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Abstract: Light detection and ranging (LiDAR) technology has become a mainstream tool for forest
surveys, significantly contributing to the improved accuracy of forest inventories. However, the
accuracy of the scanned data and tree properties derived using LiDAR technology may differ de-
pending on the occlusion effect, scanning configurations, various scanning patterns, and vegetative
characteristics of forest plots. Hence, this paper presents a computer simulation program to build a
digital forest plot composed of many tree models constructed based on in situ measurement informa-
tion and two mobile scanning patterns, i.e., airborne laser scanning (ALS) and ground-based mobile
laser scanning (MLS). Through the adjustment of scanning parameters and the velocity of vehicle
loading LiDAR sensors, the points scanned using two scanning patterns were compared with the
original sampling points, derived from the constructed digital forest plots. The results show that
only 2% of sampling points were collected by LiDAR sensors with the fastest vehicle speed (10 m/s)
and coarsest scanning angular resolution (horizontal angular resolution 0.16° and vertical angular
resolution 1.33°), and approximately 50% of sampling points were collected by LiDAR sensors with
slow vehicle velocity (1.25 m/s) and a finer scanning angular resolution (horizontal angular resolution
0.08° and vertical angular resolution 0.33°). Meanwhile, the potential extended application of the
proposed computer simulation program as a light model of forest plots was discussed to underpin
the creation of the forest digital twin. Three main conclusions are drawn: (1) the collected points
from airborne laser scanning (ALS) are higher than those collected from ground-based mobile laser
scanning (MLS); (2) reducing the vehicle velocity is more efficient at improving the high density of
the point cloud data than by increasing the scanning angular resolution; (3) the lateral extension of
crown area increasing the light beams’ receptor area and the clumped leaf dispersion augmenting
the light penetration with vertical elongation are the two paramount factors influencing the light
transmittance of tree crowns.

Keywords: computer simulation; forest plot modeling; airborne laser scanning; ground-based mobile
laser scanning; point cloud acquisition; light model

1. Introduction

Forests are intrinsically 3D systems, and most forest ecosystem research is based on
spatially oriented data. With respect to the remote sensing data that are utilized, LIDAR
scans have become a preferred alternative, rapidly replacing traditional optical imagery in
forest characteristic representation [1].The two common laser scanning patterns include
ground-based mobile LiDAR [2] and airborne LiDAR [3]. LiDAR sensors, loaded on ground
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vehicles, mainly provide a lateral perspective of the high-density representation of tree
trunks, branches, and leaves at the low and middle heights of the forest canopy [4]. Airborne
LiDAR provides a top-down measurement setup for the quantitative acquisition of features
in the upper forest canopies, such as treetop locations and upper tree crown attributes [5].
The use of any LiDAR-scanning pattern for forest applications, such as the assessment
of forest volumes, biomass, and carbon stocks, may be limited by specific environmental
factors and the different measurement setups. For example, the various-perspective view
of the scanning angle leads to the inhomogeneous distribution of scanned point cloud [6],
localized vegetative elements in forest canopy result in various degrees of occlusion in
different scanning patterns [2], and the specification of the sensors and scanning parameter
settings affect the quality of the obtained point clouds [7]. It is unknown how significantly
these main factors affect the quality of the obtained point clouds. LiDAR utilizes light
or nonvisible electromagnetic radiation to measure the distance to the target objects (e.g.,
biotic elements of the forest) [8]. Hence, the pervading propagation of LIDAR beams within
heterogeneous tree crowns may enlighten the model of light transfer in complex forest
scenes, which is highly important for the understanding of the impacts of light distribution
in forest ecosystem development with water absorption and evaporation [9] and for guiding
the virtual representation of forests with real physical and physiological processes, known
as the forest digital twin [10]. Therefore, it is necessary to provide a method with reliable
benchmarking against output and a realistic ray propagation process to evaluate the efficacy
of different laser-scanning patterns on acquisitions of forest phenotype information.

Many researchers have attempted to evaluate the effect of laser-scanning forest-
measurement techniques with different scanning parameter setups. For example, the
variation in vegetation errors of height estimation according to scan distance and incidence
angle were analyzed at the local scale [11]; the relationship between the retrieval of forest
gap fraction and sampling density of the LiDAR data was calculated [6]; occlusion metrics
among multiplatform LiDAR for different target trees were performed using computer sim-
ulation techniques [12]; another sensitivity analysis was conducted to study the influence
of instrument parameters (i.e., beam divergence and multiecho LiDAR points), scanning
configuration (scanning angular resolution), and vegetation characteristics (leaf size, leaf
density, and angle distribution) [13]. The previous research repeatedly changed the scan-
ning configurations and endeavored to find the efficacy of the main scanning factors, such
as the characteristics of forest canopies, scanning angular resolution, scan distance, and
scanning angles, regarding the point cloud data obtained for target forests [13]. The strategy
involving repeated pilots is not convenient and requires arduous manual measurements to
validate the results, which results in a bias towards a comparison of the collected data and
the true, universally existing value [14]. Therefore, the credibility of this derivation pattern
is not well understood, and a more advanced approach is worth further study.

Digital twin, typically described as the synchronization of a physical entity and a vir-
tual counterpart with a specific fidelity and frequency, is increasingly being recognized as a
means of optimizing the performance of the physical entity by reasonably and effectively
organizing and calculating the massive data of the virtual counterpart [15]. Leveraging the
development of computational techniques, the digital twin has become a practical topic
across both academia and industry, and thus brings unprecedented opportunities to forest
ecosystem monitoring [16]. The digital twin of forest aims to integrate accurate and reliable
forest monitoring data with the surrounding environmental state, which are obtained by
advanced remote sensing technologies, and sharpen the digital, perceptual, intelligent,
and sustainable forest management [17,18]. Light is a key resource for all performance
and production by trees, and it provides the foundational energy during the process of
photosynthate, converting absorbed light into various tree biomass tissues [19]. Therefore,
understanding the heterogeneous distribution of light within the forest is paramount to
establishment of the forest digital twin, from the tree biotic state to the corresponding
monitoring environment state [20,21]. However, different from the agricultural digital
twin, with real-time monitoring devices on farms, forest landscapes with complex commu-
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nity structures do not have the necessary conditions to acquire systematized forest data
such as vertical and horizontal light distribution within the forest stands [22]. Thus, the
light cosimulation program uses existing input data from the physical entity collected by
monitoring devices (e.g., leaf distribution, leaf area, and crown shape) to derive the light
transmission process within forests. This is essential to make up for the deficiencies in
the continuous stream of forest physiological procedure portrayal and assessment of solar
radiation distribution within canopies [23].

The aim of the present study was to develop a computer-simulation-based method to
quantify the relationship between multiple scanning patterns, various scanning configura-
tions, and different forest plots. The specific objectives were the following: (1) to generate
various forest plots composed of 3D virtual tree models with the phenotypic characteristics
obtained from field measurements; (2) to develop a fast computer simulation program of
mobile ground-based and airborne laser scanning to generate scanned points of correspond-
ing modeling forest plots and quantify the scanned results and occlusion metrics under
different scanning patterns and configurations; and (3) to suggest a potential extension of
the laser scanning simulation program as a light model of modeling forest plots and assess
the impact of the occlusion effects in the forest canopy on the transmittance of the light
rays. In this way, we provide a convenient and verifiable method to quantitatively assess
the efficacy of mobile laser scanning techniques on the acquisition of forest appearance
data and produce guidelines to optimize the scanning configuration selection in different
forest scenarios. Meanwhile, the light transmittance within the forest plot, including the
shading rate of leaves, is discussed with the extended application of the laser scanning
simulation program, combined with a uniform sampling strategy.

2. Materials and Methods

The following paragraphs provide an overview of the different steps of the methodol-
ogy, which are schematically represented in Figure 1.

Tree modeling

Sampling

Scanning simulation

Quantitive assessment

Tree structrual
data collected by
electromagnetic

3D digitizer

| >

Leaf blades and
tree skeleton
reconstruction

| >

Discrete points covering
entire tree model generated
by uniform sampling strategy

—»>

Laser scanning simulation
with multi-return scanning
results

>

Scan quality assessment under
various scanning configurations
and patterns

Figure 1. Flowchart illustrating the main steps of our mobile laser scanning simulation framework.

2.1. Field Data

The complexity, heterogeneity, and diversity of natural forests challenge LiDAR’s
capacity to provide accurate three-dimensional information on forest structure. The mutual
occlusion effect of vegetative elements throughout the forest leads to an inadequate account
of incident and transmitted LiDAR beams at the individual stand scale, leading to the
omission of localized forest structure data acquired by LiDAR. To assess the relationships
between the scanned results and forest occlusion metrics, a modeling forest landscape
with three-dimensional heterogeneous structures that is capable of deriving ecological
parameters from the vegetation structure of single trees is desirable. Herein, six datasets,
comprising one apple tree (Malus communis), two mango trees (Mangifera indica), two
rubber trees (Hevea brasiliensis), and one walnut tree (Juglans intermedia), are provided to
establish a heterogeneous forest scene with various crown layers, as shown in Figure 2a,
where two rubber trees constitute the overstory layer, apple and walnut constitute the
understory layer, and two mango trees constitute the shrub layer. Each leaf location and
orientation in every tree crown were manually measured using an electromagnetic 3D
digitizer (Fastrak, Polhemus Inc., Colchester, VT, USA). All leaves, leaflets, and compound
leaves were digitized using the digitizer. Each main branch and all first-order and second-
order branches were measured using the digitizer from the proximal to the distal tip
of each branch. We, therefore, can precisely determine the rank order of leaves along
each last-order branch for every tree specimen. The specific measurement information of
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six tree specimens is listed in Table 1. The 20-year-old apple tree was located in Vouvray,
near Tours, France. The two two-year-old mango trees (Mango 1 and 2, listed in Table 1)
were in an orchard in Ban Bung, near Chonburi, Thailand. The smaller 1.5-year-old rubber
tree (Rubber 1, listed in Table 1) was grown in the garden of the Department of Agronomy,
Kasetsart University, Bangkok, Thailand. The larger three-year-old rubber tree (Rubber
2, listed in Table 1) was grown in Suwan Wajokkasikit Field Crops Research Station, Pak
Chong, Thailand. The three-year-old walnut tree was grown in a research field at INRA
Research Center in Clermont-Ferrand, France.

600 600
Z(cm) — Erarf\ch Z(cm) @ Leaf edge point
5004 @ Lea 500 ® Leaf point
@ Branch point
400 400 >
300 300
200 200
100 100
_J -
()
Figure 2. Our program shows the reconstructed forest plot scenario based on the field measurement
data. (a) The several trees constituting a forest plot for our study, and the brightness value is adopted
to represent the height value. (b) The discretization of tree models using evenly distributed sampling
points covering the vegetative element surfaces, where the blue, green, and black points represent the
sampling points on the branch surface, leaf surface, and leaf edge, respectively. (c) The magnification
of simulated tree crotch structure, where the spot spacing between two neighboring discrete points
used in uniform sampling strategy is set to c.
Table 1. Growth properties of the available tree specimens used in our simulation method. Some
growth properties, including height, crown diameter, number of leaves, and total leaf area of the tree
crown, were manually collected by field measurements [24], and other properties were derived from
the manually collected properties mentioned above.
Apple Mango 1 Mango 2 Rubber1 Rubber 2 Walnut
Height (m) 2.6 1.7 1.6 3.9 5.3 2.8
Crown diameter (m) 1.2 1.6- 1.7 14 3.9 1.7
Total number of leaves 1434 1636 2459 895 12,141 1558
Total leaf area of the tree crown (m?2) 6.01 6.32 8.11 3.54 32.17 7.07
Basal diameter (cm) 4.68 7.67 7.5 9 11 5.18
Total number of sampling points on 55 357 587,484 759,642 308077 2780905 533,007
leaf surfaces
Total number of sampling points on 176 437 152,686 493,759 513,064 636,624 128,777
branch surfaces
Tree crown volume (m?3) 3.17 1.39 1.59 1.32 23.08 3.26
Tree crown projection area (m?) 2.08 212 2.29 1.75 11.42 227
LAI (leaf area index) 2.89 2.98 3.55 2.02 2.82 3.11

Average area of each leaf (cm?) 32.37 39.10 33.52 40.27 26.41 45.38
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2.2. Forest Plot Modeling and Laser Scanning Simulation

For each tree crown, we adopted a single tree modeling method [24] according to the
information of manual measurements, which includes every spatial leaf blade depicted
by ellipse surfaces with a given size, and tree skeleton reconstructed by the composition
of lots of cylinders with settable radiuses and directions. Consequently, we used the six
tree specimens to constitute a forest plot with a tree spacing of two meters on the line and
between rows (Figure 2a). In computer vision, to improve computational efficiency, three-
dimensional objects were treated as a well-behaving point cloud with a well-distributed
vertex set covering the entire object surface [25]. We transformed every single tree model
composed of regular and conforming mesh geometries, i.e., ellipse and cylinders surface,
into uniform discrete points using the uniform sampling strategy with fixed spot spacing
c (Figure 2b,c). The following mobile laser scanning simulation can be facilitated by this
sparse representation of every single tree model.

The actual laser scanning process aims to determine the intersection points between
vegetative elements and the laser beams emitted from the scanner. However, the calculation
of the intersection between geometric primitives and numerous lines is time-consuming
and computationally complex. After the sampling strategy was conducted for each branch
and leaf, the scanned point acquisition was simplified to seek the intersection between the
incident lines and the sampling points on the branch and leaf surfaces, which improves the
efficiency and computational performance of our simulation program.

Meanwhile, two parameters (i.e., angular resolution T and beam divergence ¢) con-
cerning the scanning configuration were set. The angular resolution 7, including horizontal
and vertical angular resolution, was used to determine the minimal angle increment be-
tween the two successively emitted laser beams. The smaller the angular resolution, the
finer the scanning resolution, and a smaller spacing of scanned points is obtained. In
addition, the spacing of scanned points also depends on the distance between the scanner
and the target vegetative elements. Here, we set the sampling spacing as smaller than
the maximal spacing of scanned points to preclude any beam from passing through the
spacing between two neighboring sampling points without any recorded information. In
order to simulate the properties of beam divergence of the scanner, the sampling points on
each leaf surface were divided into inner points and edge points. If a beam is intercepted
by an edge point, there is a larger probability of the beam being split into two portions,
and the split beam with remaining energy continues along its original direction to seek
the second intersection with the other vegetative elements. When the second intersection
of the beam still occurs with an edge point, a scanned point is recorded and the beam
with residual energy continues along the path. This strategy can be employed to manage
a multiecho laser scanning simulation program that is suitable for the beam divergence
properties. Here, our program only simulated three echoes, as shown in Figure 3, because
the laser energy attenuated after each collision by edge point, which is consistent with the
real situations of using the laser scanners on the market.

Scalability and compatibility are essential prerequisites for any computer simulation
program. Hence, it is plausible that the scanning simulation program is suitable for any
LiDAR sensors and scanning patterns. Here, the popular, high-definition Velodyne HDL-
32E LiDAR sensor (Velodyne Lidar, Inc., San Jose, CA, USA) is taken as a typical case for our
simulation. The sensor can be mounted on the pan and tilt of an unmanned aerial vehicle
and radar platforms on the roof of the ground vehicle for aerial 3D mapping and mobile
terrestrial mapping, respectively. The technical specifications of the Velodyne HDL-32E
sensor are listed in Table 2. The study site of the forest plot, including two mango trees,
two rubber trees, a walnut tree, and an apple tree, has a total of 5,502,122 sampling points
on leaf surfaces and 2,053,687 sampling points on branch surfaces. The specified growth
properties of every tree can be seen in Table 1. Two simulation experiments were conducted
to realize the ALS and ground-based MLS for the same forest plot.
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Figure 3. Our simulation program diagram shows the multi-return scanning results caused by the
laser characteristics of beam divergence for our studied forest plot. The position of scanner was set at
pink point in the figure, where the pink red arrows characterized the emission orientation of laser
beams. The red points in the figure represent the sampling points on the edges of leaf surfaces that
are scanned by laser beams and trigger the first signal returns. Then, the split beams continue along
their paths and collide with the consequent vegetative elements, which produce the second returns,
represented by green points. If the second returns occur, caused by the beams being intercepted by
any edge point on the leaf surface, it is possible to generate the third return (blue points) when the
beams with remnant energy collide with the following vegetative elements again. As seen from the
diagram, the first returns are near the scanner and the last returns are further from the scanner.

Table 2. The technical specifications of the Velodyne HDL-32E sensor.

Laser/Detector Pairs Angular Resolution Laser Emitting Scanning Range Beam Divergence Field of View
(Horizontal/Vertical) Frequency & & Angle (Horizontal/Vertical)
32 0.16°/1.33° 10HZ 70 m 2.79 mrad 360°/41.3°

(1) For ALS, the HDL-32E LiDAR sensor was mounted under the multirotor unmanned
aerial vehicle to point at the nadir and set to “continuous shooting mode” to collect
data at 10 revolutions per second. The flight was programmed as a predetermined
rectangle parallel flight plane, designed to cover the study site plus a buffer area,
avoiding edge effects in the scanned data collection (Figure 4a). The flight was
conducted at a 6.25 m altitude above the forest canopy of the study site, approximately
1 m distance away from the peak height of the tree crown, and the flight-path-tracing
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survey lines (blue dashed lines in Figure 4a) were at a set flight speed. This scanning
pattern provides a 41.3° vertical field of view (FOV) downward and a 360° horizontal
FOV around the flight path (Figure 4b).
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200 ?
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200+
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(©)

Figure 4. Our program diagram shows the simulation workflow of our aerial LiDAR scanning
process. (a,c) The predetermined survey route of our flights with a controllable flight speed covering
the study site and a top-down scanning pattern. (b) A lying HDL-32E sensor is mounted under the
UAV to produce a 41.3° vertical FOV and a 360° horizontal FOV with adjustable angular resolutions,
respectively. (d) Final scanning results show sparsely scanned data of the target forest plot, with
occlusion dominating in the lower part of the forest canopy.

(2) For ground-based MLS, a simulation using an HDL-32E LiDAR sensor was mounted
on a car roof to perform a 360° horizontal FOV and 41.3° vertical FOV scanning
(Figure 5a,b). The car runs at a set speed along the survey route surrounding the study
site and remains about 1 m from the nearest tree leaves.
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Figure 5. Our program diagram shows the simulation of the ground-based MLS for the modeled
forest plot. (a) The set ground vehicle’s path around the target trees and the sensor fires lasers to
capture the point cloud from different lateral sides. (b) A standing Velodyne HDL-32E was installed
on the car’s roof to guarantee a +10.67° to —30.67° vertical scanning FOV and 360° horizontal
scanning FOV, with the settable angular resolution and car running speed. (c¢) Equivalent diagram
illustrates the simulation of a ground-based MLS system designed to acquire forest-scanned data.
(d) The collected scanned data from mobile LiDAR with a ground vehicle; occlusion effects are mostly
expected to occur high up in the forest, as the leaves in the higher part are out of scanning range due
to the limitation in vertical FOV.

3. Results
3.1. Laser Scanning Simulation

The scenarios established using our simulation program for the two scanning patterns
are shown in Figures 4 and 5, where the survey routes, scanning process, and scanned
results are presented by several subgraphs. For the same forest plot, the number of points
obtained using two different scanning patterns, along with the variations in vehicle velocity
and angular resolution, are shown in Table 3. The conclusion derived from Table 3 is that
the scanned leaf points collected by ALS are smaller than those collected by ground-based
MLS when the velocity of the vehicle loading the LiDAR sensor is at 10 m/s speed. As
the speed of the vehicle slows down, leading to more observation points being obtained
for scanning data acquisition, the number of points of the leaf that are scanned by ALS
exceeds those obtained using ground-based MLS. A reasonable explanation for this is that
leaf inclination distribution, according to botany characteristics, optimizes solar radiation
absorption and deepens the laser beams emitted from overhead that enter the forest canopy.
In addition, the number of branch points scanned using ground-based MLS is higher
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than that obtained using ALS because more branch elements in the forest canopy can be
seen from the lateral view. If we changed the scanning angular resolution, the number
of scanned points by ALS would still be smaller than those obtained using ground-based
MLS, which provides the heuristic knowledge that vertically grown tree crowns usually
provide more vegetative elements that are exposed to the lateral side than the top view.

Table 3. The results of ALS and ground-based MLS versus the variations in the tuning of
the velocity of the drone or vehicle, the vertical angular resolution, and the horizontal angular
resolution, respectively.

Study Site Properties, Total Number of Sampling Points Leaf 5,492,442 Branch 2,041,347
Total Length of the Survey Route (m) ALS 28 MLS 32
Distance between the Scanner and Nearest Vegetative Elements (m) ALS 3.25 MLS 2
Horizontal Angular Vertical Angular Velocity (of Drone or Points Scanned by ALS Scanned Points by Ground-Based
Resolution & Resolution Vehicle) m/s (Leaf/Branch) MLS (Leaf/Branch)
10 111,427/16,721 122,930/45,783
0.16° 1.33° 5 219,450/32,721 236,900/88,474
) ’ 2.5 422,295/63,423 44,567 /164,809
1.25 792,369/119,857 789,785/289,538
10 227,452/33,996 248,202/92,530
0.16° 0.66° 5 438,262/66,529 466,125/172,619
) : 2.5 820,181/125,006 835,249/306,105
1.25 1,446,340/228,773 1,370,875/501,098
10 414,376 /62,909 443,580/163,929
0.16° 0.33° 5 776,827/119,005 800,187/293,124
) ’ 2.5 1,380,959/216,976 1,320,550/482,288
1.25 2,237,373/370,752 1,918,169/699,250
10 219,289/32,921 238,758/89,440
0.08° 1.33° 5 425,307 /64,052 443,356/163,196
: ’ 25 795,223 /120,677 792,763/290,122
1.25 1,407,224/221,631 1,285,589/465,843
10 440,874 /67,094 471,644/175,830
0.08° 0.66° 5 823,838/127,014 837,783/308,909
: : 2.5 1,451,543/229,504 1,367,892/501,052
1.25 2,328,977 /387,505 1,979,187/721,898
10 783,260/121,757 808,479/298,141
0.08° 0.33° 5 1,393,804/219,389 1,316,251/480,716
: ’ 2.5 2,257,959/373,468 1,931,773/704,246
1.25 3,205,456 /572,769 2,451,110/904,188

A vertical profile was drawn of the original sampling points for the study forest plot for
comparison with the scanned points obtained by two scanning patterns with the variations
in tuning vehicle velocity and scanning angular resolution (Figure 6). Figure 6a shows that
the distribution of the original sampling points on leaf surfaces of the forest plot presents a
roughly bimodal distribution, which is attributed to the crown of the larger tree (Rubber
tree 2) being higher than the other five smaller trees (see Table 1), causing the leaf elements
to mainly distribute at height intervals of 0.5-1.5 m and 34 m. The sampling points on
the branch elements are mainly distributed in the lower parts of the forest canopy, which
conforms to the general phenomenon where nonphotosynthetic components support the
weight of the whole tree crowns and are hidden in the forest canopy [26,27]. Figure 6b
shows the scanned point distribution versus the variations in tuning scanning angular
resolution with an unchanged vehicle velocity, where the distribution of the scanned points
collected by ALS preserves its bimodal distribution, with a smaller peak in the lower
heights of the canopy and a larger peak in the upper heights of the canopy. This result
demonstrates that a larger proportion of laser beams are intercepted by the foliage elements
belonging to the larger trees, and a small proportion of laser beams travel through the upper
forest canopy and hit the subcanopy vegetation understory. Conversely, the distribution of
the scanned points collected by ground-based MLS presents with a bimodal distribution,
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with a larger peak at the lower heights and a small peak at the higher heights of the forest
canopy. This distribution can be explained by the fact that the LiDAR sensor fixed on the
car roof is approximately 2.2 m in height, with a 41.3° vertical FOV and 1.5 m distance
from the nearest foliage elements, resulting in a limited scanning field focused on the
middle parts of the forest canopy. Hence, the diagram of the scanned results (Figure 5d)
shows the deficiencies in depicting the upper forest canopy without adequate laser beam
coverage. Figure 6¢ shows the scanning results versus the variation in tuning scanning
angular resolution when vehicle velocity is unchanged. Similar results for scanned point
distribution are obtained in Figure 6b. This means that the finer scanning angular resolution
or slower velocity of the vehicle loading LiDAR sensor will increase the number of scanned
target forest plot points that are acquired. The only difference in the number of collected
scanned points in Figure 6b,c is that slowing down the velocity speed to effectively improve
the quality of the scanned points is preferred to changing the scanning angular resolution.
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Figure 6. The vertical profile of the vegetative element distribution is in the form of discrete

points. (a) The vertical profile of the original sampling points compared to the vegetative elements.

(b) Vertical profiles of the acquired scanned points versus the variation in the tuning of scanned angu-

lar resolution with an unchanged velocity of the vehicle loading LiDAR sensors. (c) Vertical profiles

of the acquired scanned points versus the variation in tuning vehicle velocity with an unchanged

scanning angular resolution. Through the comparison between (b,c), the number of the collected

point clouds shows that the effect of adjusting velocity outperforms that of the scanning angular

resolution in the acquisition of high-density point cloud data for the same forest plot.

3.2. Application Extension of the Proposed Framework for a Light Model of Forest Plots

The increase in technologies associated with Internet of Things (IoT) devices [28],
multivariate remote sensing, and 5G wireless broadband connectivity [29] could possibly
underpin the simultaneous collection and integration of the physical or biotic variables of
trees, which underpins the establishment of a forest digital twin and sharpens sustainable
forest management. Herein, we envisage an extended application of the proposed frame-
work to model light transfer in a heterogenous forest landscape, which is paramount to
twinning the ecosystems of forest scenes, as light availability is a core pillar of tree species
partition and spatial and temporal gradients. The reasons for the proposed framework,
which could form a potential light model of a forest plot, are as follows:

e The precise digitized data of individual trees shown in Table 1, as measured by
an electromagnetic 3D digitizer, provided as realistic a digital twin of each tree as
possible, including the location and orientation of each leaf in every tree crown. This
synchronized the virtual and physical states of every leaf, simulating a realistic light
transmission environment in a forest plot.

e  The scanned point acquisitions for every laser beam, with an efficient computational
performance as measured by the simplified strategy mentioned in Section 2.2, can
easily be converted to the intersection points between solar rays covering all directions
and biotic elements in forest plots, such as leaves, branches, and trunks.
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By regarding the laser beams emitted by the scanner as solar beams, we can efficiently
seek point p of the ray intersection against forest scene elements. To simulate the phys-
iological properties of various biotic elements in the modeling forest plot, we classified
the uniform sampling points of each tree into two classes, leaf and branch, shown in
Figure 7a,b, respectively, which have different optical properties. The intersection point
pi(a;, 1y, ) of the ray and the leaf point, determined by its biochemical characteristics and
3D cellular organization, has light absorption a; = 0.7, light reflectance r; = 0.2, and light
transmittance t; = 0.1 [30]. The intersection point pj(ay, ) of the ray and the branch point
has light absorption, a; = 0.6, and light reflectance, r;, = 0.4, without light transmittance,
due to its structural features [31]. Each solar beam : with initial energy Ey was traced using
a recursive procedure, i.e., the reflected and transmitted rays derived from the initialized
solar beams ! as the material properties of a struck object were recursively traced to find
the corresponding intersection point with biotic elements in the modeling forest plot [32].
Due to the initial energy Ej attenuated during the transmittance or reflectance with the
corresponding coefficient r and ¢, respectively, we stopped the recursion of ray tracing
when the initial energy was below threshold value d - Ey, where d = 0.2 represents the rate
of minimum light energy. The energy of each uniform sampling point of a tree with an
initialized value equal to zero was determined as the accumulated absorption energy of
incident, transmitted, and reflected light during the process of ray tracing. Figure 7c shows
the light simulation of a single tree, where light is derived from the top left. The brightness
of the point in Figure 7c indicates the energy magnitude of the uniform sampling point of a
single tree.
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Figure 7. The schematic diagram draws the light simulation of the forest plot based on the proposed
framework. (a,b) The exhibition of branch and leaf sampling points of a single tree. (c) The light
simulation of a single tree where light originates from the top left. (d) Light simulation of the
modeling forest plot with a solar azimuth angle of 179.01° and an altitude angle of 62.88°. (e) The
light transmittance of the forest plot under the solar beams at each height interval, where distribution
histograms illustrate the number of uniform sampling points (blue color) and solar beam hit points
(red color) at each height level, respectively, and the line chart represents the light transmittance at
each height level.
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Furthermore, we drew a light simulation of a modeling forest plot composed of six
trees with corresponding measurement information in Table 1. This was simulated at 12:00
on 10 September 2022, in Nanjing, when solar light was derived from the position of the
sun in the sky, with a solar azimuth angle of 179.01° and an altitude angle of 62.88°, as
shown in Figure 7d. Based on the sampling strategy used for each branch and leaf, the light
transmittance of each height level, i.e., the ratio of points hit by solar beams to all uniform
sampling points with a specific height interval, can be calculated, as shown in Figure 7e.
This assumes an upward tendency with an increase in the height level, which conforms to
the photosynthetic competition phenomenon that light’s availability to understory trees
with crowns extending into the lower parts of the dominant tree is reduced as biodiversity
increases [33]. Significant fluctuations appear over the height interval of 1.5~2.5 m, with
a small peak, which is mainly attributed to the crown of Mango 1 and Mango 2, with
heights of 1.7 m and 1.6 m, respectively, when directly exposed to the solar beams without
overlapping vegetative elements from surrounding dominant trees. By virtue of the leaf
area of each tree in the modeling forest plot, measured by electromagnetic 3D digitizer
(shown in Table 1), the unshaded area and shaded area of leaves for each tree can be
estimated, i.e., leaf areas of each tree occupied by uniform sampling points that were
(unshaded area) and were not (shaded area) hit by solar beams. Table 4 quantitatively
shows the unshaded area LA, and shaded area LA, and the corresponding ratio LA, /LAs
of leaves for each tree in the modeling forest plot. The ratio LA, /LAs of the dominant tree
(Rubber 2) with the larger crown is lower than other suppressed trees (Mango 1 and Mango
2) with smaller crowns, which is attributed to their tree crown architecture and the angles
at which they accept solar beams. For suppressed trees (Mango 1 and Mango 2) with wider-
spreading crowns exposed to full sunlight in the emulated environment, the lower height
increases the amount of light with vertical elongation, and the quill-shaped leaves cluster
together in a radiant shape, anisotropically growing, which extends the lateral area of the
crown and increases the receptor area of solar beams. For the dominated tree (Rubber 2), the
higher leaf density (shown in Table 1) and typical conical shape crown with deeper vertical
elongation decreases the penetration of light through the clustered foliage, making more
nonphotosynthetic components fundamental to the mechanical strength of the whole tree
and causing the lower ratio LA, / LA;. Furthermore, the existence other subcanopy trees
(Apple, Rubber 1, and Walnut) with a low ratio LA, /LA; is mainly attributed to the solar
light emitted from the sun’s position in the emulated environment, which is overshadowed
by a larger and higher tree crown (Rubber 2). In conclusion, the extension of the proposed
framework utilized in the light model of a forest plot with lower computational complexity
has the potential advantage of capturing and digitizing the heterogeneous light distribution
during forest plots, which is a key resource for tree performance.

Table 4. Unshaded and shaded area of leaves for each tree in the modeling forest plot with the specific
sun position at 12:00 on 10 September 2022 in Nanjing.

Apple Mango 1 Mango 2 Rubber 1 Rubber 2 Walnut
Unshaded area LA, of leaves (m?) 241 4.23 5.67 1.21 14.02 2.44
Shaded area LA; of leaves (m?) 3.59 2.09 243 2.33 18.14 4.63
Ratio LA, /LAs 0.67 2.02 2.33 0.51 0.77 0.52

Extended Experiments of Light Model for the Complex Forest Plot

It is of great interest to model the light transfer within complex and heterogenous
forest scenes to research light-dependent biophysiological processes [34]. We drew the light
simulation of a mixed tree species plot made up of three coniferous species, Douglas fir,
Norway spruce, and Scots pine, and two deciduous species, European beech and European
ash. To facilitate the extended experiments, as shown in Figure 8a, three-dimensional
models of five tree species were built in the SpeedTree software with realistic morphological
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and structural characteristics derived from the open LiDAR dataset produced by Dominik
Seidel et al. [35]. For each tree species, we generated 50 trees by varying corresponding
parameters within reasonable bounds, such as diameter at breast height, crown width, and
tree height, using SpeedTree software, which did not change the biotic characteristic of
each tree. Then, as mentioned above, the uniform sampling strategy was used to generate
uniform sampling points corresponding to the three-dimensional model of each tree species,
which was used for light simulation. The hourly light simulation of the mixed tree species
plot with different solar altitude angles from 10:00 to 16:00 on 10 September 2022 in Nanjing
was drawn with two-hour intervals; the results are shown in Figure 8b (10:00), Figure 8c
(12:00), Figure 8d (14:00), and Figure 8e (16:00).

Figure 8. Light simulation of mixed tree species plot composed of five species in (a). (a) Exemplary
three-dimensional models of five tree species built in the SpeedTree software. From left to right:
Douglas fir, European beech, Scots pine, Norway spruce, and European ash. (b—e) Light simulation
results of mixed tree species plot at different times on 10 September 2022 in Nanjing: (b) at 10:00,
(c) at 12:00, (d) at 14:00, and (e) at 16:00.

For each tree species in the emulated mixed plot, the ratio of points hit by solar beams
at different times of the day to all uniform sampling points (light transmittance) is shown in
Table 5. The solar orientation varies in response to time, thereby affecting the altitude and
azimuth angles of transmitted solar beams, and consequently making a difference to the
light transmittance of each tree species at different times. For example, the solar altitude
angle at noon (12:00) is obviously higher than at other times of the day, casting shorter tree
shadows (shown in Figure 8c), and fully exposing most trees in the emulated mixed plot
to solar beams, which results in a higher light transmittance of each tree species than at
other times. Furthermore, the light transmittance of each tree species at times 10:00 and
14:00 is approximate due to the similar solar altitude angles at these two times causing a
similar shadow area (Figure 8b,d) to intercept the propagation of solar beams. Moreover,
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the ontogenetic leaf form of tree species is another key element making a difference to
the light transmittance of trees. Three coniferous species (Douglas fir, Scots pine, and
Norway spruce) have higher light transmittance than the other two deciduous species
(European beech and European ash) at 12:00 in the day, which is mainly attributed to the
needle-like leaves of coniferous species increasing light penetration through the clustered
foliage compared to deciduous species with wide and flat leaves.

Table 5. Light transmittance of five tree species in the emulated mixed plot at different times with
corresponding solar azimuth angle a and altitude angle /, i.e., 10:00 (a: 133.91°; I: 46.61°), 12:00 (a:
180.57°; I: 57.01°), 14:00 (a: 226.74°; I: 46.17°), and 16:00 (a: 251.79°; I: 23.96°), on 10 September 2022
in Nanjing.

Douglas Fir European Beech Scots Pine Norway Spruce European Ash
10:00 (a: 133.91°; I: 46.61°) 0.67 0.49 0.54 0.61 0.57
12:00 (a: 180.57°; I: 57.01°) 0.86 0.68 0.79 0.82 0.71
14:00 (a: 226.74°; I: 46.17°) 0.65 0.56 0.52 0.59 0.52
16:00 (a: 251.79°; I: 23.96°) 0.46 0.33 0.41 0.43 0.39

4. Discussion
4.1. Perspective of Mobile Laser Scanning Simulation for Forest Plots

A computer simulation [36] is the reproduction of the behavior of an actual system
using a computer to simulate the outcomes of a mathematical model associated with the
system. This has become a useful tool for the mathematical modeling of many natural sys-
tems in physics, astrophysics, climatology, ecology, and engineering. LiDAR is a popularly
used optical active remote sensing technique that measures the phenotypical or topological
information of a plant or forest plot [37]. Pioneering studies applying LiDAR technology to
forest investigation are limited to benchmarking the presentation of results using arduous
manual measurements [38]. Hence, a computer simulation program provides a convenient
and reliable evaluation method for efficient forest investigation using LiDAR technology.
The modeling forest plot is composed of six trees with in situ measurement information,
and the two scanning patterns (i.e., ALS and ground-based MLS) with adjustable parame-
ters are simulated to estimate the performance of the mobile LiDAR system. Our simulation
program can extrapolate for any forest plot with different broad-leaf tree species and any
other brands of LiDAR sensors with various scanning parameters. Meanwhile, our method
presents a framework providing a quantitative assessment of adopting various LiDAR
scanning patterns on different forest plots, and offers the validation results to guide users
toward the best scanning pattern for actual applications.

The simulation results in Table 3 show that only one-fifth of the total sampling points
on branches and leaves are collected by laser beams using airborne and ground-based MLS,
with the fastest speed for the vehicle loading LiDAR sensor and coarsest scanning angular
resolution. If we set the finest scanning angular resolution (« = 0.08° and 5 = 0.33°) and
slow down the vehicle velocity (v = 1.25 m/s, similar to human walking speed), roughly
50% of the total sampling points and 45% of the total sampling points were obtained by ALS
and ground-based MLS, respectively. The reason for the deficiencies in acquiring sampling
points for vegetative elements is mainly due to inter-tree competition, with the overlapping
of vegetative elements resulting in serious occlusion from the perspective of the scanning
angles. In addition, a 41.3° vertical FOV also provides a limited coverage area for laser
beams, which results in the point cloud being generated on a small area below the drone
collected by ALS and the point cloud covering the middle part of the tree crown collected by
ground-based MLS. In the actual scanned data acquisition process, a higher flight altitude
and a greater distance between the scanner and target trees should always be adopted to
enlarge the scanned area, but the beam spot size and spacing will also increase to lower the
sampling precision due to beam divergence and increased scanning distance [11]. Mean-
while, a simplified strategy based on the comparison between the original sampling points
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and scanned points, used to evaluate the efficacy of different scanning patterns, is proposed
to substitute for existing leaf area retrieval methods, e.g., Delaunay triangulation, which
aims to transform discrete scanned points into leaf surface [39], and optical plant canopy
analysis theory [40]. This would markedly reduce the computational cost and improve the
accuracy of the results. Assisted by the ground truth value of the original sampling points,
our method removes complications stemming from environmental influences and uses an
evaluation framework to assess the efficacy of using any brand of laser sensor in the survey
of different type of forests.

4.2. Application Extension about the Light Model of Forest Plots

In this study, we extend the mobile laser scanning simulation program to solar beam
illumination, i.e., a light model, for forest plots. Using the precise single-tree structure data
provided by an electromagnetic 3D digitizer and efficient intersection program for solar
beams and biotic elements in forest plots, we demonstrate that the proposed framework,
containing the construction of a digital forest plot and simulation of mobile laser scanning,
has good potential in forest plots” light modeling. The quantitative results in Table 4 of
the light simulation of a digital forest plot composed of six trees show that trees with
wider-spreading crowns and clumped leaf dispersion (Mango 1 and Mango 2) have higher
light transmittance compared with trees that have continuous closed leaf clusters and
crowns. As the wider-spreading crowns and clumped, dispersive leaf clusters increase the
amount and position of gaps, more solar beams can enter the forest canopy to increase the
benefits of light transmittance. On the other hand, the light transmittance of each height
level (Figure 7e) reveals a prevalent photosynthetic competition phenomenon in mature
forests, where dominant trees more effectively preempt the light resources, leading to
lower light availability below the canopy [33]. Furthermore, the extended experimental
results in Table 5 show that the light transmittance of every single tree in the forest plot is
expected to be primarily determined by the position of the sun and spatial arrangement
of canopy gaps derived from the different physiological and anatomical features of trees,
which is in accordance with previous research [18,41]. Light conditions change dramatically
throughout different times of the day, as determined by the position of the sun. The light
quantity in the forest plot increases with the increased solar altitude angle at noon, when the
layer of canopy tends to be exposed to incident light with the lowest shading disturbance,
leading to a higher light transmittance of each tree species than at other times. Moreover,
coniferous trees with needle-like leaves increase the amount and spatial arrangement of
canopy gaps and decrease self-shading compared to deciduous trees with broader and
dense leaves, with intense self-shading, which makes a difference in interspecific light
transmittance [42]. Having access to tree structure data using an electromagnetic 3D
digitizer [43] or other remote sensing technology [44] can allow us to directly use the
mobile laser scanning simulation program to efficiently simulate solar beam illumination
for forest plots, providing a basal component to establish a forest digital twin with the final
goal of sustainable forest management [45,46].

However, several limitations exist in the extended experiment of using a light model
for forest plots. First, real datasets of light quantity and transmittance within tree crowns
are not provided to validate the simulation results reported in Tables 4 and 5. In practice,
examples of capturing the spatial heterogeneity of light transmittance within the tree
canopy by combining multiple monitoring applications at different scales are currently
missing [10]. The existing method, i.e., the HPEval software tool in MATLAB, is able
to calculate the transmission of shortwave radiation in a canopy, which can be used
to evaluate light absorption and interception in the tree canopy [34,47]. However, it
requires high-resolution hemispherical images of an actual forest plot, which were lacking
in our extended experiment of virtually modeling a forest plot. Second, the influence
of weather situations on light propagation is overlooked in the extended experiment.
Light propagation in the atmosphere is affected by meteorological conditions such as
fog, rain, and cloud, which change the Earth’s energy budget by reflecting or absorbing
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sunlight [48], thereby affecting the light intensity accepted by the surface of the canopy [49].
In future work, the extended light model derived from the proposed mobile laser scanning
simulation framework should be improved in three aspects: (1) Constructing a tree model
comprehensively, considering the interactions between the genome variations [50] of a
study tree and all the micro- and mega-environments encountered during its lifespan,
employing deep learning techniques [51]. (2) Allocating a sufficient design margin for the
light simulation model to improve the robustness of the model under changing atmospheric
and weather conditions. (3) Enriching the monitoring method at forest level to collect high-
resolution hemispherical images of forest plots, providing a validation dataset of light
transmittance within the canopy, calculated by a corresponding method, such as the HPEval
software tool.

5. Conclusions

A simulation program of laser scanning was developed and applied to a forest plot
composed of many modeled trees based on the in situ measurement information. The
user can adjust the scanning configurations and change scanning patterns to compare the
scanned points with the original sampling points regarding the vegetative elements of
the forest plots. The conclusion, derived through a simulation experiment, shows that
ALS is a preferred pattern, acquiring more complete point cloud data than ground-based
MLS, and slowing down the velocity of vehicle loading LiDAR sensors is a more effective
way to increase laser beam coverage of the forest’s vegetative elements. Our simulation
program can be extended to any forest plot and various brands of scanners. The extended
application of the proposed framework as a light model of the emulated forest plot revealed
that the light transmittance of trees depends, in part, on both the canopy architecture and
differences in leaf dispersion related to leaf size. Trees that have wider-spreading crowns
increase the amount of light with lateral elongation, and clumped leaf dispersion augments
light’s penetration through the clustered foliage with vertical elongation, which may lead
to increased light transmittance. This study opens a promising pathway for qualitatively
and quantitatively performing uncertainty analysis using mobile LiDAR technology for the
property retrieval of various habitats, which will help develop experiences and guidelines
regarding the choice of scanning patterns and scanning configurations to achieve optimal
scanned results. Furthermore, the extended application of the proposed framework as a
potential light model provides a fundamental component for the design of a forest digital
twin to facilitate sustainable forest management, as light is a crucial environmental factor
affecting all production by trees and stands.
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