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Abstract: Illegal logging and associated trade aggravate the over-exploitation of Swietenia species,
of which S. macrophylla King, S. mahagoni (L.) Jacq, and S. humilis Zucc. have been listed in
Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Appendix
II. Implementation of CITES necessitates the development of efficient forensic tools to identify wood
species accurately, and ideally ones readily deployable in wood anatomy laboratories across the world.
Herein, a method using quantitative wood anatomy data in combination with machine learning
models to discriminate between three Swietenia species is presented, in addition to a second model
focusing only on the two historically more important species S. mahagoni and S. macrophylla. The intra-
and inter-specific variations in nine quantitative wood anatomical characters were measured and
calculated based on 278 wood specimens, and four machine learning classifiers—Decision Tree C5.0,
Naïve Bayes (NB), Support Vector Machine (SVM), and Artificial Neural Network (ANN)—were
used to discriminate between the species. Among these species, S. macrophylla exhibited the largest
intraspecific variation, and all three species showed at least partly overlapping values for all nine
characters. SVM performed the best of all the classifiers, with an overall accuracy of 91.4% and a
per-species correct identification rate of 66.7%, 95.0%, and 80.0% for S. humilis, S. macrophylla, and S.
mahagoni, respectively. The two-species model discriminated between S. macrophylla and S. mahagoni
with accuracies of over 90.0% using SVM. These accuracies are lower than perfect forensic certainty but
nonetheless demonstrate that quantitative wood anatomy data in combination with machine learning
models can be applied as an efficient tool to discriminate anatomically between similar species in
the wood anatomy laboratory. It is probable that a range of previously anatomically inseparable
species may become identifiable by incorporating in-depth analysis of quantitative characters and
appropriate statistical classifiers.
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1. Introduction

In recent decades, international efforts to prohibit or limit the trade of endangered species have
been made to combat illegal logging and associated trade [1–5], usually emphasizing the Convention
on International Trade in Endangered Species of Wild Fauna and Flora (CITES), which lists species in
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one of three appendices depending on the degree of protection required. To ensure that international
trade in timber species does not threaten their survival, more than 500 tree species had been listed in
the CITES appendices by 2017 [6].

Among the species protected by CITES are Swietenia macrophylla King, Swietenia mahagoni (L.)
Jacq and Swietenia humilis Zucc., three commercially important species in the neotropical (South and
Central America with tropical Mexico) genus Swietenia (Meliaceae) which are listed in CITES Appendix
II. S. mahagoni, commonly known as American mahogany, Cuban mahogany, or small-leaf mahogany,
is a species of Swietenia native to southern Florida in the United States and islands in the Caribbean
including the Bahamas, Cuba, Jamaica, and the Dominican Republic and Haiti. S. mahagoni has for
centuries been widely exported to European countries for use in fine furniture and musical instruments.
S. macrophylla, known as big-leaf mahogany, is one of the world’s most valuable and widely traded
timber species, occurring naturally from North to South America [7,8]. The wood of S. macrophylla is
prized for furniture, musical instruments, decorative materials, and artisanal crafts due to its beauty,
workability, and moderate decay resistance. A third Swietenia species, S. humilis, is largely restricted
to Pacific Coast forests of tropical Mexico and Central America, and in more recent times has been
over-exploited as a furniture wood. S. humilis is also of interest as a possibly commercial source of
seed oil and pharmacologically active compounds [9]. The woods of these three species are widely
considered to be unable to be discriminated between by wood anatomy [10,11]. Despite the fact that
all three species are listed in CITES Appendix II, which affords them the same degree of protection and
thus no direct CITES-related need for a species-level separation, there remain cultural, commercial, and
scientific interests in discriminating between the woods of these species and in particular discriminating
between S. macrophylla and S. mahagoni with regard to cultural property.

Implementation of CITES regulations for timber necessitates the definitive identification of wood
species whether in the laboratory or in the field. Plants are typically identified at the species level by
observing all their features, including leaves, fruits, seeds, and flowers. For commercial wood trade,
the tree is logged and typically only boards are available, with not even the additional information
that might be provided by bark available [12–14]. This poses additional challenges because botanists
trained in field identification of plants do not by default have the necessary background in wood
anatomy needed to make field identifications of wood. To overcome the general lack of human
expertise in field and forensic wood identification [15], alternative methodologies have been developed
for correct wood identification of CITES-listed timber species, including near-infrared spectroscopy
(NIRS) [16–18], direct analysis in real time mass spectrometry (DART) [19–22], computer vision [23–25]
and DNA methods [26–32], most of which do not depend on a human expert trained in wood anatomy.
These non-anatomical techniques could provide solutions for discriminating between similar species,
but not all laboratories or countries have access to these technologies and investigators with expert
knowledge and skills to conduct the necessary experimental work to facilitate field deployment [14,33].
Although traditional light microscopic wood identification is fundamentally a laboratory-based
endeavor typically restricted to people with access to and skill with light microscopes, reference
collections, and operations involving a place of significant expertise with wood anatomy [34–36], many
countries have at least one laboratory that maintains wood anatomical capacity, so any advances in
wood anatomical methods can be widely applied at low cost.

Regarding this context, species identification technologies deployable across the whole wood
product supply chain across the world are critical because many protected timbers can easily be mistaken
for legally harvested species due to similar gross appearance and even similar wood anatomical
structure. This is particularly the case for closely related congeneric species (e.g., species within the
genus Swietenia) and can be further complicated by the potentially high degree of variability within
some species. The most common wood identification method currently employed is a combination of
macroscopic and microscopic identification in which many wood characters such as density, color, smell,
brightness, texture, growth rings, vessels, fibers, and porosity of an unknown sample are compared
with reference collection exemplars of candidate species [11,35]. An expert wood anatomist can perform



Forests 2020, 11, 36 3 of 13

an identification and provide forensically reliable results [13], but they depend on knowledge of the
breadth of variability in a given species and typically require years or decades to develop that expertise.
One way to investigate subtle wood anatomical divergences between species is to collect quantitative
data relating to key characters and subject these data to multivariate statistical classification [36,37].
Broadly, these statistical methodologies fall into two categories, namely, unsupervised and supervised.
Unsupervised methods draw inferences from datasets consisting of input data without labels, and some
types of cluster analysis are used for exploratory data analysis to find hidden patterns or groupings
in data [38], but this approach is virtually absent in the wood anatomical literature, perhaps in part
because unsupervised methods perform most reliably with large amounts of data which are difficult to
generate in wood anatomy. Supervised classification is the data mining task of inferring a function from
labeled training data, and includes Naïve Bayes (NB), Support Vector Machine (SVM), Artificial Neural
Network (ANN) and Decision Tree C5.0 (DT) methods, among others, each of which is widely used for
classification tasks [39]. Such statistical analysis in wood discrimination has been recently applied
to data from non-traditional wood identification methods [22,29,32,40–42], but not for quantitative
wood anatomy.

In his 1933 paper, Panshin wrote that “the woods of the Swietenia species cannot be separated
anatomically with any degree of certainty” and no publications since that time have overturned this
judgment [10]. The aim of this study was to test Panshin’s claim using quantitative wood anatomy
data in combination with machine learning models to establish an identification method that could
discriminate between three Swietenia species, namely, S. marcophylla, S. mahagoni, and S. humilis, based
on a large number of specimens from wood collections. This was approached using three steps:
(1) investigating the intra- and inter-specific variations of the three species, (2) testing multivariate
supervised classifiers (DT, NB, SVM, and ANN) on all characters for their discrimination ability
regarding the three species, and (3) investigating a two-species model to separate the historically more
important S. macrophylla and S. mahagoni given the relative paucity of Swietenia humilis specimens
available for study.

2. Materials and Methods

2.1. Reference Specimens

Mature wood of 278 Swietenia specimens (198 Swietenia macrophylla, 65 Swietenia mahagoni, and 15
Swietenia humilis) from the Samuel J. Record Collection (SJRw), the USDA Forest Products Laboratory
Wood Collection (MADw) of Madison, Wisconsin, and the wood collection (RBw) of the Botanic
Garden of Rio de Janeiro in Brazil was selected. Wood microscopy and microtomy were performed as
in [43] and images of three planes of sections of S. macrophylla, S. mahagoni, and S. humilis are shown in
Figure 1.
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Figure 1. The three planes of sections of S. macrophylla, S. mahagoni, and S. humilis, showing the
similarity of the three species with regard to wood anatomical features. Legend: X, cross section; R,
radial section; T, tangential section.

2.2. Quantitative Characters

Measured and calculated quantitative character definitions are listed in Table 1 and generally
correspond to the IAWA list [44]. Vessel element length (VEL) and fiber length (FL) are reported as
the average of 25 and 50 measurements, respectively. The ratio of fiber length to vessel length (F/V)
was calculated. Mean tangential vessel diameter (TVD) was calculated from measurements taken at
the widest point of 50 vessels using ImageJ version 1.47 (National Institute of Health, Bethesda, MD,
USA) [45]. Frequency of vessels (FOV) was measured by dividing the total number of vessels in one
picture by its area of 11.2 mm2 (4612 microns in width and 2432 microns in height), allowing for more
than the IAWA-recommended use of 10 fields of view with 1 mm2 each. Rays per linear mm (RPMM)
was measured by counting the number of rays transected by a 2 mm reference line in five different
fields of view. Ray height (RHEIGHT) and ray width (RWIDTH) were also measured in microns using
ImageJ. Rays of every width category (determined as the number of cells at maximum width) were
measured in random fields of view until at least five rays per width category (whenever possible) were
obtained, and were indexed according to the area of the field of view to provide a rays per mm2 value.
Ray area index (RAI) was calculated as described in [43]. As rays are fusiform in shape to varying
degrees, the RAI is, by virtue of being a rectangular metric, an overestimate of total ray area.

Table 1. Definitions of and number of measured and calculated characters.

Wood Features Abbreviation Definitions

Vessel element length VEL Mean vessel element length (n = 25); tails were included
in the measurement

Fiber length FL Mean fiber length (n = 50)

Fiber to vessel ratio F/V FL to VEL ratio

Tangential vessel diameter TVD

Mean tangential diameter of vessels (n = 50); measured
at the widest point of a vessel and including the vessel
wall. To select which vessels would be measured we

used a grid (a single diagonal line).

Frequency of vessels FOV Mean number of vessels found in 1 mm2
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Table 1. Cont.

Wood Features Abbreviation Definitions

Rays per linear mm RPMM

The count of all rays in five fields of view crossed by a 2
mm line seen through an ocular micrometer (10 mm total,

as described in the IAWA list of microscopic features).
Only rays entirely in the field of view were measured.

Ray height RHEIGHT Mean ray height in µm.

Ray width RWIDTH Mean ray width in µm

Ray area index RAI
Sum of the product of mean ray height ×mean ray width
×mean number of rays per mm of each ray width

category, divided by 100,000 µm2

2.3. Statistical Analysis

All statistical work was performed in R version 3.4.4. Intra- and inter-specific quantitative
variations were examined using descriptive statistical data analysis with Bonferroni corrections in all
t-tests to account for multiple comparisons.

To implement supervised machine learning algorithms, we used a 10-fold cross-validation at the
specimen level for both the three-species and two-species models. We tested the performance of four
classifiers, namely, DT, NB, SVM, and ANN, which were implemented with R packages C50, e1071,
kernlab, and nnet, respectively [46–49]. Decision Tree is a branching model similar to a traditional
identification key that separates classes by splitting data at decision nodes and ending at the separated
classes [50]. Naïve Bayes employs Bayes’ theorem, assuming independence between features among
the classes, to calculate a class membership probability [51]. An SVM model maps the input data into a
higher dimensional space and then determines optimal class-separating hyperplanes [52]. ANN is
an information processing system with interconnected “neurons” that receive, process, and transmit
input signals using feature weights, the reticulated structure of which is inspired by the biological
processes of the human brain [53].

3. Results

3.1. Quantitative Wood Anatomy Data

Table 2 presents mean values and standard deviations for each of the characters measured in
the three Swietenia species, as well as the results of t-tests of the mean values. The results of t-tests
indicated that there were significant differences among three Swietenia species in the mean values of
FL, FOV, and RHEIGHT. Nevertheless, the calculated RAI failed to show any divergence across the
three species.

Table 2. Mean values and standard deviations with t-tests for the nine measured and calculated indices
in three Swietenia species.

Wood Features S. humilis S. macrophylla S. mahagoni

Vessel element length (µm) 439 ± 62 a 513 ± 72 b 419 ± 59 a

Fiber length (µm) 1217 ± 119 a 1312 ± 142 b 1135 ± 173 ab

Fiber-to-vessel ratio 2.8 ± 0.3 a 2.5 ± 0.3 b 2.7 ± 0.3 a

Tangential vessel diameter (µm) 144 ± 19 a 153 ± 21 a 124 ± 18 b

Frequency of vessels 9.7 ± 3 a 8.3 ± 2.6 a 11.6 ± 3.5 b

Rays per linear mm 5.1 ± 0.7 a 5.4 ± 0.8 a 5.9 ± 0.8 b

Ray height (µm) 52 ± 10 a 47 ± 10 b 52 ± 11 ab

Ray width (µm) 331 ± 59 a 390 ± 70 b 306 ± 54 a

Ray area index 0.86 ± 0.24 a 0.99 ± 0.29 a 0.93 ± 0.29 a

For each row, values with different superscripts (a, b, and ab) are statistically different.
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Smoothed data density histograms of the nine characters are presented in Figure 2. Not surprisingly,
none of the three Swietenia species could be separated by any single quantitative character because the
data distribution within and between species showed overlap for all characters.

Figure 2. Smoothed data density histograms of the nine characters: (a) VEL, (b) FL, (c) F/V, (d) TVD,
(e) FOV, (f) RPMM, (g) RHEIGHT, (h) RWIDTH, (i) RAI.

3.2. Machine Learning Classifiers for Discrimination between the Three Swietenia Species

Confusion matrices reporting performance metrics for the four supervised classifiers, namely,
DT, NB, SVM, and ANN are presented in Figure 3. The true species are reported on the left and the
predicted species are given in the columns, such that on-diagonal predictions are correct and all other
predictions are incorrect. The value in each cell is the proportion of the total predictions, and each
row always sums to 1.0. Of the four supervised classifiers, SVM showed the best overall performance
(91.4%), followed by ANN (83.8%), NB (79.5%), and DT (78.4%). Using the SVM classifier, the three
Swietenia species could be separated with a relatively higher accuracy, i.e., 66.7% for S. humilis, 95.0%
for S. macrophylla, and 80.0% for S. mahagoni. However, the DT and ANN classifiers failed to predict S.
humilis correctly.
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Figure 3. Confusion matrices generated by the four supervised classifiers: (a) Decision Tree C5.0, (b)
Naïve Bayes, (c) Support Vector Machine, (d) Artificial Neural Network.

3.3. Machine Learning Classifiers for Discrimination of S. mahagoni and S. macrophylla

Figure 4 presents the confusion matrices for the two-species model discriminating between
Swietenia mahagoni and Swietenia macrophylla. The four supervised classifiers exhibited overall accuracy
values of over 80%, being i.e., 93.9% (SVM), 85.2% (ANN), 81.7% (NB), and 81.4% (DT). SVM was able
to discriminate between S. macrophylla and S. mahagoni with thresholds of 94.9% and 90.8%, respectively.
The results indicated that the two-species model performed slightly better than the three-species model.
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Figure 4. Confusion matrices for discriminating between Swietenia mahagoni and Swietenia macrophylla:
(a) Decision Tree C5.0, (b) Naïve Bayes, (c) Support Vector Machine, (d) Artificial Neural Network.

4. Discussion

4.1. Intra- and Inter-Species Variations of the Three Swietenia Species

In traditional wood identification, species-level resolution is often impossible because intra-species
variation is as large as inter-species variation within a genus [54–56]. All characters showed overlap in
intra- and inter-species variation for the three Swietenia species, and, therefore, no single character was
sufficient to separate them. Swietenia macrophylla showed relatively higher within-species variation
across all characters, which could be related to the wider geographic range it spans and thus the greater
likelihood of genetic diversity, or this could be due to the larger number of specimens of this taxon
included in this study [14]. Comparing the variance in each of the nine characters across the three
species, VEL, TVD, and RHEIGHT showed the largest variance for S. macrophylla (Table 2), which also
had the most specimens in this study. Four characters, namely, F/V, RPMM, RWIDTH, and RAI, were
nearly invariant between species. As variance is independent of sample size, we conclude that the
wider geographic range of S. macrophylla and not the larger number of specimens likely accounts for
the larger variations within this species [57,58].

It is not surprising that no single character was sufficient to separate the three species—traditional
wood identification employs combinations of many characters sequentially in written, diagnostic
keys [15,36]. However, for quantitative wood anatomy data, the complexity of the data distributions
within and between species when combining characters can confound human ability to visualize
important patterns that might be sufficient to discriminate between species [59]. To overcome this, we
fed all the data into supervised machine learning classifiers to separate these species.

4.2. Discrimination between the Three Swietenia Species

According to the confusion matrices generated by the four supervised classifiers, S. macrophylla
was always correctly classified with the highest accuracy (85.4%–95.0%), followed by S. mahagoni
(60.0%–80.0%), and S. humilis (0–66.7%, Figure 3). Misclassified specimens of S. humilis and S. mahagoni
were typically predicted as S. macrophylla, although never in proportion with the abundance of
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S. macrophylla in the dataset, indicating that class imbalance in the dataset was not the proximate cause
of any inaccuracy. The high wood anatomical variability within S. macrophylla encompasses much of the
variability in the other two species, and even machine learning methods did not suffice to provide full
forensic certainty [22,60] but did greatly exceed prior reported accuracy [10]. When separating similar
species using quantitative wood anatomy data, it is recommended that a sufficiently large number of
specimens be studied to ensure that the full range of variation across the species is incorporated [56].

Although all three Swietenia are listed in CITES Appendix II, there remain historical and cultural
demands to separate S. mahagoni and S. macrophylla, without reference to S. humilis, which by virtue of
its more inland and Pacific distribution is presumed not to appear in older Western cultural property.
In this study, SVM exhibited the highest accuracy of all the supervised classifiers with a correct threshold
of over 90.0% when separating the two species (Figure 4). Machine learning models have shown
considerably better performance than expert wood anatomists when separating S. macrophylla and S.
mahagoni [10,11,61]. The results demonstrated in this study provide a pathway to discriminate between
similar woods, including CITES species, using quantitative wood anatomy data in combination with
machine learning models [36,55].

4.3. Evaluation of Machine Learning Methods for Wood Identification

Historically, traditional wood identification relies on wood anatomists who spend decades to
gain their expertise and experience, and such identifications typically only reach the genus level.
The main challenge for traditional wood identification around the world is the paucity of trained wood
anatomists [15], especially for large-scale challenges like combating illegal logging and associated
trade. This study has demonstrated the feasibility of using quantitative wood anatomy data with
machine learning models to discriminate between CITES-listed species. To use these models, the only
requirement is to collect quantitative wood anatomy data and input them to the machine learning
models using free software. The machine learning models then output the classification results and
show better discrimination ability than wood anatomists.

In previous studies, ANN and NB have been widely reported to identify species using quantitative
wood anatomy data coupled with principle components analysis [62,63]. In this study, SVM
outperformed ANN and NB in discrimination ability for both the three-species and two-species
models. This is consistent with results from other works in which a supervised SVM classifier was
used for wood species classification with images [64,65] and DNA data [32,42,66,67].

5. Conclusions

Traditional wood identification relying on qualitative wood anatomy is typically accurate only
to the genus level. Non-anatomical technologies capable of species-level identification are quite
expensive and also require comprehensive reference data libraries, and, in some cases, specialized
technical expertise. By contrast, preparation and measurement of microscope slides is a familiar task
in a wood anatomy laboratory. By analyzing wood anatomy data collected using standard tools,
we have presented a highly effective machine-learning-based classifier able to separate the three
Swietenia species, as well as discriminate between S. macrophylla and S. mahagoni. This study shows that
quantitative traditional wood anatomy data can discriminate between anatomically similar species,
shown here with CITES-listed species, and thus provide an easily-implemented technique for wood
anatomy laboratories to aid in efforts to eliminate illegal logging.
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