[W:] Pesteni les\uu.(red. M. Vyskot M.) [Restoration of forest stands in the ruby way of management]. SZN Praha. 1978, pp. 216–359. Available online: http://www.forestportal.sk/les-pre-verejnost/o-lesoch-pre-verejnost/sprievodca-lesnickymi-vyrazmi/Stranky/obnova-lesnych-porastov.aspx (accessed on 4 February 2022).
- Leibundgut, H. Europäische Urwälder der Bergstufe: Dargestellt für Forstleute, Naturwissenschafter und Freunde des Waldes [European Primeval Forests of the Bergstufe: Represented for Foresters, Naturalists and Friends of the Forest]; Haupt: Bern, Switzerland, 1982. [Google Scholar]
- McComb, W.; Lindenmayer, D. Dying, Dead, and down Trees. In Maintaining Biodiversity in Forest Ecosystems; Hunter, M.L., Ed.; Cambridge University Press: Cambridge, UK, 1999; pp. 335–372. ISBN 978-0-521-63104-4. [Google Scholar]
- Fridman, J.; Walheim, M. Amount, Structure, and Dynamics of Dead Wood on Managed Forestland in Sweden. For. Ecol. Manag. 2000, 131, 23–36. [Google Scholar] [CrossRef]
- Atici, E.; Colak, A.; Rotherham, I. Coarse Dead Wood Volume of Managed Oriental Beech (Fagus Orientalis Lipsky) Stands in Turkey. Investig. Agrar. Sist. Recur. For. 2008, 17, 216–227. [Google Scholar] [CrossRef] [Green Version]
- Giurgiu, V.; Decei, I.; Drăghiciu, D. Metode şi Tabele Metode şi Tabele Dendrometrice [Methods and Yield Tables]; Editura Ceres: Bucureşti, Romania, 2004; p. 575. [Google Scholar]
- Giurgiu, V. Dendrometrie Și Auxologie Forestieră; Ceres: Bucuresti, Romania, 1979. [Google Scholar]
- Corlett, W. The Lognormal Distribution, with Special Reference to Its Uses in Economics; Cambridge University Press: Cambridge, UK, 1957. [Google Scholar]
- Sharif, M.N.; Islam, M.N. The Weibull Distribution as a General Model for Forecasting Technological Change. Technol. Forecast. Soc. Change 1980, 18, 247–256. [Google Scholar] [CrossRef]
- Hogg, R.; Craig, A. Introduction to Mathematical Statistics; Macmillan Publishing Company: New York, NY, USA, 1978. [Google Scholar]
- Stephens, M.A. Tests of Fit for the Logistic Distribution Based on the Empirical Distribution Function. Biometrika 1979, 66, 591–595. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. A Test of Goodness of Fit. J. Am. Stat. Assoc. 1954, 49, 765–769. [Google Scholar] [CrossRef]
- Goslee, K.; Walker, S.M.; Grais, A.; Murray, L.; Casarim, F.; Brown, S. Module C-CS: Calculations for Estimating Carbon Stocks. In Leaf Technical Guidance Series for the Development of a Forest Carbon Monitoring System for REDD+; Winrock International: Little Rock, AR, USA, 2016. [Google Scholar]
- UNFCC. Estimation of Carbon Stocks and Change in Carbon Stocks in Dead Wood and Litter in A/R CDM Project Activities. 2013. Available online: https://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-12-v3.0.pdf (accessed on 4 February 2022).
- IPCC. IPCC Guidelines for National Greenhouse Gas. Inventories; IPCC: Geneva, Switzerland, 2006; Volume 4. [Google Scholar]
- Goslee, K.; Walker, S.M.; Grais, A.; Murray, L.; Brown, S.; Goslee, K.; Walker, S.M.; Grais, A.; Murray, L.; Casarim, F.; et al. Standard Operating Procedures for Terrestrial Carbon Measurement: Version 2012; Winrock International: Little Rock, AR, USA, 2012. [Google Scholar]
- Holeksa, J. Coarse Woody Debris in a Carpathian Subalpine Spruce Forest. Forstw. Cbl. 2001, 120, 256–270. [Google Scholar] [CrossRef]
- Grosjean, P.; Ibanez, F. Package for Analysis of Space-Time Ecological Series. PASTECS. R Package; Version 1.2-0 for R v. 2.0. 0 & Version 1.0-1 for S+ 2000 rel. 2004. Available online: https://cran.r-project.org/web/packages/pastecs/index.html (accessed on 4 February 2022).
- Scherzinger, W. Naturschutz Im Wald: Qualitätsziele Einer Dynamischen Waldentwicklung; 36 Tabellen; Ulmer: Stuttgart, Germany, 1996. [Google Scholar]
- Mueller, U.G.; Gerardo, N.M.; Aanen, D.K.; Six, D.L.; Schultz, T.R. The Evolution of Agriculture in Insects. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 563–595. [Google Scholar] [CrossRef]
- Stokland, J.N.; Siitonen, J.; Jonsson, B.G. Biodiversity in Dead Wood; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Moose, R.A.; Schigel, D.; Kirby, L.J.; Shumskaya, M. Dead Wood Fungi in North America: An Insight into Research and Conservation Potential. Nat. Conserv. 2019, 32, 1–17. [Google Scholar] [CrossRef]
- Hodge, S.J.; Peterken, G.F. Deadwood in British Forests: Priorities and a Strategy. Forestry 1998, 71, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Višnjić, Ć.; Solaković, S.; Mekić, F.; Balić, B.; Vojniković, S.; Dautbašić, M.; Gurda, S.; Ioras, F.; Ratnasingam, J.; Abrudan, I.V. Comparison of Structure, Regeneration and Dead Wood in Virgin Forest Remnant and Managed Forest on Grmeč Mountain in Western Bosnia. Plant. Biosyst. 2013. [Google Scholar] [CrossRef] [Green Version]
- Bourque, C.P.-A.; Bayat, M.; Zhang, C. An Assessment of Height–Diameter Growth Variation in an Unmanaged Fagus Orientalis-Dominated Forest. Eur. J. Forest. Res. 2019, 138, 607–621. [Google Scholar] [CrossRef]
- Petritan, I.C.; Commarmot, B.; Hobi, M.L.; Petritan, A.M.; Bigler, C.; Abrudan, I.V.; Rigling, A. Structural Patterns of Beech and Silver Fir Suggest Stability and Resilience of the Virgin Forest Sinca in the Southern Carpathians, Romania. For. Ecol. Manag. 2015, 356, 184–195. [Google Scholar] [CrossRef]
- Dimitrova, V. Zalihe Biomase Mrtvog Drva u Šumskim Ekosustavima Bukve (Fagus Sylvatica L.) Na Području Zapadnog Balkana, Bugarska. Šumar. List. 2018, 142, 363–370. [Google Scholar] [CrossRef]
- Christensen, M.; Hahn, K.; Mountford, E.P.; Odor, P.; Standovár, T.; Rozenbergar, D.; Diaci, J.; Wijdeven, S.; Meyer, P.; Winter, S.; et al. Dead Wood in European Beech (Fagus Sylvatica) Forest Reserves. For. Ecol. Manag. 2005, 210, 267–282. [Google Scholar] [CrossRef]
- Janik, D.; Adam, D.; Vrska, T.; Hort, L.; Unar, P.; Kral, K.; Samonil, P.; Horal, D. Tree Layer Dynamics of the Cahnov–Soutok near-Natural Floodplain Forest after 33 Years (1973–2006). Eur. J. For. Res. 2008, 127, 337–345. [Google Scholar] [CrossRef]
- Vrška, T.; Šamonil, P.; Unar, P.; Hort, L.; Adam, D.; Král, K.; Janík, D. Developmental Dynamics of Virgin Forest Reserves in the Czech Republic III—Šumava Mts. and Českỳ Les Mts. Diana, Stozec, Boubın Virgin Forests, Milešice Virgin Forest; Academia Prague: Praha, Czech Republic, 2012. [Google Scholar]
- Moroni, M.T. Disturbance History Affects Dead Wood Abundance in Newfoundland Boreal Forests. Can. J. For. Res. 2006, 36, 3194–3208. [Google Scholar] [CrossRef]
- Krankina, O.N.; Harmon, M. Dynamics of the Dead Wood Carbon Pool in Northwestern Russian Boreal Forests. Water Air Soil Pollut. 1995, 82, 227–238. [Google Scholar] [CrossRef]
- Ali, A.; Lin, S.-L.; He, J.-K.; Kong, F.-M.; Yu, J.-H.; Jiang, H.-S. Climate and Soils Determine Aboveground Biomass Indirectly via Species Diversity and Stand Structural Complexity in Tropical Forests. For. Ecol. Manag. 2019, 432, 823–831. [Google Scholar] [CrossRef]
- Müller, J.; Brustel, H.; Brin, A.; Bussler, H.; Bouget, C.; Obermaier, E.; Heidinger, I.M.M.; Lachat, T.; Förster, B.; Horak, J.; et al. Increasing Temperature May Compensate for Lower Amounts of Dead Wood in Driving Richness of Saproxylic Beetles. Ecography 2015, 38, 499–509. [Google Scholar] [CrossRef]
- Vlad, R.; Sidor, C.G.; Dinca, L.; Constandache, C.; Ispravnic, A.; Pei, G. Dead Wood Diversity in a Norway Spruce Forest from the Caãlimani National Park (the Eastern Carpathians). Balt. For. 2019, 25, 11. [Google Scholar] [CrossRef]
- Graham, R.L.; Cromack, K., Jr. Mass, Nutrient Content, and Decay Rate of Dead Boles in Rain Forests of Olympic National Park. Can. J. For. Res. 1982, 12, 511–521. [Google Scholar] [CrossRef]
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.; Lattin, J.; Anderson, N.; Cline, S.; Aumen, N.; Sedell, J.; et al. Ecology of Coarse Woody Debris in Temperate Ecosystems. Adv. Ecol. Res. 1986, 15, 133–302. [Google Scholar]
- Harmon, M.E.; Cromack, K., Jr.; Smith, B.G. Coarse Woody Debris in Mixed-Conifer Forests, Sequoia National Park, California. Can. J. For. Res. 1987, 17, 1265–1272. [Google Scholar] [CrossRef]
- Hérault, B.; Beauchêne, J.; Muller, F.; Wagner, F.; Baraloto, C.; Blanc, L.; Martin, J.-M. Modeling Decay Rates of Dead Wood in a Neotropical Forest. Oecologia 2010, 164, 243–251. [Google Scholar] [CrossRef]
- Elosegi, A.; Díez, J.; Pozo, J. Contribution of Dead Wood to the Carbon Flux in Forested Streams. Earth Surf. Process. Landforms 2007, 32, 1219–1228. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Lasota, J.; Błońska, E. Interspecific Variability of Water Storage Capacity and Absorbability of Deadwood. Forests 2020, 11, 575. [Google Scholar] [CrossRef]
- Floren, A.; Müller, T.; Dittrich, M.; Weiss, M.; Linsenmair, K.E. The Influence of Tree Species, Stratum and Forest Management on Beetle Assemblages Responding to Deadwood Enrichment. For. Ecol. Manag. 2014, 323, 57–64. [Google Scholar] [CrossRef]
- Mazziotta, A.; Mönkkönen, M.; Strandman, H.; Routa, J.; Tikkanen, O.-P.; Kellomäki, S. Modeling the Effects of Climate Change and Management on the Dead Wood Dynamics in Boreal Forest Plantations. Eur. J. Forest. Res. 2014, 133, 405–421. [Google Scholar] [CrossRef]
- Van Stan, J.T.; Dymond, S.F.; Klamerus-Iwan, A. Bark-Water Interactions Across Ecosystem States and Fluxes. Front. For. Glob. Chang. 2021, 4, 660662. [Google Scholar] [CrossRef]
- Pommerening, A.; Grabarnik, P. Individual-Based Methods in Forest Ecology and Management; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Paquette, A.; Messier, C. The Effect of Biodiversity on Tree Productivity: From Temperate to Boreal Forests: The Effect of Biodiversity on the Productivity. Glob. Ecol. Biogeogr. 2011, 20, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, H.Y.H.; Reich, P.B. Forest Productivity Increases with Evenness, Species Richness and Trait Variation: A Global Meta-Analysis: Diversity and Productivity Relationships. J. Ecol. 2012, 100, 742–749. [Google Scholar] [CrossRef]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive Biodiversity-Productivity Relationship Predominant in Global Forests. Science 2016, 354, aaf8957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Research Plot | Coordinates | Altitude, m | Stand Composition (Living Trees According to Number of Trees) | Total Volume of Living Trees, m3·ha−1 | Number of Living Trees, N·ha−1 | Size |
---|---|---|---|---|---|---|
Semenic P20 | 45°08′27″ N 22°04′46″ E | 1352 | 100% beech | 677 | 385 | 1 ha |
Retezat–Zănoaga | 45°22′33″ N 22°46′46″ E | 1151 | 45% beech, 29% spruce, 4% fir, and 22% other deciduous * | 869 | 413 | 1 ha |
Făgăraș–Șinca | 45°39′40″ N 25°10′2″ E | 1214 | 45% beech and 55% fir | 758 | 475 | 1 ha |
DW Category | Description | Symbol |
---|---|---|
snag 1 | Standing dead tree, recently dead, most branches intact or starting to break, bark intact or starting to peel and top of the tree intact | S1 |
snag 2 | Standing dead tree with broken top without branches, with some bark left on or without bark | S2 |
log 1 | Lying dead wood, with wood still hard and bark intact or starting to peel | L1 |
log 2 | Lying dead wood, with soft wood and without bark | L2 |
Research Plot | DW | |||||||
---|---|---|---|---|---|---|---|---|
Number of Samples (LDW and SDW) | Minimum Volume m3 | Maximum Volume m3 | Sum of Volume m3·ha−1 | Mean of Volume m3 | Variance (s2) | Standard Deviation of Volume (s) | Coefficient of Variation of Volume s % | |
Semenic P20 | 63 | 0.0002 | 6.4 | 48 | 0.77 | 1.4 | 1.1 | 142.8 |
Retezat–Zănoaga | 115 | 0.0150 | 10.6 | 97 | 0.99 | 1.9 | 1.4 | 141.4 |
Făgaraș–Șinca | 151 | 0.0030 | 11.6 | 148 | 0.98 | 3.1 | 1.6 | 179.7 |
Research Plot | Species Group | Living Trees | Dead Wood | Total Volume | ||
---|---|---|---|---|---|---|
m3·ha−1 | Proportion (%) | m3·ha−1 | Proportion (%) | m3·ha−1 | ||
Semenic P20 | Beech | 677 | 93 | 48 | 7 | 725 |
TOTAL | 677 | 93 | 48 | 7 | 725 | |
Retezat–Zănoaga | Conifers | 311 | 84 | 61 | 16 | 372 |
Beech | 226 | 89 | 28 | 11 | 254 | |
Other deciduous | 331 | 98 | 8 | 2 | 339 | |
TOTAL | 868 | 90 | 97 | 10 | 965 | |
Făgăraș–Șinca | Conifers | 339 | 75 | 115 | 25 | 454 |
Beech | 418 | 93 | 33 | 7 | 451 | |
TOTAL | 757 | 84 | 148 | 16 | 905 |
Research Plot | Distribution | Kolmogorov Smirnov Test | Anderson Darling Test * | Criterion χ2 | |||||
---|---|---|---|---|---|---|---|---|---|
Experimental Values | Theoretical Values | p-Value | Experimental Values | Theoretical Values | Experimental Values | Theoretical Values | p-Value | ||
Semenic P20 | Lognormal | 0.071 | 0.168 | 0.881 | 0.576 | 2.501 | 0.48 | 5.991 | 0.290 |
Weibull 2P | 0.1 | 0.168 | 0.521 | 0.772 | 2.501 | 2.757 | 5.991 | 0.101 | |
Gamma 2P | 0.103 | 0.168 | 0.481 | 0.976 | 2.501 | 2.331 | 5.991 | 0.020 | |
Retezat–Zănoaga | Lognormal | 0.061 | 0.126 | 0.753 | 0.338 | 2.501 | 0.312 | 5.991 | 0.833 |
Weibull 2P | 0.085 | 0.126 | 0.351 | 1.828 | 2.501 | 13.732 | 5.991 | 0.149 | |
Gamma 2P | 0.23 | 0.126 | 7.84 × 10−6 | 7.854 | 2.501 | 0.319 | 5.991 | 4.93 × 10−6 | |
Făgăraș–Șinca | Lognormal | 0.077 | 0.11 | 0.304 | 0.714 | 2.501 | 14.923 | 5.991 | 0.683 |
Weibull 2P | 0.095 | 0.11 | 0.119 | 2.104 | 2.501 | 5.974 | 5.991 | 0.005 | |
Gamma 2P | 0.153 | 0.11 | 0.001 | 4.302 | 2.501 | 5.661 | 5.991 | 2.21 × 10−5 |
Research Plot | LDW (Log) | SDW (Snag) | Total | |||
---|---|---|---|---|---|---|
AGB t·ha−1 | CS t·ha−1 | AGB t·ha−1 | CS t·ha−1 | AGB t·ha−1 | CS t·ha−1 | |
Semenic P20 | 7.59 | 3.56 | 9.81 | 4.61 | 17.40 | 8.17 |
Retezat–Zănoaga | 25.42 | 11.94 | 5.09 | 2.39 | 30.51 | 14.33 |
Făgăraș–Șinca | 17.41 | 8.18 | 9.23 | 4.34 | 26.64 | 12.52 |
Mean | 16.81 | 7.89 | 8.04 | 3.78 | 24.85 | 11.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chivulescu, Ș.; Pitar, D.; Apostol, B.; Leca, Ș.; Badea, O. Importance of Dead Wood in Virgin Forest Ecosystem Functioning in Southern Carpathians. Forests 2022, 13, 409. https://doi.org/10.3390/f13030409
Chivulescu Ș, Pitar D, Apostol B, Leca Ș, Badea O. Importance of Dead Wood in Virgin Forest Ecosystem Functioning in Southern Carpathians. Forests. 2022; 13(3):409. https://doi.org/10.3390/f13030409
Chicago/Turabian StyleChivulescu, Șerban, Diana Pitar, Bogdan Apostol, Ștefan Leca, and Ovidiu Badea. 2022. "Importance of Dead Wood in Virgin Forest Ecosystem Functioning in Southern Carpathians" Forests 13, no. 3: 409. https://doi.org/10.3390/f13030409
APA StyleChivulescu, Ș., Pitar, D., Apostol, B., Leca, Ș., & Badea, O. (2022). Importance of Dead Wood in Virgin Forest Ecosystem Functioning in Southern Carpathians. Forests, 13(3), 409. https://doi.org/10.3390/f13030409