Simulation on Different Patterns of Mobile Laser Scanning with Extended Application on Solar Beam Illumination for Forest Plot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Data
2.2. Forest Plot Modeling and Laser Scanning Simulation
- (1)
- For ALS, the HDL-32E LiDAR sensor was mounted under the multirotor unmanned aerial vehicle to point at the nadir and set to “continuous shooting mode” to collect data at 10 revolutions per second. The flight was programmed as a predetermined rectangle parallel flight plane, designed to cover the study site plus a buffer area, avoiding edge effects in the scanned data collection (Figure 4a). The flight was conducted at a 6.25 m altitude above the forest canopy of the study site, approximately 1 m distance away from the peak height of the tree crown, and the flight-path-tracing survey lines (blue dashed lines in Figure 4a) were at a set flight speed. This scanning pattern provides a 41.3° vertical field of view (FOV) downward and a 360° horizontal FOV around the flight path (Figure 4b).
- (2)
- For ground-based MLS, a simulation using an HDL-32E LiDAR sensor was mounted on a car roof to perform a 360° horizontal FOV and 41.3° vertical FOV scanning (Figure 5a,b). The car runs at a set speed along the survey route surrounding the study site and remains about 1 m from the nearest tree leaves.
3. Results
3.1. Laser Scanning Simulation
3.2. Application Extension of the Proposed Framework for a Light Model of Forest Plots
- The precise digitized data of individual trees shown in Table 1, as measured by an electromagnetic 3D digitizer, provided as realistic a digital twin of each tree as possible, including the location and orientation of each leaf in every tree crown. This synchronized the virtual and physical states of every leaf, simulating a realistic light transmission environment in a forest plot.
- The scanned point acquisitions for every laser beam, with an efficient computational performance as measured by the simplified strategy mentioned in Section 2.2, can easily be converted to the intersection points between solar rays covering all directions and biotic elements in forest plots, such as leaves, branches, and trunks.
Extended Experiments of Light Model for the Complex Forest Plot
4. Discussion
4.1. Perspective of Mobile Laser Scanning Simulation for Forest Plots
4.2. Application Extension about the Light Model of Forest Plots
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Y.; Lin, X.; Gong, Y.; Jiang, J.; Zhang, Y.; Wen, X. Multi-Station LiDAR Scanning-Based Hierarchical Features for Generation of an Allometric Stem Volume Model. J. Appl. Remote Sens 2021, 15, 028503. [Google Scholar] [CrossRef]
- Yu, T.; Hu, C.; Xie, Y.; Liu, J.; Li, P. Mature Pomegranate Fruit Detection and Location Combining Improved F-PointNet with 3D Point Cloud Clustering in Orchard. Comput. Electron. Agric. 2022, 200, 107233. [Google Scholar] [CrossRef]
- Zhou, K.; Cao, L.; Liu, H.; Zhang, Z.; Wang, G.; Cao, F. Estimation of Volume Resources for Planted Forests Using an Advanced LiDAR and Hyperspectral Remote Sensing. Resour. Conserv. Recycl. 2022, 185, 106485. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, C.; Xie, Y. An Improved Space Colonization Algorithm with DBSCAN Clustering for a Single Tree Skeleton Extraction. Int. J. Remote Sens. 2022, 43, 3692–3713. [Google Scholar] [CrossRef]
- Cao, L.; Liu, H.; Fu, X.; Zhang, Z.; Shen, X.; Ruan, H. Comparison of UAV LiDAR and Digital Aerial Photogrammetry Point Clouds for Estimating Forest Structural Attributes in Subtropical Planted Forests. Forests 2019, 10, 145. [Google Scholar] [CrossRef] [Green Version]
- Hancock, S.; Essery, R.; Reid, T.; Carle, J.; Baxter, R.; Rutter, N.; Huntley, B. Characterising Forest Gap Fraction with Terrestrial Lidar and Photography: An Examination of Relative Limitations. Agric. Meteorol. 2014, 189–190, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Yuan, P.; Liu, X.; Zhou, H. Street Tree Segmentation from Mobile Laser Scanning Data. Int. J. Remote Sens. 2020, 41, 7145–7162. [Google Scholar] [CrossRef]
- Khosravipour, A.; Skidmore, A.K.; Isenburg, M.; Wang, T.; Hussin, Y.A. Generating Pit-Free Canopy Height Models from Airborne Lidar. Photogramm. Eng. Remote Sens. 2014, 80, 863–872. [Google Scholar] [CrossRef]
- Gao, X.; Qi, Y.; Dong, B.; Cui, Y.; Hao, S.; Zhao, F.; Wang, H. Impact of Water Level Fluctuations on Habitats of Wintering Migratory Birds Based on Multispectral Data. Spectrosc. Spectr. Anal. 2021, 41, 579–585. [Google Scholar]
- Buonocore, L.; Yates, J.; Valentini, R. A Proposal for a Forest Digital Twin Framework and Its Perspectives. Forests 2022, 13, 498. [Google Scholar] [CrossRef]
- Fan, L.; Powrie, W.; Smethurst, J.; Atkinson, P.M.; Einstein, H. The Effect of Short Ground Vegetation on Terrestrial Laser Scans at a Local Scale. ISPRS J. Photogramm. Remote Sens. 2014, 95, 42–52. [Google Scholar] [CrossRef]
- Yun, T.; Cao, L.; An, F.; Chen, B.; Xue, L.; Li, W.; Pincebourde, S.; Smith, M.J.; Eichhorn, M.P. Simulation of Multi-Platform LiDAR for Assessing Total Leaf Area in Tree Crowns. Agric. Meteorol. 2019, 276–277, 107610. [Google Scholar] [CrossRef]
- Grau, E.; Durrieu, S.; Fournier, R.; Gastellu-Etchegorry, J.P.; Yin, T. Estimation of 3D Vegetation Density with Terrestrial Laser Scanning Data Using Voxels. A Sensitivity Analysis of Influencing Parameters. Remote Sens. Environ. 2017, 191, 373–388. [Google Scholar] [CrossRef]
- Xu, Q.; Cao, L.; Xue, L.; Chen, B.; An, F.; Yun, T. Extraction of Leaf Biophysical Attributes Based on a Computer Graphic-Based Algorithm Using Terrestrial Laser Scanning Data. Remote Sens. 2019, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A Systematic Literature Review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, M.; Gou, Y.; Li, Q.; Zhou, Q. Forestry Digital Twin with Machine Learning in Landsat 7 Data. Front. Plant Sci. 2022, 13, 916900. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Jing, W.; Chen, G.; Lu, Y.; Song, H. A Survey of Big Data Analytics for Smart Forestry. IEEE Access 2019, 7, 46621–46636. [Google Scholar] [CrossRef]
- Zhang, F.; Dong, Y.; Xu, S.; Yang, X.; Lin, H. An Approach for Improving Firefighting Ability of Forest Road Network. Scand. J. Res. 2020, 35, 547–561. [Google Scholar] [CrossRef]
- Binkley, D.; Campoe, O.C.; Gspaltl, M.; Forrester, D.I. Light Absorption and Use Efficiency in Forests: Why Patterns Differ for Trees and Stands. Ecol. Manag. 2013, 288, 5–13. [Google Scholar] [CrossRef]
- Matsuo, T.; Martínez-Ramos, M.; Bongers, F.; van der Sande, M.T.; Poorter, L. Forest Structure Drives Changes in Light Heterogeneity during Tropical Secondary Forest Succession. J. Ecol. 2021, 109, 2871–2884. [Google Scholar] [CrossRef]
- van der Zande, D.; Stuckens, J.; Verstraeten, W.W.; Mereu, S.; Muys, B.; Coppin, P. 3D Modeling of Light Interception in Heterogeneous Forest Canopies Using Ground-Based LiDAR Data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 792–800. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O. Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors 2022, 22, 498. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Qin, W.; Liu, Q. RAPID: A Radiosity Applicable to Porous IndiviDual Objects for Directional Reflectance over Complex Vegetated Scenes. Remote Sens. Environ. 2013, 132, 221–237. [Google Scholar] [CrossRef]
- Sinoquet, H.; Pincebourde, S.; Adam, B.; Donès, N.; Phattaralerphong, J.; Combes, D.; Ploquin, S.; Sangsing, K.; Kasemsap, P.; Thanisawanyangkura, S.; et al. 3-D Maps of Tree Canopy Geometries at Leaf Scale. Ecology 2009, 90, 283. [Google Scholar] [CrossRef] [Green Version]
- Birdal, T.; Ilic, S. A Point Sampling Algorithm for 3D Matching of Irregular Geometries. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017. [Google Scholar]
- Niklas, K.J.; Spatz, H.C. Allometric Theory and the Mechanical Stability of Large Trees: Proof and Conjecture. Am. J. Bot. 2006, 93, 824–828. [Google Scholar] [CrossRef] [PubMed]
- Blomley, R.; Hovi, A.; Weinmann, M.; Hinz, S.; Korpela, I.; Jutzi, B. Tree Species Classification Using within Crown Localization of Waveform LiDAR Attributes. ISPRS J. Photogramm. Remote Sens. 2017, 133, 142–156. [Google Scholar] [CrossRef]
- Gao, D.; Wang, L.; Hu, B. Spectrum Efficient Communication for Heterogeneous IoT Networks. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3945–3955. [Google Scholar] [CrossRef]
- Gao, D.; Wang, S.; Liu, Y.; Jiang, W.; Li, Z.; He, T. Spoofing-Jamming Attack Based on Cross-Technology Communication for Wireless Networks. Comput. Commun. 2021, 177, 86–95. [Google Scholar] [CrossRef]
- Ma, L.; Upadhyaya, M.K. Effects of Leaf Position on Reflectance, Transmittance and Absorption of Red and Far-Red Light in Tomato, Chenopodium album and Amaranthus retroflexus Leaves. Weed Res. 2018, 58, 17–24. [Google Scholar] [CrossRef]
- Farrell, R.W. Structural Features Related to Tree Crotch Strength. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2003. [Google Scholar]
- Li, W.; Guo, Q.; Tao, S.; Su, Y. VBRT: A Novel Voxel-Based Radiative Transfer Model for Heterogeneous Three-Dimensional Forest Scenes. Remote Sens. Environ. 2018, 206, 318–335. [Google Scholar] [CrossRef]
- Hunt, B.; Pratt, E.; Gadagkar, V.; Yamashita, M.; Balatsky, A.V.; Davis, J.C. Evidence for a Superglass State in Solid 4He. Science 2009, 324, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Jin, S.; An, F.; Zhang, H.; Fan, J.; Eichhorn, M.P.; Jin, C.; Chen, B.; Jiang, L.; Yun, T. Shortwave Radiation Calculation for Forest Plots Using Airborne LiDAR Data and Computer Graphics. Plant Phenomics 2022, 2022, 9856739. [Google Scholar] [CrossRef] [PubMed]
- Seidel, D.; Annighöfer, P.; Thielman, A.; Seifert, Q.E.; Thauer, J.H.; Glatthorn, J.; Ehbrecht, M.; Kneib, T.; Ammer, C. Predicting Tree Species From 3D Laser Scanning Point Clouds Using Deep Learning. Front. Plant Sci. 2021, 12, 635440. [Google Scholar] [CrossRef]
- Lima, J.; Gonçalves, J.; Costa, P.; Moreira, A. Modeling and Simulation of a Laser Scanner Sensor: An Industrial Application Case Study. In Advances in Sustainable and Competitive Manufacturing Systems; Springer: Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Xu, S.; Yun, J.; Xu, S. An Effectively Dynamic Path Optimization Approach for the Tree Skeleton Extraction from Portable Laser Scanning Point Clouds. Remote Sens. 2021, 14, 94. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, Z.; Yun, T.; Wang, G.; Ruan, H.; She, G. Estimating Tree Volume Distributions in Subtropical Forests Using Airborne LiDAR Data. Remote Sens. 2019, 11, 97. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Yuan, P.; Lin, Y.; Tong, Y.; Liu, X. Pointwise Classification of Mobile Laser Scanning Point Clouds of Urban Scenes Using Raw Data. J. Appl. Remote Sens. 2021, 15, 024523. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Q.; Su, Y.; Tao, S.; Zhao, K.; Xu, G. Retrieving the Gap Fraction, Element Clumping Index, and Leaf Area Index of Individual Trees Using Single-Scan Data from a Terrestrial Laser Scanner. ISPRS J. Photogramm. Remote Sens. 2017, 130, 308–316. [Google Scholar] [CrossRef]
- Sercu, B.K.; Baeten, L.; van Coillie, F.; Martel, A.; Lens, L.; Verheyen, K.; Bonte, D. How Tree Species Identity and Diversity Affect Light Transmittance to the Understory in Mature Temperate Forests. Ecol. Evol. 2017, 7, 10861–10870. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zheng, J.; Zhao, Y.; Wang, J.; Schmullius, C. Design of a Generic Virtual Measurement Workflow for Processing Archived Point Cloud of Trees and Its Implementation of Light Condition Measurements on Stems. Remote Sens. 2021, 13, 2801. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, Y.; Zhang, X.; Zhao, Y.; Schmullius, C. Processing Point Clouds Using Simulated Physical Processes as Replacements of Conventional Mathematically Based Procedures: A Theoretical Virtual Measurement for Stem Volume. Remote Sens. 2021, 13, 4627. [Google Scholar] [CrossRef]
- Fan, X.; Luo, P.; Mu, Y.; Zhou, R.; Tjahjadi, T.; Ren, Y. Leaf Image Based Plant Disease Identification Using Transfer Learning and Feature Fusion. Comput. Electron Agric. 2022, 196, 106892. [Google Scholar] [CrossRef]
- Han, W.; Cao, L.; Xu, S. A Method of the Coverage Ratio of Street Trees Based on Deep Learning. Int. J. Interact. Multimed. Artif. Intell. 2022, 7, 23. [Google Scholar] [CrossRef]
- Wang, J.; Fan, X.; Yang, X.; Tjahjadi, T.; Wang, Y. Semi-Supervised Learning for Forest Fire Segmentation Using UAV Imagery. Forests 2022, 13, 1573. [Google Scholar] [CrossRef]
- Jonas, T.; Webster, C.; Mazzotti, G.; Malle, J. HPEval: A Canopy Shortwave Radiation Transmission Model Using High-Resolution Hemispherical Images. Agric. Meteorol. 2020, 284, 107903. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Liu, X.; Liu, Y. High-Precision Real-Time Forest Fire Video Detection Using One-Class Model. Forests 2022, 13, 1826. [Google Scholar] [CrossRef]
- Nandi, D.; Maitra, A. The Effects of Rain on Millimeter Wave Communication for Tropical Region. In Proceedings of the 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India, 9–15 March 2019. [Google Scholar]
- Zhang, F.; Bai, D. The Complete Chloroplast Genome of Citrus Medica (Rutaceae). Mitochondrial DNA Part B 2020, 5, 1627–1629. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Niu, S.; Wei, D.; Liu, X.; Wang, T.; Zhu, F.; Dong, J.; Sun, Q. Joint Metric Learning-Based Class-Specific Representation for Image Set Classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef]
Apple | Mango 1 | Mango 2 | Rubber 1 | Rubber 2 | Walnut | |
---|---|---|---|---|---|---|
Height (m) | 2.6 | 1.7 | 1.6 | 3.9 | 5.3 | 2.8 |
Crown diameter (m) | 1.2 | 1.6- | 1.7 | 1.4 | 3.9 | 1.7 |
Total number of leaves | 1434 | 1636 | 2459 | 895 | 12,141 | 1558 |
Total leaf area of the tree crown (m2) | 6.01 | 6.32 | 8.11 | 3.54 | 32.17 | 7.07 |
Basal diameter (cm) | 4.68 | 7.67 | 7.5 | 9 | 11 | 5.18 |
Total number of sampling points on leaf surfaces | 523,327 | 587,484 | 759,642 | 308,077 | 2,780,905 | 533,007 |
Total number of sampling points on branch surfaces | 116,437 | 152,686 | 493,759 | 513,064 | 636,624 | 128,777 |
Tree crown volume (m3) | 3.17 | 1.39 | 1.59 | 1.32 | 23.08 | 3.26 |
Tree crown projection area (m2) | 2.08 | 2.12 | 2.29 | 1.75 | 11.42 | 2.27 |
LAI (leaf area index) | 2.89 | 2.98 | 3.55 | 2.02 | 2.82 | 3.11 |
Average area of each leaf (cm2) | 32.37 | 39.10 | 33.52 | 40.27 | 26.41 | 45.38 |
Laser/Detector Pairs | Angular Resolution (Horizontal/Vertical) | Laser Emitting Frequency | Scanning Range | Beam Divergence Angle | Field of View (Horizontal/Vertical) |
---|---|---|---|---|---|
32 | 0.16°/1.33° | 10 HZ | 70 m | 2.79 mrad | 360°/41.3° |
Study Site Properties, Total Number of Sampling Points | Leaf 5,492,442 | Branch 2,041,347 | ||
---|---|---|---|---|
Total Length of the Survey Route (m) | ALS 28 | MLS 32 | ||
Distance between the Scanner and Nearest Vegetative Elements (m) | ALS 3.25 | MLS 2 | ||
Horizontal Angular Resolution α | Vertical Angular Resolution β | Velocity (of Drone or Vehicle) m/s | Points Scanned by ALS (Leaf/Branch) | Scanned Points by Ground-Based MLS (Leaf/Branch) |
0.16° | 1.33° | 10 | 111,427/16,721 | 122,930/45,783 |
5 | 219,450/32,721 | 236,900/88,474 | ||
2.5 | 422,295/63,423 | 44,567/164,809 | ||
1.25 | 792,369/119,857 | 789,785/289,538 | ||
0.16° | 0.66° | 10 | 227,452/33,996 | 248,202/92,530 |
5 | 438,262/66,529 | 466,125/172,619 | ||
2.5 | 820,181/125,006 | 835,249/306,105 | ||
1.25 | 1,446,340/228,773 | 1,370,875/501,098 | ||
0.16° | 0.33° | 10 | 414,376/62,909 | 443,580/163,929 |
5 | 776,827/119,005 | 800,187/293,124 | ||
2.5 | 1,380,959/216,976 | 1,320,550/482,288 | ||
1.25 | 2,237,373/370,752 | 1,918,169/699,250 | ||
0.08° | 1.33° | 10 | 219,289/32,921 | 238,758/89,440 |
5 | 425,307/64,052 | 443,356/163,196 | ||
2.5 | 795,223/120,677 | 792,763/290,122 | ||
1.25 | 1,407,224/221,631 | 1,285,589/465,843 | ||
0.08° | 0.66° | 10 | 440,874/67,094 | 471,644/175,830 |
5 | 823,838/127,014 | 837,783/308,909 | ||
2.5 | 1,451,543/229,504 | 1,367,892/501,052 | ||
1.25 | 2,328,977/387,505 | 1,979,187/721,898 | ||
0.08° | 0.33° | 10 | 783,260/121,757 | 808,479/298,141 |
5 | 1,393,804/219,389 | 1,316,251/480,716 | ||
2.5 | 2,257,959/373,468 | 1,931,773/704,246 | ||
1.25 | 3,205,456/572,769 | 2,451,110/904,188 |
Apple | Mango 1 | Mango 2 | Rubber 1 | Rubber 2 | Walnut | |
---|---|---|---|---|---|---|
Unshaded area of leaves (m2) | 2.41 | 4.23 | 5.67 | 1.21 | 14.02 | 2.44 |
Shaded area of leaves (m2) | 3.59 | 2.09 | 2.43 | 2.33 | 18.14 | 4.63 |
Ratio | 0.67 | 2.02 | 2.33 | 0.51 | 0.77 | 0.52 |
Douglas Fir | European Beech | Scots Pine | Norway Spruce | European Ash | |
---|---|---|---|---|---|
10:00 (: 133.91°; : 46.61°) | 0.67 | 0.49 | 0.54 | 0.61 | 0.57 |
12:00 (: 180.57°; : 57.01°) | 0.86 | 0.68 | 0.79 | 0.82 | 0.71 |
14:00 (: 226.74°; : 46.17°) | 0.65 | 0.56 | 0.52 | 0.59 | 0.52 |
16:00 (: 251.79°; : 23.96°) | 0.46 | 0.33 | 0.41 | 0.43 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, K.; Chen, L.; Wang, X.; An, F.; Zhang, H.; Yun, T. Simulation on Different Patterns of Mobile Laser Scanning with Extended Application on Solar Beam Illumination for Forest Plot. Forests 2022, 13, 2139. https://doi.org/10.3390/f13122139
Jiang K, Chen L, Wang X, An F, Zhang H, Yun T. Simulation on Different Patterns of Mobile Laser Scanning with Extended Application on Solar Beam Illumination for Forest Plot. Forests. 2022; 13(12):2139. https://doi.org/10.3390/f13122139
Chicago/Turabian StyleJiang, Kang, Liang Chen, Xiangjun Wang, Feng An, Huaiqing Zhang, and Ting Yun. 2022. "Simulation on Different Patterns of Mobile Laser Scanning with Extended Application on Solar Beam Illumination for Forest Plot" Forests 13, no. 12: 2139. https://doi.org/10.3390/f13122139
APA StyleJiang, K., Chen, L., Wang, X., An, F., Zhang, H., & Yun, T. (2022). Simulation on Different Patterns of Mobile Laser Scanning with Extended Application on Solar Beam Illumination for Forest Plot. Forests, 13(12), 2139. https://doi.org/10.3390/f13122139