Multispectral Spaceborne Proxies of Predisposing Forest Structure Attributes to Storm Disturbance—A Case Study from Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Storm Disturbance Data
2.2. Data Sources of Potential Predisposing Factors
2.3. Processing of Spatial Data to Model Variables
2.4. Statistical Analysis and Modeling
3. Results
3.1. Correlation and Usage of Predictor Variables
3.2. Regression Fit and Model Performance
4. Discussion
4.1. Interpretation of the Proxy Predictor Variables
4.2. Regression and Modeling of Storm Disturbance Intensity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Model | Variable | Coeff. | Std. Error | z-Value | p-Value |
---|---|---|---|---|---|
ref1 | β0 | −14.617 | 6.490 | −2.252 | 0.024 |
mWg | 0.612 | 0.249 | 2.453 | 0.014 | |
BLr(b) | 0.661 | 0.496 | 1.332 | 0.183 | |
TCm(b) | −0.011 | 0.009 | −1.139 | 0.255 | |
log1 | β0 | −0.247 | 0.934 | −0.265 | 0.791 |
B3r | −0.010 | 0.005 | −1.748 | 0.081 | |
B3r(b) | 0.034 | 0.006 | 5.324 | < 0.001 | |
B6m(b) | −0.001 | 0.001 | −2.219 | 0.027 | |
ref2 | β0 | −1.935 | 1.970 | −0.982 | 0.326 |
Elev | −0.032 | 0.025 | −1.310 | 0.190 | |
TCm | 0.026 | 0.019 | 1.361 | 0.173 | |
BLr(b) | 1.705 | 0.699 | 2.438 | 0.015 | |
log2 | β0 | −0.307 | 0.844 | −0.363 | 0.716 |
B3r | −0.030 | 0.010 | −3.099 | 0.002 | |
B6r | 0.010 | 0.004 | 2.694 | 0.007 | |
B6r(b) | −0.0002 | 0.002 | −0.102 | 0.919 |
References
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forzieri, G.; Girardello, M.; Ceccherini, G.; Spinoni, J.; Feyen, L.; Hartmann, H.; Beck, P.S.A.; Camps-Valls, G.; Chirici, G.; Mauri, A.; et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 2021, 12, 1081. [Google Scholar] [CrossRef]
- Thom, D.; Seidl, R.; Steyrer, G.; Krehan, H.; Formayer, H. Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For. Ecol. Manag. 2013, 307, 293–302. [Google Scholar] [CrossRef]
- Feser, F.; Barcikowska, M.; Krueger, O.; Schenk, F.; Weisse, R.; Xia, L. Storminess over the North Atlantic and northwestern Europe—A review. Q. J. R. Meteorol. Soc. 2015, 141, 350–382. [Google Scholar] [CrossRef]
- Mölter, T.; Schindler, D.; Albrecht, A.T.; Kohnle, U. Review on the projections of future storminess over the North Atlantic European region. Atmosphere 2016, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Schelhaas, M.-J.; Nabuurs, G.-J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Lexer, M.J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 2011, 17, 2842–2852. [Google Scholar] [CrossRef]
- Ulanova, N.G. The effects of windthrow on forests at different spatial scales: A review. For. Ecol. Manag. 2000, 135, 155–167. [Google Scholar] [CrossRef]
- Svoboda, M.; Fraver, S.; Janda, P.; Bače, R.; Zenáhlíková, J. Natural development and regeneration of a Central European montane spruce forest. For. Ecol. Manag. 2010, 260, 707–714. [Google Scholar] [CrossRef]
- Mitchell, S.J. Wind as a natural disturbance agent in forests: A synthesis. Forestry 2013, 86, 147–157. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Peltola, H.; Soares, P.; González-Olabarria, J.R. Recent approaches to model the risk of storm and fire to European forests and their integration into simulation and decision support tools. For. Syst. 2010, 19, 30–47. [Google Scholar]
- Seidl, R.; Schelhaas, M.-J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardiner, B.; Blennow, K.; Carnus, J.-M.; Fleischer, P.; Ingemarson, F.; Landmann, G.; Lindner, M.; Marzano, M.; Nicoll, B.; Orazio, C.; et al. Destructive Storms in European Forests: Past and Forthcoming Impacts; EFI: Joensuu, Finland, 2010; Available online: https://ec.europa.eu/environment/forests/pdf/STORMS%20Final_Report.pdf (accessed on 11 October 2021).
- Forzieri, G.; Pecchi, M.; Girardello, M.; Mauri, A.; Klaus, M.; Nikolov, C.; Rüetschi, M.; Gardiner, B.; Tomaštík, J.; Small, D.; et al. A spatially explicit database of wind disturbances in European forests over the period 2000-2018. Earth Syst. Sci. Data 2020, 12, 257–276. [Google Scholar] [CrossRef] [Green Version]
- Gregow, H.; Laaksonen, A.; Alper, M.E. Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci. Rep. 2017, 7, 46397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quine, C.P.; White, I.M.S. The potential of distance-limited topex in the prediction of site windiness. Forestry 1998, 71, 325–332. [Google Scholar] [CrossRef]
- Dobbertin, M. Influence of stand structure and site factors on wind damage comparing the storms Vivian and Lothar. For. Snow Landsc. Res. 2002, 77, 187–205. [Google Scholar]
- Hautala, H.; Vanha-Majamaa, I. Immediate tree uprooting after retention-felling in a coniferous boreal forest in Fennoscandia. Can. J. For. Res. 2006, 36, 3167–3172. [Google Scholar] [CrossRef]
- Albrecht, A.; Hanewinkel, M.; Bauhus, J.; Kohnle, U. How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modeling based on long-term observations. Eur. J. Forest Res. 2012, 131, 229–247. [Google Scholar] [CrossRef]
- Usbeck, T.; Wohlgemuth, T.; Pfister, C.; Volz, R.; Beniston, M.; Dobbertin, M. Wind speed measurements and forest damage in Canton Zurich (Central Europe) from 1891 to winter 2007. Int. J. Climatol. 2010, 30, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Schindler, D.; Jung, C.; Buchholz, A. Using highly resolved maximum gust speed as predictor for forest storm damage caused by the high-impact winter storm Lothar in Southwest Germany. Atmos. Sci. Let. 2016, 17, 462–469. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.; Schindler, D.; Albrecht, A.; Buchholz, A. The role of highly-resolved gust speed in simulations of storm damage in forests at the landscape scale: A case study from Southwest Germany. Atmosphere 2016, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, A.T.; Jung, C.; Schindler, D. Improving empirical storm damage models by coupling with high-resolution gust speed data. Agric. For. Meteorol. 2019, 268, 23–31. [Google Scholar] [CrossRef]
- Gardiner, B.A.; Quine, C. Management of forests to reduce the risk of abiotic damage—A review with particular reference to the effects of strong winds. For. Ecol. Manag. 2000, 135, 261–277. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Hummel, S.; Albrecht, A. Assessing natural hazards in forestry for risk management: A review. Eur. J. Forest Res. 2011, 130, 329–351. [Google Scholar] [CrossRef]
- Gardiner, B.; Byrne, K.; Hale, S.; Kamimura, K.; Mitchell, S.J.; Peltola, H.; Ruel, J.C. A review of mechanistic modelling of wind damage risk to forests. Forestry 2008, 81, 447–463. [Google Scholar] [CrossRef] [Green Version]
- Hart, E.; Sim, K.; Kamimura, K.; Meredieu, C.; Guyon, D.; Gardiner, B. Use of machine learning techniques to model wind damage to forests. Agric. For. Meteorol. 2019, 265, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Hanewinkel, M.; Kändler, G.; Kublin, E.; Kohnle, U. An inventory-based approach for modeling single tree storm damage—Experiences with the winter storm 1999 in southwestern Germany. Can. J. For. Res. 2010, 40, 1636–1652. [Google Scholar] [CrossRef]
- Klaus, M.; Holsten, A.; Hostert, P.; Kropp, J.P. Integrated methodology to assess windthrow impacts on forest stands under climate change. For. Ecol. Manag. 2011, 261, 1799–1810. [Google Scholar] [CrossRef]
- Jalkanen, A.; Mattila, U. Logistic regression models for wind and snow damage in northern Finland based on the National Forest Inventory data. For. Ecol. Manag. 2000, 135, 315–330. [Google Scholar] [CrossRef]
- Suvanto, S.; Peltoniemi, M.; Tuominen, S.; Strandström, M.; Lehtonen, A. High-resolution mapping of forest vulnerability to wind for disturbance-aware forestry. For. Ecol. Manag. 2019, 453, 117619. [Google Scholar] [CrossRef]
- Taylor, A.R.; Dracup, E.; MacLean, D.A.; Boulanger, Y.; Endicott, S. Forest structure more important than topography in determining windthrow during Hurricane Juan in Canada’s Acadian Forest. For. Ecol. Manag. 2019, 434, 255–263. [Google Scholar] [CrossRef]
- Kalthoff, N.; Bischoff-Gauß, I.; Fiedler, F. Regional effects of large-scale extreme wind events over orographically structured terrain. Theor. Appl. Climatol. 2003, 74, 53–67. [Google Scholar] [CrossRef]
- Finnigan, J.J.; Shaw, R.H.; Patton, E.G. Turbulence structure above a vegetation canopy. J. Fluid Mech. 2009, 637, 387–424. [Google Scholar] [CrossRef] [Green Version]
- Grant, E.R.; Ross, A.N.; Gardiner, B.A. Modelling canopy flows over complex terrain. Bound. Layer Meteorol. 2016, 161, 417–437. [Google Scholar] [CrossRef] [Green Version]
- Lanquaye-Opoku, N.; Mitchell, S.J. Portability of stand-level empirical windthrow risk models. For. Ecol. Manag. 2005, 216, 134–148. [Google Scholar] [CrossRef]
- Kamimura, K.; Gardiner, B.; Dupont, S.; Guyon, D.; Meredieu, C. Mechanistic and statistical approaches to predicting wind damage to individual maritime pine (Pinus pinaster) trees in forests. Can. J. For. Res. 2016, 46, 88–100. [Google Scholar] [CrossRef]
- Haidu, I.; Furtuna, P.R.; Lebaut, S. Detection of old scattered windthrow using low cost resources. The case of Storm Xynthia in the Vosges Mountains, 28 February 2010. Open Geosci. 2019, 11, 492–504. [Google Scholar] [CrossRef]
- Dalponte, M.; Marzini, S.; Solano-Correa, Y.T.; Tonon, G.; Vescovo, L.; Gianelle, D. Mapping forest windthrows using high spatial resolution multispectral satellite images. Int. J. Appl. Earth Obs. 2020, 93, 102206. [Google Scholar] [CrossRef]
- Kislov, D.E.; Korznikov, K.A. Automatic windthrow detection using very-high-resolution satellite imagery and deep learning. Remote Sens. 2020, 12, 1145. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.F.; Lin, T.C.; Vadeboncoeur, M.A.; Hwong, J.L. Remote sensing assessment of forest damage in relation to the 1996 strong typhoon Herb at Lienhuachi Experimental Forest, Taiwan. For. Ecol. Manag. 2008, 255, 3297–3306. [Google Scholar] [CrossRef]
- Jonikavičius, D.; Mozgeris, G. Rapid assessment of wind storm-caused forest damage using satellite images and stand-wise forest inventory data. iForest 2013, 6, 150. [Google Scholar] [CrossRef] [Green Version]
- Masek, J.G.; Hayes, D.J.; Hughes, M.J.; Healey, S.P.; Turner, D.P. The role of remote sensing in process-scaling studies of managed forest ecosystems. For. Ecol. Manag. 2015, 355, 109–123. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote sensing technologies for enhancing forest inventories: A review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.G.; Foody, G.M.; Quine, C.P. Characterising windthrown gaps from fine spatial resolution remotely sensed data. For. Ecol. Manag. 2000, 135, 253–260. [Google Scholar] [CrossRef]
- Rich, R.L.; Frelich, L.; Reich, P.B.; Bauer, M.E. Detecting wind disturbance severity and canopy heterogeneity in boreal forest by coupling high-spatial resolution satellite imagery and field data. Remote Sens. Environ. 2010, 114, 299–308. [Google Scholar] [CrossRef]
- Puliti, S.; Saarela, S.; Gobakken, T.; Ståhl, G.; Næsset, E. Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference. Remote Sens. Environ. 2018, 204, 485–497. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. Historical winter storm atlas for Germany (GeWiSA). Atmosphere 2019, 10, 387. [Google Scholar] [CrossRef] [Green Version]
- Rüetschi, M.; Small, D.; Waser, L.T. Rapid detection of windthrows using Sentinel-1 C-Band SAR data. Remote Sens. 2019, 11, 115. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Land Monitoring Service, European Environment Agency. High Resolution Layers: Forests. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/forests (accessed on 14 July 2022).
- Schumacher, J.; Rattay, M.; Kirchhöfer, M.; Adler, P.; Kändler, G. Combination of multi-temporal sentinel 2 images and aerial image based canopy height models for timber volume modelling. Forests 2019, 10, 746. [Google Scholar] [CrossRef] [Green Version]
- Schütz, J.-P.; Götz, M.; Schmid, W.; Mandallaz, D. Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur. J. Forest Res. 2006, 125, 291–302. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2021. Available online: http://qgis.osgeo.org/ (accessed on 14 July 2022).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Ruel, J.C.; Mitchell, S.J.; Dornier, M. A GIS based approach to map wind exposure for windthrow hazard rating. North. J. Appl. For. 2002, 19, 183–187. [Google Scholar] [CrossRef]
- European Digital Elevation Model, Version 1.1. 2021. Available online: https://land.copernicus.eu/imagery-in-situ/eu-dem (accessed on 6 March 2021).
- Nicoll, B.C.; Gardiner, B.A.; Peace, A.J. Improvements in anchorage provided by the acclimation of forest trees to wind stress. Forestry 2008, 81, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Coburn, C.A.; Roberts, A.C.B. A multiscale texture analysis procedure for improved forest stand classification. Int. J. Remote Sens. 2004, 25, 4287–4308. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.F.; O’Connell, B.; Brown, C.; Guinan, J.C.; Grehan, A.J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 2007, 30, 3–35. [Google Scholar] [CrossRef] [Green Version]
- Welch, B.L. The generalization of ‘Student's’ problem when several different population variances are involved. Biometrika 1947, 34, 28–35. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.R-project.org/ (accessed on 15 November 2022).
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Díaz-Yáñez, O.; Mola-Yudego, B.; González-Olabarria, J.R. Modelling damage occurrence by snow and wind in forest ecosystems. Ecol. Modell. 2019, 408, 108741. [Google Scholar] [CrossRef]
- Olsson, H. Changes in satellite-measured reflectances caused by thinning cuttings in boreal forest. Remote Sens. Environ. 1994, 50, 221–230. [Google Scholar] [CrossRef]
- Nilson, T.; Olsson, H.; Anniste, J.; Lukk, T.; Praks, J. Thinning-caused change in reflectance of ground vegetation in boreal forest. Int. J. Remote Sens. 2001, 22, 2763–2776. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Aplin, P. Spatial variation in land cover and choice of spatial resolution for remote sensing. Int. J. Remote Sens. 2004, 25, 3687–3702. [Google Scholar] [CrossRef]
- Pukkala, T.; Laiho, O.; Lähde, E. Continuous cover management reduces wind damage. For. Ecol. Manag. 2016, 372, 120–127. [Google Scholar] [CrossRef]
Variable | Abbrev. | Mean | Std. dev. |
---|---|---|---|
Red-band (B4), mean | B4m | 228.82 | 106.64 |
Red roughness, mean | B4r | 93.69 | 59.54 |
Green-band (B3), mean | B3m | 309.55 | 66.95 |
Green roughness, mean | B3r | 104.02 | 38.33 |
Red-edge band (B6), mean | B6m | 1870.16 | 283.26 |
Red-edge roughness, mean | B6r | 262.97 | 132.75 |
Near-infrared-band (B8), mean | B8m | 2382.19 | 410.40 |
Near-infrared roughness, mean | B8r | 553.08 | 247.14 |
Maximum gust speed, mean (m/s) * | mWG | 24.93 | 0.64 |
Mean elevation (m a.s.l.) * | Elev | 43.64 | 9.48 |
Broadleaved species ratio (%) * | BLr | 23.85 | 32.49 |
Unstocked area ratio (%) * | NSr | 7.67 | 17.31 |
Tree cover density, mean (%) * | TCm | 70.74 | 14.62 |
Variable | Meanndg/Meandg0-1 | Meandg0/Meandg1 | ||
---|---|---|---|---|
Polygon | Buffer | Polygon | Buffer | |
B4m | 0.82 * | 0.89 * | 1.40 * | 0.99 |
B4r | 0.74 * | 0.70 * | 1.43 * | 0.96 |
B3m | 0.97 | 0.93 * | 1.15 * | 0.96 |
B3r | 0.89 * | 0.77 * | 1.12 | 0.91 |
B6m | 1.02 | 0.97 | 0.92 * | 0.93 * |
B6r | 0.96 | 0.77 * | 0.82 * | 0.82 * |
B8m | 1.02 | 0.97 | 0.90 * | 0.92 * |
B8r | 0.97 | 0.81 * | 0.87 | 0.82 * |
mWG | 0.99 * | - | 1.00 | - |
Elev | 0.99 | - | 1.14 * | - |
BLr | 0.72 | 0.68 * | 0.47 * | 0.53 * |
NSr | 1.51 | 0.69 * | 1.63 | 0.63 * |
TCm | 1.01 | 1.13 * | 0.91 * | 1.12 |
Model | AIC | AUC | Predictors (z-Values) | |||||
---|---|---|---|---|---|---|---|---|
ref-occur | 300.5 | 0.67 | mWG | (2.45 *) | BLr(b) | (1.33) | TCm(b) | (−1.14) |
occur1 | 276.2 | 0.76 | B3r | (−1.75) | B3r(b) | (5.32 *) | B6m(b) | (−2.22 *) |
occur2 | 277.3 | - | B3r | (−1.82) | B3r(b) | (5.25 *) | B8m(b) | (−1.99 *) |
occur3 | 277.3 | - | B3r | (−2.32 *) | B4r(b) | (4.38 *) | B6r(b) | (1.73) |
occur4 | 277.3 | - | B3m | (−1.42) | B3r(b) | (5.45 *) | B6m(b) | (−2.46 *) |
occur5 | 278.1 | - | B4m | (1.06) | B3r(b) | (4.66 *) | B6m(b) | (−1.89) |
ref-sever | 135.4 | 0.71 | Elev | (−1.31) | TCm | (1.36) | BLr(b) | (2.44 *) |
sever1 | 133.1 | 0.74 | B3r | (−3.10 *) | B6r | (2.69 *) | B6r(b) | (−0.10) |
sever2 | 133.1 | - | B3r | (−3.09 *) | B6r | (2.87 *) | B6m(b) | (0.10) |
sever3 | 133.1 | - | B3r | (−3.04 *) | B6r | (2.63 *) | B8r(b) | (−0.04) |
sever4 | 133.1 | - | B3r | (−3.08 *) | B6r | (2.90 *) | B8m(b) | (0.01) |
sever5 | 136.0 | - | B3m | (−2.47 *) | B6m | (1.83 *) | B6r(b) | (0.54) |
Model | AUC | Relative Importance (%) | |||
---|---|---|---|---|---|
B3r | B6r | B3r(b) | B6m(b) | ||
RFoccur | 0.65 | 20.8 | 25.0 | 31.9 | 22.3 |
RFsever | 0.69 | 28.0 | 22.0 | 22.5 | 27.4 |
RFjoint | 0.59 | 22.0 | 24.8 | 30.0 | 23.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garamszegi, B.; Jung, C.; Schindler, D. Multispectral Spaceborne Proxies of Predisposing Forest Structure Attributes to Storm Disturbance—A Case Study from Germany. Forests 2022, 13, 2114. https://doi.org/10.3390/f13122114
Garamszegi B, Jung C, Schindler D. Multispectral Spaceborne Proxies of Predisposing Forest Structure Attributes to Storm Disturbance—A Case Study from Germany. Forests. 2022; 13(12):2114. https://doi.org/10.3390/f13122114
Chicago/Turabian StyleGaramszegi, Balázs, Christopher Jung, and Dirk Schindler. 2022. "Multispectral Spaceborne Proxies of Predisposing Forest Structure Attributes to Storm Disturbance—A Case Study from Germany" Forests 13, no. 12: 2114. https://doi.org/10.3390/f13122114
APA StyleGaramszegi, B., Jung, C., & Schindler, D. (2022). Multispectral Spaceborne Proxies of Predisposing Forest Structure Attributes to Storm Disturbance—A Case Study from Germany. Forests, 13(12), 2114. https://doi.org/10.3390/f13122114