Computer Vision-Based Wood Identification: A Review
Abstract
:1. Introduction
Analogic and Digital Systems
2. Online Reference Databases for Wood Identification
2.1. Commercial Timbers: Descriptions, Illustrations, Identification and Information Retrieval
2.2. Anatomy of European and North American Woods
2.3. Wood Database of the Forestry and Forest Products Research Institute
2.4. InsideWood
2.5. Wood Anatomy of Central European Species
2.6. CITESwoodID
2.7. Key to a Selection of Arid Australian Hardwoods and Softwoods
2.8. Brazilian Commercial Timbers—Interactive Wood Identification Key
2.9. Pl@ntwood
2.10. The Forest Species Database—Microscopy (FSDM)
2.11. The Forest Species Database—Macroscopy (FSDM)
2.12. MacroHOLZdata
2.13. Forest Species Classifier
2.14. UTForest—UTFPR Classificador
2.15. Charcoal
2.16. CharKey
2.17. Softwood Retrieval System (SRS) for Coniferous Wood
2.18. Mader App
3. Computer Vision-Based Wood Identification
3.1. Machine Learning
3.2. Image Acquisition
3.3. Image Datasets
3.4. Image Processing
4. Deep Learning
4.1. Artificial Neural Networks (ANN)
- -
- Esteban et al. [127] used a feedforward multilayer perceptron (MLP) network, which uses a similar structure to ANN to distinguish between Juniperus cedrus and J. phoenicea var. canariensis, obtaining a 92% probability of correctly differentiating the species;
- -
- Mallik et al. [79] applied SEM to wood cross sections with 1500× magnification to obtain species-level identification through the shape, number, area and distribution of earlywood tracheids, processed by image segmentation, object recognition and statistical methods. Their results showed that when distinguishing between hardwoods and softwoods, a 0.89 accuracy was obtained using leave-one-out cross-validation and 0.93 using an external validation test (EVT), and when differentiating seven wood species, they obtained a 0.81 accuracy using one-leave-out cross-validation and 0.80 using an EVT;
- -
- The same microscopic features analysis was applied by Martins et al. [77], who used microscopic transverse sections applying local phase quantisation (LPQ), local binary patterns (LBP) and grey-level co-occurrence matrix (GLOM) to identify Brazilian species. The process was applied to 112 species, 85 genera and 30 families, obtaining a recognition rate of 98.6% for differentiation of hardwoods and softwoods and 86% for discrimination of the 112 species;
- -
- Turhan [128] used the SVM as a machine learning algorithm to differentiate Salix alba, S. caprea and S. eleagnos, obtaining a 95.2% success rate;
- -
- Filho et al. [71] used a two-level divide-and-conquer classification strategy to differentiate 41 species of Brazilian flora, obtaining the highest accuracy level, of 97.77%;
- -
- Esteban et al. [130] used a multilayer perceptron (MP) to differentiate Pinus sylvestris L. and P. nigra Arn subsp. salzmannii (Dunal) Franco, obtaining 81.2% accuracy in the testing set;
- -
- Silva et al. [78] used microscopic images of cross sections of 77 commercial wood species from the Democratic Republic of the Congo for surface texture analysis, reporting 88% successful identifications at species level, 89% at genus level and 90% at family level.
- -
- He et al. [135] applied machine learning classifiers SVM, Naive Bayes (NB), Decision Tree C5.0 and ANN) to discriminate between Swietenia macrophylla King, S. mahagoni (L.) Jacq and S. humilis Zucc. The best results were obtained with SVM, with an overall accuracy of 91.4%;
- -
- Deklerck et al. [136] used machine learning not for image-based data processing, but for metabolome profile obtained through direct analysis in real-time (DART™) ionisation combined with time-of-flight mass spectrometry (TOFMS) to study the heartwood of 175 samples of 10 species of the Meliaceae family. Combining these techniques resulted in accuracy levels of 82.2%;
- -
- de Andrade et al. [73] generated 2000 macroscopic images of 21 species using a smartphone and samples manually polished with a knife to replicate field conditions. A grey level co-occurrence matrix for the development of classifiers based on SVM was used, resulting in accuracies of 97.7%;
- -
- Silva et al. [140] used 77 Congolese wood species as a reference base for applying a multi-view random forest (MVRF) model for species-level identification. To ensure information was not missed, the authors used images of the three anatomical planes. The results showed that the concatenation of features from the transverse and tangential planes clearly outperforms transverse-only analysis, while adding the radial plane minimally improves the results obtained. The use of the MVRF model outperformed concatenation of LPQ features. The results showed that the supplementary information added using three planes analysis and the model type considerably improve the final results. Moreover, when evaluating the performance of the systems developed, using the k-fold cross-validation scheme could have led to overestimation of the results, so the authors applied a leave-k-tree-out approach during cross-validation. The results showed that implementing this approach dramatically decreased accuracy compared with traditional cross-validation schemes.
4.2. Convolutional Neural Networks (CNN)
- -
- Hafemann et al. [129] applied the CNN model 3-ConvNeta to identify macro images of 41 species and micro images of 112 species. The results obtained 95.77% accuracy for macroscopic images and 97.32% accuracy for microscopic images;
- -
- Kwon et al. [131] applied six LeNet and MiniVGGNet CNN models to identify five Korean softwood species (Cryptomeria japonica, Chamaecyparis obtuse, Pinus koraiensis, P. densiflora, Larix kaempferi), using an iPhone 7 camera to obtain macroscopic images of rough sawn surfaces from cross sections. Of all the CNN models tested, LeNet3 achieved the highest results and stability, with two extra layers added to the original LeNet architecture. The identification accuracy obtained was 99.3%. The authors reported that the software weight of the CNN created is small enough for installation on a mobile device such as a smartphone;
- -
- Maintaining the objective of ensuring field applicability, Kwon et al. [133] acknowledged the real-world limitations of not including longitudinal wood surfaces. Using mobile device cameras to obtain macroscopic images, they applied a combination of models, obtaining the best results with LeNet2, LeNet3 and MiniVGGNet4. Their results showed an overall accuracy of 98% and an improvement on their earlier study, particularly in the case of P. koraiensis and P. densiflora;
- -
- Figueroa-Mata et al. [86] applied deep convolutional networks for identification of 41 Brazilian forest species from xylotheque samples at species level, achieving an accuracy of 98.3%;
- -
- Ravindran et al. [112] used CNNs to identify 10 neotropical species in the Meliaceae family (Cabralea canjerana, Carapa guianensis, Guarea glabra, G. grandifolia, Khaya ivorensis, K. senegalensis, and the CITES-listed Swietenia macrophylla, S. mahagoni, Cedrela fissilis, and C. odorata), using only the transverse surface. The results showed an accuracy of 87.4 to 97.5%;
- -
- To develop an automatic classification system for charcoal, Maruyama et al. [47] applied two LBP configurations of as texture descriptors. As state-of-the-art machine learning classifiers, SVM and random forests (RF) have shown the best results. Inception_v3 CNN was applied for representation learning evaluation. The database comprised 44 charcoal samples from Brazilian native species from natural forests. The authors reported that both handcrafted features and RL achieved results of around 95% recognition rate;
- -
- Oliveira et al. [132] used databases developed by Filho et al. [71] and Martins et al. [77] to access cross sections of 2942 wood macroscopic images of 41 species and 2240 microscopic images of 112 species, applying CNNs to create three models. Based on the results, the authors reported 100% recognition accuracy for the scale model, 98.73% for the macroscopic model, and 99.11% for the microscopic model;
- -
- Kanayama et al. [134] applied a deep CNN approach to near-infrared hyperspectral imaging (NIR-HSI) using a principal component (PC) algorithm to identify 120 samples of 38 hardwood species. The results obtained showed 90.5% accuracy;
- -
- A CNN was also used by Ravindran and Wiedenhoeft [66] to compare the macroscopic field identification programme XyloTron, using an ImageNet pre-trained ResNet34 CNN, with mass spectrometry to differentiate 10 Meliaceae species used by Deklerck et al. [136]. The results showed identification accuracy of 81.9% at the species level and 96.1% at the genus level compared to 74.9% and 91.4%, respectively, in the work by Deklerck et al. [136];
- -
- Lopes et al. [81] applied the InceptionV4_ResNetV2 CNN to analyse macroscopic images of the end-grain of 10 xylarium North American hardwood species, producing 1869 images using a smartphone fitted with a 14× macro lens. Their results showed an accuracy of 92.6%;
- -
- de Geus et al. [137] applied the DenseNet CNN to recognise 281 species, using the largest dataset of microscopic transverse, radial and tangential images available at the time. Rotation invariant LPQ (RiLPQ) showed the best results of the feature descriptors used. The authors reported an identification accuracy of 98.8%;
- -
- Olschofsky and Köhl [69] applied Inception-v3, an image classification model using a CNN for feature recognition and classification, pre-trained with 1.2 million images. The CITES-protected species Cedrella odorata was chosen and compared with 13 other tropical tree species for recognition. The results with the pre-trained CNNs had 98% accuracy, but when other tree species not used for training were added, the classification accuracy fell to 87%;
- -
- The ResNet101 CNN, associated with an SVM as classifier, was applied by Lens et al. [76] to species-level identification of 112 mainly neotropical tree species, using only transverse sections but focusing on microscopic rather than macroscopic analysis. The results showed successful identification in 95.6% of cases;
- -
- Wu et al. [138] applied deep convolutional neural networks (CNNs) for the identification of 11 rough saw hardwood North American species based on tangential plane images only. CNNs ResNet-50, DenseNet-121, as well as MobileNet-V2 were tested, resulting in an overall accuracy of 98.2%.
- -
- Shugar et al. [139] combined X-ray fluorescence spectrometry (XRF) and a CNN to identify 48 wood specimens of both hardwoods and softwoods, mostly from heartwood and using either tangential or radial sections. They reported 99% identification accuracy from the 66 datasets;
- -
- In the study by Fabijańska et al. [72], a CNN with residual connections was tested to identify 312 wood core scanned images of 14 European softwood and hardwood tree species, developing a wood patch classification and a wood core classification. The results showed that the proposed model correctly recognised patch images in 93% of cases and wood core images in 98.7%. Comparison of the results also showed that this model outperformed the state-of-the-art convolutional neural network-based model.
4.3. Generative Adversarial Networks (GANs)
- -
- Addressing the possibility of eliminating economic and processing burdens in acquiring images of worldwide wood species for machine-learning training purposes, Lopes et al. [144] accessed 119 hardwood species references on the publicly available Xylarium Digital Database [87]. Applying a style-based GAN, they successfully generated highly realistic and anatomically meaningful synthetic microscopic cross-sectional images of hardwood species which they reported as virtually indistinguishable from real cross-sectional images.
- -
- To evaluate the resemblance, quality and pattern evaluation between the synthetic and real cross sections, a structural similarity index measure (SSIM) and Fréchet inception distance (FID) were applied and a visual Turing test (VTT) was performed by wood anatomists to confirm the usefulness and realism of the GAN-generated images. The results showed that the artificially generated images were indistinguishable from real microscopic cross-sectional images.
- -
- The authors [144] reported that it is even feasible to generate synthetic hybrids based on microscopic cross-sectional images from two parental species. This would have considerable implications on wood science and technology, especially for estimating the wood permeability, strength, density, or hydraulic potential, for example, of a species that has not even been planted.
5. Field Applicable Wood Identification Systems
5.1. MyWood-ID
5.2. MyWood-Premium
5.3. Xylorix
5.4. XyloTron
5.5. XyloPhone
5.6. WIDER
5.7. IMAIapp
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- May, C. Transnational Crime and the Developing World; Global Financial Integrity: Washington, DC, USA, 2017. [Google Scholar]
- Nellemann, C. Green Carbon, Black Trade: A Rapid Response Assessment on Illegal Logging, Tax Fraud and Laundering in the World’s Tropical Forests. 2012. Available online: https://wedocs.unep.org/20.500.11822/8030 (accessed on 27 April 2022).
- EU; EC. Forests. Available online: https://ec.europa.eu/environment/forests/illegal_logging.htm (accessed on 27 April 2022).
- Bösch, M. Institutional quality, economic development and illegal logging: A quantitative cross-national analysis. Eur. J. For. Res. 2021, 140, 1049–1064. [Google Scholar] [CrossRef]
- UN. Convention on International Trade in Endangered Species of Wild Fauna and Flora. Available online: https://cites.org/sites/default/files/eng/disc/CITES-Convention-EN.pdf (accessed on 27 April 2022).
- EU. European Union Timber Regulation. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010R0995 (accessed on 27 April 2022).
- European Union; Austrian Development Cooperation; The World Bank; IUCN. WWF ENPI EAST FLEG—European Neighborhood and Paternaship Instrument East Countries Forest Law Enforcement and Governance Program. Available online: https://www.enpi-fleg.org/ (accessed on 6 June 2022).
- FAOUN; UNDP. UNEP UN-REDD Programme. Available online: https://www.un-redd.org/ (accessed on 27 April 2022).
- UNDER; UNEP. FAOUN Preventing, Halting and Reversing The Degradation Of Ecosystems Worldwide. Available online: https://www.decadeonrestoration.org/ (accessed on 27 April 2022).
- Schmitz, N.; Beeckman, H.; Blanc-Jolivet, C.; Boeschoten, L.E.; Braga, J.J.W.B.; Cabezas, J.A.; Chaix, G.; Crameri, S.; Degen, B.; Deklerck, V.; et al. Overview of Current Practices in Data Analysis for Wood Identification. A Guide for the Different Timber Tracking Methods; GTTN-European Forest Institute: Joensuu, Finland, 2020. [Google Scholar]
- Schmitz, N.; Beeckman, H.; Cabezas, J.A.; Cervera, M.T.; Espinoza, E.; Fernandez-Golfin, J.; Gasson, P.; Hermanson, J.; Jaime Arteaga, M.; Koch, G.; et al. The Timber Tracking Tool Infogram. Overview of Wood Identification Methods’ Capacity; Global Timber Tracking Network, GTTN Secretariat, European Forest Institute and Thünen Institute: Joensuu, Finland, 2019. [Google Scholar]
- Dormontt, E.E.; Boner, M.; Braun, B.; Breulmann, G.; Degen, B.; Espinoza, E.; Gardner, S.; Guillery, P.; Hermanson, J.C.; Koch, G.; et al. Forensic timber identification: It’s time to integrate disciplines to combat illegal logging. Biol. Conserv. 2015, 191, 790–798. [Google Scholar] [CrossRef]
- United Nations. International Consortium on Combating Wildlife Crime. In Best Practice Guide for Forensic Timber Identification; United Nations Office on Drugs and Crime: New York, NY, USA, 2016. [Google Scholar]
- ITTO. Biennial Review and Assessment of the World Timber Situation. Available online: https://www.itto.int/direct/topics/topics_pdf_download/topics_id=6783&no=1 (accessed on 27 April 2022).
- Interpol Illegal Logging in Latin America and Caribbean Inflicting Irreversible Damage-INTERPOL. Available online: https://www.interpol.int/News-and-Events/News/2022/Illegal-logging-in-Latin-America-and-Caribbean-inflicting-irreversible-damage-INTERPOL (accessed on 27 April 2022).
- Abe, H.; Watanabe, K.; Ishikawa, A.; Noshiro, S.; Fujii, T.; Iwasa, M.; Kaneko, H.; Wada, H. Simple separation of torreya nucifera and chamaecyparis obtusa wood using portable visible and near-infrared spectrophotometry: Differences in light-conducting properties. J. Wood Sci. 2016, 62, 210–212. [Google Scholar] [CrossRef]
- Pace, J.H.C.; Latorraca, J.-V.D.F.; Hein, P.R.G.; de Carvalho, A.M.; Castro, J.P.; da Silva, C.-E.S. Wood species identification from Atlantic forest by near infrared spectroscopy. For. Syst. 2019, 28, e015. [Google Scholar] [CrossRef]
- Snel, F.A.; Braga, J.W.B.; da Silva, D.; Wiedenhoeft, A.C.; Costa, A.; Soares, R.; Coradin, V.T.R.; Pastore, T.C.M. Potential field-deployable NIRS identification of seven dalbergia species listed by CITES. Wood Sci. Technol. 2018, 52, 1411–1427. [Google Scholar] [CrossRef] [Green Version]
- Akhmetzyanov, L.; Copini, P.; Sass-Klaassen, U.; Schroeder, H.; de Groot, G.A.; Laros, I.; Daly, A. DNA of centuries-old timber can reveal its origin. Sci. Rep. 2020, 10, 20316. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Liu, X.; Jiang, X.; Yin, Y. Extraction and amplification of DNA from aged and archaeological populus euphratica wood for species identification. Holzforschung 2015, 69, 925–931. [Google Scholar] [CrossRef]
- Wagner, S.; Lagane, F.; Seguin-Orlando, A.; Schubert, M.; Leroy, T.; Guichoux, E.; Chancerel, E.; Bech-Hebelstrup, I.; Bernard, V.; Billard, C.; et al. High-throughput DNA sequencing of ancient wood. Mol. Ecol. 2018, 27, 1138–1154. [Google Scholar] [CrossRef] [Green Version]
- Carmona, R.J.; Wiemann, M.C.; Baas, P.; Barros, C.; Chavarria, G.D.; McClure, P.J.; Espinoza, E.O. Forensic identification of CITES appendix I cupressaceae using anatomy and mass spectrometry. IAWA J. 2020, 41, 720–739. [Google Scholar] [CrossRef]
- Espinoza, E.O.; Wiemann, M.C.; Barajas-Morales, J.; Chavarria, G.D.; McClure, P.J. Forensic analysis of cites-protected dalbergia timber from the americas. IAWA J. 2015, 36, 311–325. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, G.J.; Liu, B.; He, T.; Guo, J.; Jiang, X.; Yin, Y. Wood discrimination analyses of pterocarpus tinctorius and endangered pterocarpus santalinus using DART-FTICR-MS coupled with multivariate statistics. IAWA J. 2019, 40, 58–74. [Google Scholar] [CrossRef] [Green Version]
- Ge, Z.; Chen, L.; Luo, R.; Wang, Y.; Zhou, Y. The detection of structure in wood by X-ray CT imaging technique. BioResources 2018, 13, 3674–3685. [Google Scholar] [CrossRef]
- Kobayashi, K.; Hwang, S.-W.; Okochi, T.; Lee, W.-H.; Sugiyama, J. Non-destructive method for wood identification using conventional X-ray computed tomography data. J. Cult. Herit. 2019, 38, 88–93. [Google Scholar] [CrossRef]
- Tazuru, S.; Sugiyama, J. Wood identification of japanese shinto deity statues in matsunoo-taisha shrine in kyoto by synchrotron X-ray microtomography and conventional microscopy methods. J. Wood Sci. 2019, 65, 60. [Google Scholar] [CrossRef]
- Wheeler, E.A.; LaPasha, C.A. A microcomputer based system for computer-aided wood identification. IAWA Bull. 1987, 8, 347–354. [Google Scholar]
- LaPasha, C.A. General unknown entry and search system. A program package for computer-assisted identification. Suppl. N. C. Agric. Resour. Serv. 1986, 474, 18. [Google Scholar]
- Ilic, J. Computer aided wood identification using csiroid. IAWA J. 1993, 14, 333–340. [Google Scholar] [CrossRef]
- Dallwitz, M.J. A general system for coding taxonomic descriptions. Taxon 1980, 29, 41–46. [Google Scholar] [CrossRef]
- Richter, H.G.; Dallwitz, M.J. Commercial Timbers: Descriptions, Illustrations, Identification, and Information Retrieval. Available online: https://www.delta-intkey.com/wood/en/index.htm (accessed on 10 October 2021).
- Heiss, A.G. Anatomy of European and North American Woods—An Interactive Identification Key. Available online: http://www.holzanatomie.at/ (accessed on 9 February 2022).
- Forestry & Forest Products Research Institute. Wood Database of the Forestry & Forest Products Research Institute. Available online: https://db.ffpri.go.jp/WoodDB/index-E.html (accessed on 2 May 2022).
- Wheeler, E.A. InsideWood. Available online: https://insidewood.lib.ncsu.edu/search;jsessionid=hYhHqrsAfkTKM8JGVm0e3WjZLOdRCfo3_1Y5k6Zq?0 (accessed on 9 January 2022).
- Schoch, W.; Heller-Kellenberger, I.; Schweingruber, F.; Kienast, F.; Schmatz, D. Wood Anatomy of Central European Species. Available online: http://www.woodanatomy.ch/authors.html (accessed on 3 May 2022).
- Richter, H.G.; Gembruch, K.; Koch, G. CITESwoodID: Descriptions, Illustrations, Identification, and Information Retrieval. Available online: https://www.delta-intkey.com/citeswood/index.htm (accessed on 9 February 2022).
- Barker, J.A.; Flinders, B.A.H. Key to a Selection of Arid Australian Hardwoods & Softwoods. Available online: https://keys.lucidcentral.org/keys/v3/arid/default_wip.htm (accessed on 4 January 2022).
- Coradin, V.T.R.; Camargos, J.A.A.; Pastore, T.C.M.; Christo, A.G. Brazilian Commercial Timbers: Interactive Identification Key Based on General and Macroscopic Features Madeiras Comerciais Do Brasil: Chave Interativa de Identificação Baseada em Caracteres Gerais e Macroscópicos. Available online: https://keys.lucidcentral.org/keys/v4/madeiras_comerciais_do_brasil/index_en.html (accessed on 2 May 2022).
- Sarmiento, C.; Détienne, P.; Heinz, C.; Molino, J.-F.; Grard, P.; Bonnet, P. Pl@ntwood: A computer-assisted identification tool for 110 species of amazon trees based on wood anatomical features. IAWA J. 2011, 32, 221–232. [Google Scholar] [CrossRef]
- Martins, J.; Oliveira, L.S.; Nisgoski, S.; Sabourin, R. The Forest Species Database—Microscopy. Available online: https://web.inf.ufpr.br/vri/databases/forest-species-database-microscopic/ (accessed on 3 May 2022).
- UFPR Forest Species Database—Microscopic. Available online: https://web.inf.ufpr.br/vri/databases/forest-species-database-microscopic/ (accessed on 21 April 2022).
- Filho, P.L.P.; Oliveira, L.S.; Nisgoski, S.; Britto, A.S. The Forest Species Database—Macroscopic. Available online: https://web.inf.ufpr.br/vri/databases/forest-species-database-macroscopic/ (accessed on 3 May 2022).
- UFPR Forest Species Database—Macroscopic. Available online: https://web.inf.ufpr.br/vri/databases/forest-species-database-macroscopic/ (accessed on 23 April 2021).
- Richter, H.G.; Oelker, M.; Koch, G. MacroHOLZdata—Computer Aided Macroscopic Wood Identification and Information on Properties and Utilization of Trade Timbers. CD-ROM. Available online: http://macroholzdata.appstor.io/ (accessed on 23 April 2021).
- De Oliveira, W. Forest Species Classifier. Available online: http://reconhecimentoflorestal.md.utfpr.edu.br./#/pt/classificador (accessed on 3 May 2022).
- Maruyama, T.M.; Oliveira, L.S.; Britto, A.S.; Nisgoski, S. Automatic classification of native wood charcoal. Ecol. Inform. 2018, 46, 1–7. [Google Scholar] [CrossRef]
- Bodin, S.C.; Scheel-Ybert, R.; Beauchêne, J.; Molino, J.-F.; Bremond, L. CharKey: An electronic identification key for wood charcoals of French Guiana. IAWA J. 2019, 40, 75-S20. [Google Scholar] [CrossRef] [Green Version]
- EyeWood, S.F.U. Softwood Retrieval System for Coniferous Wood. Available online: http://woodlab.swfu.edu.cn/#/ (accessed on 23 April 2021).
- Filho, P.L.d.P. UTForest—UTFPR Classificador. Available online: https://clb.lamia.sh.utfpr.edu.br/classification (accessed on 8 June 2022).
- Ferreira, C.A.; Inga, J.G.; Vidal, O.D.; Goytendia, W.E.; Moya, S.M.; Centeno, T.B.; Vélez, A.; Gamarra, D.; Tomazello-Filho, M. Identification of tree species from the peruvian tropical amazon “selva central” forests according to wood anatomy. BioResources 2021, 16, 7161–7179. [Google Scholar] [CrossRef]
- Wheeler, E.A.; Baas, P.; Gasson, P.E. IAWA List of microscopic features for hardwood identification: With an appendix on non-anatomical information. IAWA Bull. 1989, 10, 219–332. [Google Scholar] [CrossRef]
- Schweingruber, F.H. Microscopic Wood Anatomy: Structural Variability of Stems and Twigs in Recent and Subfossil Woods from Central Europe; Swiss Federal Institute for Forest: Birmensdorf, Swiss, 1990; ISBN 3905620022. [Google Scholar]
- CITES. Available online: https://cites.org/eng (accessed on 2 May 2022).
- Menon, L.T.; Laurensi, I.A.; Penna, M.C.; Oliveira, L.E.S.; Britto, A.S. Data augmentation and transfer learning applied to charcoal image classification. In Proceedings of the 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), Osijek, Croatia, 5–7 June 2019; pp. 69–74. [Google Scholar]
- Détienne, P.; Jacquet, P.; Mariaux, A. Manuel d’identification des bois tropicaux. tome 3: Guyane Française. In Manuel D’identification des Bois Tropicaux; CIRAD: Montpellier, France, 1982; Volume 3, p. 315. ISBN 139782876145962. [Google Scholar]
- Richter, H.G.; Grosser, D.; Heinz, I.; Gasson, P.E. IAWA list of microscopic features for softwood identification. IAWA J. 2004, 25, 1–70. [Google Scholar] [CrossRef]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef]
- Li, N.; Shepperd, M.; Guo, Y. A Systematic review of unsupervised learning techniques for software defect prediction. Inf. Softw. Technol. 2020, 122, 106287. [Google Scholar] [CrossRef] [Green Version]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Khan, A.I.; Al-Habsi, S. Machine learning in computer vision. Procedia Comput. Sci. 2020, 167, 1444–1451. [Google Scholar] [CrossRef]
- Hwang, S.-W.; Sugiyama, J. Computer vision-based wood identification and its expansion and contribution potentials in wood science: A review. Plant Methods 2021, 17, 47. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, P.; Ebanyenle, E.; Ebeheakey, A.A.; Abban, K.B.; Lambog, O.; Soares, R.; Costa, A.; Wiedenhoeft, A.C. Image based identifcation of ghanaian timbers using the xylotron: Opportunities, risks and challenges. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 9–14 December 2019. [Google Scholar]
- Ravindran, P.; Thompson, B.J.; Soares, R.K.; Wiedenhoeft, A.C. The xylotron: Flexible, open-source, image-based macroscopic field identification of wood products. Front. Plant Sci. 2020, 11, 1015. [Google Scholar] [CrossRef] [PubMed]
- Tou, J.Y.; Tou, P.; Lau, P.Y.; Tay, Y.H. Computer vision-based wood recognition system. In Proceedings of the International Workshop on Advanced Image Technology; 2007. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computer+vision-based+wood+recognition+system.+In+Proceedings+of+International+Workshop+on+Advanced+Image+Technology%2C+2007&btnG= (accessed on 27 April 2022).
- Ravindran, P.; Wiedenhoeft, A.C. Comparison of two forensic wood identification technologies for ten meliaceae woods: Computer vision versus mass spectrometry. Wood Sci. Technol. 2020, 54, 1139–1150. [Google Scholar] [CrossRef]
- Du, M.; Liu, N.; Hu, X. Techniques for interpretable machine learning. Commun. ACM 2019, 63, 68–77. [Google Scholar] [CrossRef]
- Martins, A.L.R.; Marcal, A.R.S.; Pissarra, J. Modified DBSCAN algorithm for microscopic image analysis of wood. In Iberian Conference on Pattern Recognition and Image Analysis; Springer: Cham, Switzerland, 2019; pp. 257–269. [Google Scholar]
- Olschofsky, K.; Köhl, M. Rapid field identification of cites timber species by deep learning. Trees For. People 2020, 2, 100016. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Dimitropoulos, K.; Barboutis, I.; Grammalidis, N.; Lefakis, P. Wood species recognition through multidimensional texture analysis. Comput. Electron. Agric. 2018, 144, 241–248. [Google Scholar] [CrossRef]
- Filho, P.L.P.; Oliveira, L.S.; Nisgoski, S.; Britto, A.S. Forest species recognition using macroscopic images. Mach. Vis. Appl. 2014, 25, 1019–1031. [Google Scholar] [CrossRef]
- Fabijańska, A.; Danek, M.; Barniak, J. Wood species automatic identification from wood core images with a residual convolutional neural network. Comput. Electron. Agric. 2021, 181, 105941. [Google Scholar] [CrossRef]
- De Andrade, B.G.; Basso, V.M.; de Figueiredo Latorraca, J.V. Machine vision for field-level wood identification. IAWA J. 2020, 41, 681–698. [Google Scholar] [CrossRef]
- Khalid, M.; Lew, E.; Lee, Y.; Yusof, R.; Nadaraj, M. Design of an intelligent wood species recognition system. Int. J. Simul. Syst. Sci. Technol. 2008, 9, 9–19. [Google Scholar]
- Wang, H.; Zhang, G.; Qi, H. Wood recognition using image texture features. PLoS ONE 2013, 8, e76101. [Google Scholar] [CrossRef] [Green Version]
- Lens, F.; Liang, C.; Guo, Y.; Tang, X.; Jahanbanifard, M.; da Silva, F.S.C.; Ceccantini, G.; Verbeek, F.J. Computer-assisted timber identification based on features extracted from microscopic wood sections. IAWA J. 2020, 41, 660–680. [Google Scholar] [CrossRef]
- Martins, J.; Oliveira, L.S.; Nisgoski, S.; Sabourin, R. A database for automatic classification of forest species. Mach. Vis. Appl. 2013, 24, 567–578. [Google Scholar] [CrossRef]
- da Silva, N.R.; De Ridder, M.; Baetens, J.M.; Van den Bulcke, J.; Rousseau, M.; Bruno, O.M.; Beeckman, H.; Van Acker, J.; De Baets, B. Automated classification of wood transverse cross-section micro-imagery from 77 commercial central-African timber species. Ann. For. Sci. 2017, 74, 30. [Google Scholar] [CrossRef] [Green Version]
- Mallik, A.; Tarrío-Saavedra, J.; Francisco-Fernández, M.; Naya, S. Classification of wood micrographs by image segmentation. Chemom. Intell. Lab. Syst. 2011, 107, 351–362. [Google Scholar] [CrossRef]
- Kobayashi, K.; Akada, M.; Torigoe, T.; Imazu, S.; Sugiyama, J. Automated recognition of wood used in traditional japanese sculptures by texture analysis of their low-resolution computed tomography data. J. Wood Sci. 2015, 61, 630–640. [Google Scholar] [CrossRef] [Green Version]
- Lopes, D.J.V.; Burgreen, G.W.; Entsminger, E.D. North american hardwoods identification using machine-learning. Forests 2020, 11, 298. [Google Scholar] [CrossRef] [Green Version]
- Wiedenhoeft, A.C. The XyloPhone: Toward democratizing access to high-quality macroscopic imaging for wood and other substrates. IAWA J. 2020, 41, 699–719. [Google Scholar] [CrossRef]
- Yu, H.; Cao, J.; Luo, W.; Liu, Y. Image retrieval of wood species by color, texture, and spatial information. In Proceedings of the 2009 International Conference on Information and Automation, Zhuhai/Macau, China, 22–24 June 2009; pp. 1116–1119. [Google Scholar]
- Yusof, R.; Khalid, M.; Khairuddin, A.S.M. Application of kernel-genetic algorithm as nonlinear feature selection in tropical wood species recognition system. Comput. Electron. Agric. 2013, 93, 68–77. [Google Scholar] [CrossRef]
- Zamri, M.I.P.; Cordova, F.; Khairuddin, A.S.M.; Mokhtar, N.; Yusof, R. Tree species classification based on image analysis using improved-basic gray level aura matrix. Comput. Electron. Agric. 2016, 124, 227–233. [Google Scholar] [CrossRef]
- Figueroa-Mata, G.; Mata-Montero, E.; Valverde-Otarola, J.C.; Arias-Aguilar, D. Using deep convolutional networks for species identification of xylotheque samples. In Proceedings of the 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), San Carlos, Costa Rica, 18–20 July 2018; pp. 1–9. [Google Scholar]
- Kobayashi, K.; Kegasa, T.; Hwang, S.S.-W.; Sugiyama, J. Anatomical features of fagaceae wood statistically extracted by computer vision approaches: Some relationships with evolution. PLoS ONE 2019, 14, e0220762. [Google Scholar] [CrossRef] [Green Version]
- Souza, D.V.; Santos, J.X.; Vieira, H.C.; Naide, T.L.; Nisgoski, S.; Oliveira, L.E.S. An automatic recognition system of brazilian flora species based on textural features of macroscopic images of wood. Wood Sci. Technol. 2020, 54, 1065–1090. [Google Scholar] [CrossRef]
- Tang, X.J.; Tay, Y.H.; Siam, N.A.; Lim, S.C. MyWood-ID. Rapid and robust automated macroscopic wood identification system using smartphone with macro-lens. In Proceedings of the 2018 International Conference on Computational Intelligence and Intelligent Systems—CIIS 2018, Phuket, Thailand, 17–19 November 2018; ACM Press: New York, NY, USA, 2018; pp. 37–43. [Google Scholar]
- Stanford, V.L.; University, S.; University, P. ImageNet. Available online: https://www.image-net.org/ (accessed on 21 April 2021).
- Seregin, A.P. Moscow digital herbarium: A consortium since 2019. Taxon 2020, 69, 417–419. [Google Scholar] [CrossRef]
- New Your Botanical Garden, N. Index Herbariorum. Available online: http://sweetgum.nybg.org/science/ih/ (accessed on 21 April 2022).
- Soltis, P.S. Digitization of herbaria enables novel research. Am. J. Bot. 2017, 104, 1281–1284. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, J.; Hwang, S.W.; Kobayashi, K.; Zhai, S.; Kanai, I.; Kanai, K. Database of Cross Sectional Optical Micrograph from KYOw Lauraceae Wood. Available online: https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/245888 (accessed on 21 April 2022).
- Wood-Auth; Barmpoutis, P. WOOD-AUTH Dataset A (Version 0.1). Available online: https://doi.org/10.2018/wood.auth (accessed on 21 April 2022).
- Nasirzadeh, M.; Khazael, A.A.; bin Khalid, M. Woods recognition system based on local binary pattern. In Proceedings of the Second International Conference on Computational Intelligence, Communication Systems and Networks, CICSyN 2010, Liverpool, UK, 28–30 July 2010; pp. 308–313. [Google Scholar]
- Khalid, M.; Yusof, R.; Khairuddin, A.S.M. Improved tropical wood species recognition system based on multi-feature extractor and classifier. Int. J. Electr. Comput. Eng. 2011, 5, 495–501. [Google Scholar]
- Damayanti, R.; Prakasa, E.; Krisdianto; Dewi, L.M.; Wardoyo, R.; Sugiarto, B.; Pardede, H.F.; Riyanto, Y.; Astutiputri, V.; Panjaitan, G.R.; et al. LignoIndo: Image database of indonesian commercial timber. IOP Conf. Ser. Earth Environ. Sci. 2019, 374, 12057. [Google Scholar] [CrossRef]
- Kour, A.; Yv, V.; Maheshwari, V.; Prashar, D. A review on image processing. Int. J. Electron. Commun. Comput. Eng. 2012, 4, 2278–4209. [Google Scholar]
- Martins, J.; Oliveira, L.S.; Britto, A.S.; Sabourin, R. Forest species recognition based on dynamic classifier selection and dissimilarity feature vector representation. Mach. Vis. Appl. 2015, 26, 279–293. [Google Scholar] [CrossRef]
- Yusof, R.; Khalid, M.; Khairuddin, A.S.M. Fuzzy logic-based pre-classifier for tropical wood species recognition system. Mach. Vis. Appl. 2013, 24, 1589–1604. [Google Scholar] [CrossRef]
- Yusof, R.; Rosli, N.R.; Khalid, M. Tropical wood species recognition based on gabor filter. In Proceedings of the 2009 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009; pp. 1–5. [Google Scholar]
- Brunel, G.; Borianne, P.; Subsol, G.; Jaeger, M.; Caraglio, Y. Automatic identification and characterization of radial files in light microscopy images of wood. Ann. Bot. 2014, 114, 829–840. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Hwang, S.-W.; Lee, W.-H.; Sugiyama, J. Texture analysis of stereograms of diffuse-porous hardwood: Identification of wood species used in tripitaka koreana. J. Wood Sci. 2017, 63, 322–330. [Google Scholar] [CrossRef] [Green Version]
- Tou, J.Y.; Tay, Y.H.; Lau, P.Y. Rotational invariant wood species recognition through wood species verification. In Proceedings of the 2009 First Asian Conference on Intelligent Information and Database Systems, Dong hoi, Vietnam, 1–3 April 2009; pp. 115–120. [Google Scholar]
- Cavalin, P.R.; Kapp, M.N.; Martins, J.; Oliveira, L.E.S. A multiple feature vector framework for forest species recognition. In Proceedings of the 28th Annual ACM Symposium on Applied Computing—SAC ’13, Coimbra, Portugal, 18–22 March 2013; ACM Press: New York, NY, USA, 2013; p. 16. [Google Scholar]
- Yusof, R.; Khairuddin, U.; Rosli, N.R.; Ghafar, H.A.; Azmi, N.M.A.N.; Ahmad, A.; Khairuddin, A.S.M. A Study of feature extraction and classifier methods for tropical wood recognition system. In Proceedings of the TENCON 2018—2018 IEEE Region 10 Conference, Jeju, Republic of Korea, 28–31 October 2018; pp. 2034–2039. [Google Scholar]
- Lewis, N.D. Deep Learning Made Easy with R: A Gentle Introduction for Data Science; Platform, C.I.P., Ed.; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2016; ISBN 1519514212. [Google Scholar]
- Zhuo, L.; Cheng, B.; Zhang, J. A Comparative study of dimensionality reduction methods for large-scale image retrieval. Neurocomputing 2014, 141, 202–210. [Google Scholar] [CrossRef]
- Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Weng, Q. A Survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Ravindran, P.; Costa, A.; Soares, R.; Wiedenhoeft, A.C. Classification of CITES-listed and other neotropical meliaceae wood images using convolutional neural networks. Plant Methods 2018, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Andrade, B.G.D.; Vital, B.R.; Carneiro, A.D.C.O.; Basso, V.M.; Pinto, F.D.A.D.C. Potential of texture analysis for charcoal classification. Floresta e Ambient. 2019, 26, e20171241. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, UK, 2016; ISBN 9780262035613. [Google Scholar]
- Abiodun, O.I.; Kiru, M.U.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U. Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Networks 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Panzer, M.; Bender, B. Deep reinforcement learning in production systems: A systematic literature review. Int. J. Prod. Res. 2022, 60, 4316–4341. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.S. Computer vision: Evolution and promise. Comput. Sci. 1996. [Google Scholar] [CrossRef]
- Carriquiry, A.; Hofmann, H.; Tai, X.H.; VanderPlas, S. Machine learning in forensic applications. Significance 2019, 16, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Camps-Valls, G.; Tuia, D.; Zhu, X.X.; Reichstein, M. Deep Learning for the Earth Sciences; Camps-Valls, G., Tuia, D., Zhu, X.X., Reichstein, M., Eds.; Wiley: Hoboken, NJ, USA, 2021; ISBN 9781119646143. [Google Scholar]
- Singh, S.P.; Kumar, A.; Darbari, H.; Singh, L.; Rastogi, A.; Jain, S. Machine translation using deep learning: An overview. In Proceedings of the 2017 International Conference on Computer, Communications and Electronics (Comptelix), Jaipur, India, 1–2 July 2017; pp. 162–167. [Google Scholar]
- Clanuwat, T.; Bober-Irizar, M.; Kitamoto, A.; Lamb, A.; Yamamoto, K.; Ha, D. Deep learning for classical japanese literature. In Proceedings of the Workshop on Machine Learning for Creativity and Design, Vancouver, BC, Canada, 9 December 2018. [Google Scholar]
- Li, Y.; Huang, C.; Ding, L.; Li, Z.; Pan, Y.; Gao, X. Deep learning in bioinformatics: Introduction, application, and perspective in the big data era. Methods 2019, 166, 4–21. [Google Scholar] [CrossRef] [Green Version]
- Esteban, L.G.; Fernández, F.G.; de Palacios, P.; Romero, R.M.; Cano, N.N. Artificial neural networks in wood identification: The case of two juniperus species from the canary islands. IAWA J. 2009, 30, 87–94. [Google Scholar] [CrossRef]
- Turhan, K.; Serdar, B. Support vector machines in wood identification: The case of three salix species from Turkey. Turk. J. Agric. For. 2013, 37, 249–256. [Google Scholar] [CrossRef]
- Hafemann, L.G.; Oliveira, L.S.; Cavalin, P. Forest species recognition using deep convolutional neural networks. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 1103–1107. [Google Scholar]
- Esteban, L.G.; de Palacios, P.; Conde, M.; Fernández, F.G.; García-Iruela, A.; González-Alonso, M. Application of artificial neural networks as a predictive method to differentiate the wood of Pinus sylvestris, L. and pinus nigra arn subsp. Salzmannii (dunal) franco. Wood Sci. Technol. 2017, 51, 1249–1258. [Google Scholar] [CrossRef]
- Kwon, O.; Lee, H.G.; Lee, M.-R.; Jang, S.; Yang, S.-Y.; Park, S.-Y.; Choi, I.-G.; Yeo, H. Automatic wood species identification of korean softwood based on convolutional neural networks. J. Korean Wood Sci. Technol. 2017, 45, 797–808. [Google Scholar] [CrossRef]
- De Oliveira, W.; Filho, P.L.d.P.; Martins, J.G. Software for forest species recognition based on digital images of wood. FLORESTA 2018, 49, 543–552. [Google Scholar] [CrossRef]
- Kwon, O.; Lee, H.G.; Yang, S.-Y.; Kim, H.; Park, S.-Y.; Choi, I.-G.; Yeo, H. Performance enhancement of automatic wood classification of korean softwood by ensembles of convolutional neural networks. J. Korean Wood Sci. Technol. 2019, 47, 265–276. [Google Scholar] [CrossRef]
- Kanayama, H.; Ma, T.; Tsuchikawa, S.; Inagaki, T. Cognitive spectroscopy for wood species identification: Near infrared hyperspectral imaging combined with convolutional neural networks. Analyst 2019, 144, 6438–6446. [Google Scholar] [CrossRef]
- He, T.; Marco, J.; Soares, R.; Yin, Y.; Wiedenhoeft, A. Machine learning models with quantitative wood anatomy data can discriminate between swietenia macrophylla and swietenia mahagoni. Forests 2019, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Deklerck, V.; Mortier, T.; Goeders, N.; Cody, R.B.; Waegeman, W.; Espinoza, E.; Van Acker, J.; Van den Bulcke, J.; Beeckman, H. A protocol for automated timber species identification using metabolome profiling. Wood Sci. Technol. 2019, 53, 953–965. [Google Scholar] [CrossRef]
- De Geus, A.R.; da Silva, S.F.; Gontijo, A.B.; Silva, F.O.; Batista, M.A.; Souza, J.R. An analysis of timber sections and deep learning for wood species classification. Multimed. Tools Appl. 2020, 79, 34513–34529. [Google Scholar] [CrossRef]
- Wu, F.; Gazo, R.; Haviarova, E.; Benes, B. Wood identification based on longitudinal section images by using deep learning. Wood Sci. Technol. 2021, 55, 553–563. [Google Scholar] [CrossRef]
- Shugar, A.N.; Drake, B.L.; Kelley, G. rapid identification of wood species using XRF and neural network machine learning. Sci. Rep. 2021, 11, 17533. [Google Scholar] [CrossRef]
- Da Silva, N.R.; Deklerck, V.; Baetens, J.; Van den Bulcke, J.; De Ridder, M.; Rousseau, M.; Bruno, O.M.; Beeckman, H.; Van den Acker, J.; De Baets, B.; et al. Improved wood species identification based on multi-view imagery of the three anatomical planes. Prepr. from Res. Sq. 2022, 18, 79. [Google Scholar] [CrossRef]
- Chai, J.; Zeng, H.; Li, A.; Ngai, E.W.T. Deep learning in computer vision: A critical review of emerging techniques and application scenarios. Mach. Learn. with Appl. 2021, 6, 100134. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Yi, X.; Walia, E.; Babyn, P. Generative adversarial network in medical imaging: A review. Med. Image Anal. 2019, 58, 101552. [Google Scholar] [CrossRef] [Green Version]
- Lopes, D.J.V.; Monti, G.F.; Burgreen, G.W.; Moulin, J.C.; dos, S.; Bobadilha, G.; Entsminger, E.D.; Oliveira, R.F. Creating high-resolution microscopic cross-section images of hardwood species using generative adversarial networks. Front. Plant Sci. 2021, 12, 760139. [Google Scholar] [CrossRef]
- Hu, K.; Wang, B.; Shen, Y.; Guan, J.; Cai, Y. Defect identification method for poplar veneer based on progressive growing generated adversarial network and MASK R-CNN model. BioResources 2020, 15, 3040–3052. [Google Scholar] [CrossRef]
- Habite, T.; Abdeljaber, O.; Olsson, A. Automatic detection of annual rings and pith location along norway spruce timber boards using conditional adversarial networks. Wood Sci. Technol. 2021, 55, 461–488. [Google Scholar] [CrossRef]
- Shu, D.; Park, S.W.; Kwon, J. 3D Point cloud generative adversarial network based on tree structured graph convolutions. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3858–3867. [Google Scholar]
- UTAR; FRIM. MyWood-Premium. Available online: https://mywoodid.frim.gov.my/ (accessed on 20 July 2022).
- Tay, Y.H. XYLORIX: An AI-as-a-service platform for wood identification. In Proceedings of the IAWA-IUFRO International Symposium for Updating Wood Identification, Beijing, China, 20–22 May 2019. [Google Scholar]
- Agritix Xylorix. Available online: https://www.xylorix.com/products/ (accessed on 4 May 2022).
- XyloTron.org XyloTron. Available online: https://xylotron.org/ (accessed on 4 May 2022).
- The National Academies of Sciences, Engineering, and Medicine. Available online: https://sites.nationalacademies.org/PGA/PEER/PEERscience/PGA_195537 (accessed on 4 May 2022).
- Universidad Politécnica de Madrid, Universidad de Granada, Asociación Española del Comercio e Industria de la Madera. (AEIM) IMAI App.
Year | Name | Taxa | Area | Identification | Number of Images | Access | Comments | Reference |
---|---|---|---|---|---|---|---|---|
2000 | Commercial timbers: descriptions, illustrations, identification, and information retrieval | 404 hardwoods | Major forest regions of the world | Microscopic descriptions and illustrations | n.a. | Freely available | - | [32] |
2000 | Anatomy of European and North American Woods | 325 hardwoods 101 softwoods | Europe and North America | Microscopic descriptions and illustrations | n.a. | Freely available | Includes features adapted to identification of carbonised woods from archaeological contexts | [33] |
2003 | Wood database of the Forestry and Forest Products Research Institute | 781 | Japan | Microscopic descriptions and illustrations | n.a. | Freely available | - | [34] |
2004 | InsideWood | 7653 modern hardwoods; 235 modern softwoods; 2173 fossil hardwoods | Global | Microscopic descriptions and illustrations | 58,146 modern hardwoods; 3807 fossil hardwoods; 1482 modern softwoods | Freely available | Includes 61,578 searchable images | [35] |
2004 | Wood anatomy of central European species | 133 hardwoods and softwoods | Europe | Microscopic descriptions and illustrations | n.a. | Freely available | Includes macroscopic and microscopic images and descriptions | [36] |
2005 | CITESwoodID | 44 CITES woods; 31 look-a-like species | Specific forest regions of the world | Macroscopic descriptions and illustrations | n.a. | Freely available | Includes abundant extra information | [37] |
2005 | Key to a Selection of Arid Australian Hardwoods and Softwoods | 58 hardwoods and softwoods | Australia | Microscopic descriptions and illustrations | n.a. | Freely available | Detailed information about each species | [38] |
2010 | Brazilian Commercial Timbers | 275 species | Brazil | Macroscopic features; chemical and physical tests | n.a. | Freely available | - | [39] |
2011 | Pl@ntwood | 110 hardwoods | Amazonia | Microscopic descriptions and illustrations | n.a. | - | - | [40] |
2013 | Forest Species Database—Microscopic | 112 hardwoods and softwoods | Tropical forests | Microscopic descriptions and illustrations | 2240 | Freely available | Includes 2240 searchable microscopic images | [41,42] |
2014 | Forest Species Database—Macroscopic | 41 hardwoods and softwoods | Brazil | Macroscopic descriptions and illustrations | 2942 | Freely available | Includes 2942 searchable macroscopic images | [43,44] |
2016 | MacroHOLZdata | 150 hardwoods and softwoods | Global | Macroscopic descriptions and illustrations | n.a. | Free of charge on request | Available in English, German and Spanish | [45] |
2018 | Forest Species Classifier | 112 hardwoods and softwoods | Brazil | Macroscopic and microscopic illustrations | 5182 | Freely available | - | [46] |
41 hardwoods and softwoods | Freely available | |||||||
2018 | Charcoal | 44 hardwoods | Brazil | Microscopic features | 528 | Available for research only | - | [47] |
2019 | Charkey | 507 hardwoods and softwoods | French Guiana | Microscopic descriptions and illustrations | n.a. | Freely available | Highly detailed SEM images | [48] |
n.a. | Softwood Retrieval System for Coniferous Wood | 180 softwoods | China | ≥1000 | n.a. | Under development | [49] | |
2021 | UTForest—UTFPR Classificador | 44 hardwoods and softwoods | Brazil | Macroscopic descriptions | 1318 | Freely available | - | [50] |
Under development | Mader app | n.a. | n.a. | Microscopic features | 26,000 | n.a. | Database with 1000 images per species | [51] |
Dataset | Description | Image Type | Number of Species | Number of Images | Accessibility | Reference |
---|---|---|---|---|---|---|
CAIRO | Commercial hardwood species of Malaysia | Stereo | 37 | 3700 | Inaccessible | [96] |
FRIM | 52 | 5200 | [97] | |||
LignoIndo | Commercial hardwood species of Indonesia | 809 | 4854 | [98] | ||
ZAFU WS 24 | Wood species at Zhejiang A&F University | 24 | 480 | [75] | ||
RMCA | Commercial wood species of Central Africa | Micro | 77 | 1221 | Open | [78] |
XDD | Major Fagaceae species of Japan | 18 | 2449 | [87] | ||
Lauraceae species of East Asia | 39 | 1658 | [94] | |||
WOOD-AUTH | Wood species of Greece | Macro | 12 | 4272 | [95] | |
UFPR | Wood species of Brazil | 41 | 2942 | [44] | ||
UFPR | Micro | 112 | 2240 | [42] |
Reference | Database | Species Geographic Origin | Image Type | Section Type | Number of Species | Anatomically Similar Species | Number of Images | Image Analysis Program | Pre-Processing Images | Features Descriptor | Classifiers | CNN Model | Classification Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[127] | Samples from natural forests | Canary Islands (Spain) | Biometric data | Transverse Tangential Radial | 2 | Yes | n.a. | WinCell | PCA | n.a. | Feedforward multilayer perceptron network | n.a. | 92.0% |
[79] | No specific source | Global | SEM | Transverse | 7 | No | 101 | n.a. | LDA | GLCM | Multiple classification methods | Hardwoods vs. softwoods (LOOCV) 89%, (EVT) 93%. | |
7 species (LOOCV) 81%, (EVT) 80%. | |||||||||||||
[128] | Samples from natural forests | Turkey | Micro | Transverse Tangential Radial | 3 | Yes | n.a. | n.a. | n.a. | n.a. | SVM with linear kernel function | n.a. | 95.2% |
[77] | LWA-UFP | Brazil | Micro | n.a. | 112 | No | 2240 | n.a. | n.a. | GLCM LBP | SVM LBP | n.a. | SVM—98.6% LBP—86% |
[129] | LWA-UFP | Brazil | Macro | Transverse | 41 | No | 2050 | n.a. | n.a. | LBP GF CLBP Colour-based features | SVM | 3-ConvNeta | 95.77% |
Micro | 112 | No | 2240 | LBP GLCM LPQ LPQ + GLCM | SVM | 97.32% | |||||||
[71] | LWA-UFP | Brazil | Macro | Transverse | 41 | No | 2942 | n.a. | n.a. | Texture fusion strategy | Two-level divide-and-conquer | n.a. | 97.77% |
[130] | Samples from natural forests | Iberian Peninsula | Biometric data | Transverse Tangential Radial | 2 | Yes | n.a. | WinCell | n.a. | Resilient backpropagation algorithm | Feedforward multilayer perceptron network | n.a. | 81.2% |
[131] | Samples from the timber industry | Korea | Macro | Transverse | 5 | Yes | 33.730 | n.a. | n.a. | n.a. | n.a. | LeNet3 | 99.3% |
[78] | TXWD-RMCA | Democratic Republic of the Congo | Micro | Transverse | 77 | No | 1221 | CellB (version 3.2, Olympus) | GSC | LPQ LBP LDA | LDA KNN | n.a. | 88% species level 89% genus level 90% family level |
[86] | LWA-UFP | Brazil | Macro | Transverse | 41 | No | 47.024 | n.a. | IMAGE DATA GENERATOR class of KERAS | n.a. | n.a. | Resnet50 | 98.3% |
[112] | SJRw; MADw; RBw | Central and South America, Africa | Stereo | Transverse | 10 | Yes | 2303 | n.a. | n.a. | n.a. | End-to-end trained image classifiers | VGG16 | 87.4%–97.5% |
[47] | LWA-UFP | Brazil | Micro | Transverse | 44 | No | 528 | n.a. | n.a. | LBP | RF SVM | n.a. | 93.9% |
Inception_v3 | n.a. | TL | 95.7% | ||||||||||
[132] | LWA-UFP | Brazil | Macro | Transverse | 41 | No | 2942 | n.a. | n.a. | n.a. | n.a. | n.a. | Scale dataset 100% |
Micro | 112 | 2240 | Macroscopic dataset 98.73% | ||||||||||
Microscopic dataset 99.11% | |||||||||||||
[133] | Samples from the timber industry | Korea | Macro | Transverse Tangential | 5 | Yes | 33,815 | n.a. | n.a. | n.a. | n.a. | Multiple models ensemble | 98% |
[134] | FFPRI | Japan | NIR-HSI | Tangential Radial & between the two planes | 38 | No | n.a. | n.a. | n.a. | n.a. | n.a. | PCA | 90.5% |
[135] | SJRw; MADw; RBw | Central and South America | Micro | Transverse Tangential Radial | 3 | Yes | n.a. | n.a. | n.a. | n.a. | SVM | n.a. | 91.4% |
[136] | TXWD-RMCA; HNM; MADw; CM, Inc.; OSU; PV | Central America and Central Africa | DART-TOFMS | Slivers for metabolome profiling | 10 | No | n.a. | n.a. | Binning threshold | n.a. | RF | n.a. | 82.2% |
[73] | Samples from natural forests | Amazonia Atlantic region | Macro | Transverse | 21 | No | 2000 | n.a. | Adapthisteq | GLCM | SVM | n.a. | 97.7% |
[66] | TXWD-RMCA; HNM; MADw; CM, Inc.; OSU; PV | Central America and Central Africa | Stereo | Transverse | 10 | No | n.a. | n.a. | n.a. | n.a. | n.a. | ResNet34 | Species level 81.9% |
Genus level 96.1% | |||||||||||||
[81] | DSB-FWRC | North America | Stereo | Transverse | 10 | No | 1869 | n.a. | n.a. | n.a. | n.a. | InceptionV4_ResNetV2 | 92.6% |
[137] | 2012 ImageNet | Brazil | Stereo | Transverse Tangential Radial | 281 | No | n.a. | n.a. | n.a. | RiLPQ | kNN | DenseNet | 98.8% |
[69] | CVLO-CELOS | Suriname | Macro | Transverse | 14 | No | 1.2 million | n.a. | Threshold | n.a. | n.a. | Inception-v3 | 98% |
[76] | [76] | Neotropical regions | Micro | Transverse | 112 | No | 2240 | n.a. | n.a. | LBP | SVM | ResNet101 | 95.6% |
[138] | Samples from Lumber yard | North America | Macro | Tangencial | 11 | No | 3158 | n.a. | n.a. | n.a. | SGD optimizer Adam optimizer | ResNet-50 DenseNet-121 MobileNet-V2 | 98.2% |
[139] | GACD | Global | XRF | Tangential Radial & in between the two planes | 48 | No | n.a. | n.a. | n.a. | n.a. | n.a. | 1D CNN model | 99% |
[72] | Collected from trunks of leafing trees | Europe | Macro | Transverse | 14 | No | n.a. | n.a. | n.a. | Train set | n.a. | Residual convolutional encoder network | Wood patch classification—93% |
Wood core classification—98.7% | |||||||||||||
[140] | TXWD-RMCA | Democratic Republic of the Congo | Micro | Transverse Tangential Radial | 77 | No | n.a. | n.a. | GSC | LPQ | MVRF | n.a. | 95% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.L.; Bordalo, R.; Pissarra, J.; de Palacios, P. Computer Vision-Based Wood Identification: A Review. Forests 2022, 13, 2041. https://doi.org/10.3390/f13122041
Silva JL, Bordalo R, Pissarra J, de Palacios P. Computer Vision-Based Wood Identification: A Review. Forests. 2022; 13(12):2041. https://doi.org/10.3390/f13122041
Chicago/Turabian StyleSilva, José Luís, Rui Bordalo, José Pissarra, and Paloma de Palacios. 2022. "Computer Vision-Based Wood Identification: A Review" Forests 13, no. 12: 2041. https://doi.org/10.3390/f13122041
APA StyleSilva, J. L., Bordalo, R., Pissarra, J., & de Palacios, P. (2022). Computer Vision-Based Wood Identification: A Review. Forests, 13(12), 2041. https://doi.org/10.3390/f13122041