How Does the Water Conservation Function of Hulunbuir Forest–Steppe Ecotone Respond to Climate Change and Land Use Change?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Calculation Method of Water Conservation
2.2.1. InVEST Model Water Yield Module
2.2.2. Calculation of Water Conservation
2.3. Data Source and Processing Method
2.4. Scenario Settings for Differentiating Effects of Land Use and Climate Change
2.5. Data Analysis Method
3. Results
3.1. Variation Characteristics of Water Yield and Water Conservation
3.1.1. Variation Characteristics of Water Yield
3.1.2. Variation Characteristics of Water Conservation
3.2. Variations of Land Use and Climate Change in the Forest–Steppe Ecotone
3.2.1. Variations of Land Use
3.2.2. Variations of Climate Change
3.3. Response of Water Conservation to Driving Factors
3.3.1. Response of Water Conservation to Driving Factors
3.3.2. Main Driving Factors of Water Conservation
4. Discussion
4.1. Temporal and Spatial Distribution of Water Yield, Water Conservation, and Model Verification
4.1.1. Temporal and Spatial Distribution of Water Yield and Water Conservation
4.1.2. Parameter Z and Model Validation
4.2. The Main Driving Factors of Water Conservation in the Forest–Steppe Ecotone
4.3. Significance and Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holland, M.M. SCOPE/MAB Technical Consultations on Landscape Boundaries: Report of a SCOPE/MAB Workshop on Ecotones. Biol. Int. 1988, 17, 106. [Google Scholar]
- Shea, M.E.; Mladenoff, D.J.; Clayton, M.K.; Berg, S.; Elza, H. Pattern of Tree Species Co-Occurrence in an Ecotone Responds to Spatially Variable Drivers. Landsc. Ecol. 2022, 37, 2327–2342. [Google Scholar] [CrossRef]
- Di Castri, F. A New Look at Ecotones: Emerging International Projects on Landscape Boundaries. Biol. Int. 1988, 1–163. [Google Scholar]
- Holland, M. Ecotones: The Role of Landscape Boundaries in the Management and Restoration of Changing Environments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Myster, R.W. Tree Invasion and Establishment in Old Fields at Hutcheson Memorial Forest. Bot. Rev. 1993, 59, 251–272. [Google Scholar] [CrossRef]
- Myster, R.W. Post-Agricultural Succession in the Neotropics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Oliveras, I.; Malhi, Y. Many Shades of Green: The Dynamic Tropical Forest–Savannah Transition Zones. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.-H.; Sun, J. Optical Dating of Holocene Dune Sands from the Hulun Buir Desert, Northeastern China. Holocene 2006, 16, 457–462. [Google Scholar] [CrossRef]
- Zhang, R.; Yeh, E.T.; Tan, S. Marketization Induced Overgrazing: The Political Ecology of Neoliberal Pastoral Policies in Inner Mongolia. J. Rural Stud. 2021, 86, 309–317. [Google Scholar] [CrossRef]
- Bai, M.; Mo, X.; Liu, S.; Hu, S. Detection and Attribution of Lake Water Loss in the Semi-Arid Mongolian Plateau—A Case Study in the Lake Dalinor. Ecohydrology 2021, 14, e2251. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid Loss of Lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [Green Version]
- Xuan, W.; Ziqian, X.; Mindi, L.; Guiting, Z.; Xinzhe, N.; Honghua, R. Dynamic Analysis of the Wetlands in Hulunbeier Region Basedon Remote Sensing from 1999 to 2010. Wetl. Sci. Manag. 2014, 2, 53–57. [Google Scholar]
- Zheng, Y.; Liu, H.; Zhuo, Y.; Li, Z.; Liang, C.; Wang, L. Dynamic Changes and Driving Factors of Wetlands in Inner Mongolia Plateau, China. PLoS ONE 2019, 14, e0221177. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Li, H.; Akram, M.A.; Dong, L.; Sun, Y.; Hu, W.; Gong, H.; Zhao, D.; Xiong, J.; Yao, S.; et al. Quantifying Drought Resistance of Drylands in Northern China from 1982 to 2015: Regional Disparity in Drought Resistance. Forests 2022, 13, 100. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Y.; Yao, S.; Akram, M.A.; Hu, W.; Dong, L.; Li, H.; Wei, M.; Gong, H.; Xie, S.; et al. Impact of Climate Change on Plant Species Richness across Drylands in China: From Past to Present and into the Future. Ecol. Indic. 2021, 132, 108288. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for Intensification of the Global Water Cycle: Review and Synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, R.; Yin, Z.; Feng, Q.; Yang, L.; Wang, L.; Lu, R.; Fang, C. Hydrological Response to Future Climate Change in a Mountainous Watershed in the Northeast of Tibetan Plateau. J. Hydrol. Reg. Stud. 2022, 44, 101256. [Google Scholar] [CrossRef]
- Lang, Y.; Song, W.; Zhang, Y. Responses of the Water-Yield Ecosystem Service to Climate and Land Use Change in Sancha River Basin, China. Phys. Chem. Earth Parts ABC 2017, 101, 102–111. [Google Scholar] [CrossRef]
- Barros, V.R.; Field, C.B.; Dokken, D.J.; Mastrandrea, M.D.; Mach, K.J.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. Climate Change 2014 Impacts, Adaptation, and Vulnerability Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1–1820. [Google Scholar]
- Legesse, D.; Vallet-Coulomb, C.; Gasse, F. Hydrological Response of a Catchment to Climate and Land Use Changes in Tropical Africa: Case Study South Central Ethiopia. J. Hydrol. 2003, 275, 67–85. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Josef, T.; Zhang, R.; Huang, G. Quantitative Estimation of Climate Change Effects on Potential Evapotranspiration in Beijing during 1951–2010. J. Geogr. Sci. 2014, 24, 93–112. [Google Scholar] [CrossRef]
- Pessacg, N.; Flaherty, S.; Brandizi, L.; Solman, S.; Pascual, M. Getting Water Right: A Case Study in Water Yield Modelling Based on Precipitation Data. Sci. Total Environ. 2015, 537, 225–234. [Google Scholar] [CrossRef]
- Cavalcante Júnior, R.G.; Vasconcelos Freitas, M.A.; da Silva, N.F.; de Azevedo Filho, F.R. Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region. Energies 2019, 12, 904. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.B.; Martin, A.; Killeen, B.; Iversen, C.; Russo, G.; Andersen, H.K.; Daniell, J.; Galea, L.; Giannini, M.; Jol, A.; et al. The European Environment State and Outlook 2020. Eur. Environ. 2020, 2021. [Google Scholar]
- Song, W.; Deng, X.; Yuan, Y.; Wang, Z.; Li, Z. Impacts of Land-Use Change on Valued Ecosystem Service in Rapidly Urbanized North China Plain. Ecol. Model. 2015, 318, 245–253. [Google Scholar] [CrossRef]
- Jin, G.; Wang, P.; Zhao, T.; Bai, Y.; Zhao, C.; Chen, D. Reviews on Land Use Change Induced Effects on Regional Hydrological Ecosystem Services for Integrated Water Resources Management. Phys. Chem. Earth Parts ABC 2015, 89, 33–39. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Huang, J.; Shi, Q.; Li, Y. A Revisit to the Impacts of Land Use Changes on the Human Wellbeing via Altering the Ecosystem Provisioning Services. Adv. Meteorol. 2013, 2013, 907367. [Google Scholar] [CrossRef]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of Land Use and Climate Change on Water-Related Ecosystem Services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wu, C.; Li, J.; Lu, Q.; Qi, X.; Zhang, M.; Zuo, T.; Lu, J. Land Use and Ecosystems Services Value Changes and Ecological Land Management in Coastal Jiangsu, China. Habitat Int. 2016, 57, 164–174. [Google Scholar] [CrossRef]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST Models to Determine Hydrological Ecosystem Service Spatial Patterns, Priorities and Trade-Offs in a Complex Basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Dennedy-Frank, P.J.; Muenich, R.L.; Chaubey, I.; Ziv, G. Comparing Two Tools for Ecosystem Service Assessments Regarding Water Resources Decisions. J. Environ. Manag. 2016, 177, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.; Lim, C.-H.; Kim, S.; Lee, J.; Son, Y.; Lee, W.-K. Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010. Sustainability 2017, 9, 1017. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, V.; Urbina-Cardona, N. Tools for Spatially Modeling Ecosystem Services: Publication Trends, Conceptual Reflections and Future Challenges. Ecosyst. Serv. 2017, 26, 155–169. [Google Scholar] [CrossRef]
- Su, C.; Fu, B. Evolution of Ecosystem Services in the Chinese Loess Plateau under Climatic and Land Use Changes. Glob. Planet. Chang. 2013, 101, 119–128. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.3. 3 User’s Guide; The Natural Capital Project; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy: Arlington, VA, USA; World Wildlife Fund: Gland, Switzerland, 2016. [Google Scholar]
- Di Febbraro, M.; Sallustio, L.; Vizzarri, M.; De Rosa, D.; De Lisio, L.; Loy, A.; Eichelberger, B.; Marchetti, M. Expert-Based and Correlative Models to Map Habitat Quality: Which Gives Better Support to Conservation Planning? Glob. Ecol. Conserv. 2018, 16, e00513. [Google Scholar] [CrossRef]
- Willaert, T.; García-Alegre, A.; Queiroga, H.; Cunha-e-Sá, M.A.; Lillebø, A.I. Measuring Vulnerability of Marine and Coastal Habitats’ Potential to Deliver Ecosystem Services: Complex Atlantic Region as Case Study. Front. Mar. Sci. 2019, 6, 199. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of Water Provision Service for Monsoon Catchments of South China: Applicability of the InVEST Model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the Effects of Ecological Engineering on Carbon Storage by Linking the CA-Markov and InVEST Models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Budyko, M.I. The Heat Balance of the Earth’s Surface. Sov. Geogr. 1961, 2, 3–13. [Google Scholar] [CrossRef]
- Dou, P.; Zuo, S.; Ren, Y.; Rodriguez, M.J.; Dai, S. Refined Water Security Assessment for Sustainable Water Management: A Case Study of 15 Key Cities in the Yangtze River Delta, China. J. Environ. Manag. 2021, 290, 112588. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Li, Z. Spatial and Temporal Evolution Characteristics of the Water Conservation Function and Its Driving Factors in Regional Lake Wetlands—Two Types of Homogeneous Lakes as Examples. Ecol. Indic. 2021, 130, 108069. [Google Scholar] [CrossRef]
- Wang, L.-J.; Ma, S.; Jiang, J.; Zhao, Y.-G.; Zhang, J.-C. Spatiotemporal Variation in Ecosystem Services and Their Drivers among Different Landscape Heterogeneity Units and Terrain Gradients in the Southern Hill and Mountain Belt, China. Remote Sens. 2021, 13, 1375. [Google Scholar] [CrossRef]
- Goyal, M.K.; Khan, M. Assessment of Spatially Explicit Annual Water-Balance Model for Sutlej River Basin in Eastern Himalayas and Tungabhadra River Basin in Peninsular India. Hydrol. Res. 2017, 48, 542–558. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Canales, M.; López Benito, A.; Passuello, A.; Terrado, M.; Ziv, G.; Acuña, V.; Schuhmacher, M.; Elorza, F.J. Sensitivity Analysis of Ecosystem Service Valuation in a Mediterranean Watershed. Sci. Total Environ. 2012, 440, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Terrado, M.; Acuña, V.; Ennaanay, D.; Tallis, H.; Sabater, S. Impact of Climate Extremes on Hydrological Ecosystem Services in a Heavily Humanized Mediterranean Basin. Ecol. Indic. 2014, 37, 199–209. [Google Scholar] [CrossRef]
- Li, S.; Yang, H.; Lacayo, M.; Liu, J.; Lei, G. Impacts of Land-Use and Land-Cover Changes on Water Yield: A Case Study in Jing-Jin-Ji, China. Sustainability 2018, 10, 960. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources. World Soil Resour. Rep. 2006, 103. [Google Scholar] [CrossRef]
- He, P.; Fontana, S.; Ma, C.; Liu, H.; Xu, L.; Wang, R.; Jiang, Y.; Li, M.-H. Using Leaf Traits to Explain Species Co-Existence and Its Consequences for Primary Productivity across a Forest–steppe Ecotone. Sci. Total Environ. 2022, 2022, 160139. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, Storms and Soil Pores: Incorporating Key Ecohydrological Processes into Budyko’s Hydrological Model. J. Hydrol. 2012, 436, 35–50. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.; Chiew, F.H.; Western, A.; Briggs, P. A Rational Function Approach for Estimating Mean Annual Evapotranspiration. Water Resour. Res. 2004, 40, 2710. [Google Scholar] [CrossRef]
- Bao, Y.-B.; Li, T.; Liu, H.; Ma, T.; Wang, H.; Liu, K.; Shen, X.; Liu, X. Spatial and Temporal Changes of Water Conservation of Loess Plateau in Northern Shaanxi Province by InVEST Model. Geogr. Res. 2016, 35, 664–676. [Google Scholar]
- Hamel, P.; Guswa, A.J. Uncertainty Analysis of a Spatially Explicit Annual Water-Balance Model: Case Study of the Cape Fear Basin, North Carolina. Hydrol. Earth Syst. Sci. 2015, 19, 839–853. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the Impact of the Poplar Ecological Retreat Project on Water Conservation in the Dongting Lake Wetland Region Using the InVEST Model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, J.; Meng, X.; Xu, T.; Song, Y. Long-Term Spatio-Temporal Precipitation Variations in China with Precipitation Surface Interpolated by ANUSPLIN. Sci. Rep. 2020, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; McConkey, B.; Wang, H.; Janzen, H. Root Distribution by Depth for Temperate Agricultural Crops. Field Crops Res. 2016, 189, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Zhou, J.; Zhou, A.; Bai, G.; Li, Z.; Chen, H.; Su, D.; Han, X. Grassland Ecological Restoration Based on the Relationship between Vegetation and Its Below-Ground Habitat Analysis in Steppe Coal Mine Area. Sci. Total Environ. 2021, 778, 146221. [Google Scholar] [CrossRef]
- Fang, X.; Ren, L.; Li, Q.; Zhu, Q.; Shi, P.; Zhu, Y. Hydrologic Response to Land Use and Land Cover Changes within the Context of Catchment-Scale Spatial Information. J. Hydrol. Eng. 2013, 18, 1539–1548. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Q.; Jiang, T. Annual and Seasonal Streamflow Responses to Climate and Land-Cover Changes in the Poyang Lake Basin, China. J. Hydrol. 2008, 355, 106–122. [Google Scholar] [CrossRef]
- Ma, X.; Xu, J.; Luo, Y.; Prasad Aggarwal, S.; Li, J. Response of Hydrological Processes to Land-Cover and Climate Changes in Kejie Watershed, South-West China. Hydrol. Process. Int. J. 2009, 23, 1179–1191. [Google Scholar] [CrossRef]
- Mekonnen, D.F.; Duan, Z.; Rientjes, T.; Disse, M. Analysis of Combined and Isolated Effects of Land-Use and Land-Cover Changes and Climate Change on the Upper Blue Nile River Basin’s Streamflow. Hydrol. Earth Syst. Sci. 2018, 22, 6187–6207. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, Z.; Kassa, H.; Woldeamanuel, T.; Asfaw, Z. Analysis of Observed and Perceived Climate Change and Variability in Arsi Negele District, Ethiopia. Environ. Dev. Sustain. 2018, 20, 1191–1212. [Google Scholar] [CrossRef]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Catchment Response to Climate and Land Use Changes in the Upper Blue Nile Sub-Basins, Ethiopia. Sci. Total Environ. 2018, 644, 193–206. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Q.; Yin, Z.; Wen, X.; Si, J.; Li, C.; Deo, R.C. Identifying Separate Impacts of Climate and Land Use/Cover Change on Hydrological Processes in Upper Stream of Heihe River, Northwest China. Hydrol. Process. 2017, 31, 1100–1112. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Xiang, J.; Pan, Y.; Huang, Z.; Wu, Y. Water Level Changes of Hulun Lake in Inner Mongolia Derived from Jason Satellite Data. J. Vis. Commun. Image Represent. 2019, 58, 565–575. [Google Scholar] [CrossRef]
- Pan, T.; Zuo, L.; Zhang, Z.; Zhao, X.; Sun, F.; Zhu, Z.; Liu, Y. Impact of Land Use Change on Water Conservation: A Case Study of Zhangjiakou in Yongding River. Sustainability 2020, 13, 22. [Google Scholar] [CrossRef]
- Fu, B.; Xu, P.; Wang, Y.; Peng, Y.; Ren, J. Spatial Pattern of Water Retention in Dujiangyan County. Acta Ecol. Sin. 2013, 33, 789–797. [Google Scholar]
- Power, M. The Predictive Validation of Ecological and Environmental Models. Ecol. Model. 1993, 68, 33–50. [Google Scholar] [CrossRef]
- Biao, Z.; Wenhua, L.; Gaodi, X.; Yu, X. Water Conservation of Forest Ecosystem in Beijing and Its Value. Ecol. Econ. 2010, 69, 1416–1426. [Google Scholar] [CrossRef]
- Núñez, D.; Nahuelhual, L.; Oyarzún, C. Forests and Water: The Value of Native Temperate Forests in Supplying Water for Human Consumption. Ecol. Econ. 2006, 58, 606–616. [Google Scholar] [CrossRef]
- Vose, J.M.; Sun, G.; Ford, C.R.; Bredemeier, M.; Otsuki, K.; Wei, X.; Zhang, Z.; Zhang, L. Forest Ecohydrological Research in the 21st Century: What Are the Critical Needs? Ecohydrology 2011, 4, 146–158. [Google Scholar] [CrossRef]
- Wang, X.; Shen, H.; Li, X.; Jing, F. Concepts, Processes and Quantification Methods of the Forest Water Conservation at the Multiple Scales. Acta Ecol. Sin. 2013, 33, 1019–1030. [Google Scholar] [CrossRef]
- Lian, X.; Qi, Y.; Wang, H.; Zhang, J.; Yang, R. Assessing Changes of Water Yield in Qinghai Lake Watershed of China. Water 2019, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Li, D.; Wang, D.; Zhang, L. Quantification and Assessment of Changes in Ecosystem Service in the Three-River Headwaters Region, China as a Result of Climate Variability and Land Cover Change. Ecol. Indic. 2016, 66, 199–211. [Google Scholar] [CrossRef]
- Nie, W.; Yuan, Y.; Kepner, W.; Nash, M.S.; Jackson, M.; Erickson, C. Assessing Impacts of Landuse and Landcover Changes on Hydrology for the Upper San Pedro Watershed. J. Hydrol. 2011, 407, 105–114. [Google Scholar] [CrossRef]
- Boithias, L.; Acuña, V.; Vergoñós, L.; Ziv, G.; Marcé, R.; Sabater, S. Assessment of the Water Supply: Demand Ratios in a Mediterranean Basin under Different Global Change Scenarios and Mitigation Alternatives. Sci. Total Environ. 2014, 470, 567–577. [Google Scholar] [CrossRef]
- Shirmohammadi, B.; Malekian, A.; Salajegheh, A.; Taheri, B.; Azarnivand, H.; Malek, Z.; Verburg, P.H. Impacts of Future Climate and Land Use Change on Water Yield in a Semiarid Basin in Iran. Land Degrad. Dev. 2020, 31, 1252–1264. [Google Scholar] [CrossRef]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Cao, Y.; Sun, H.; Li, Q. Evaluation of Water Conservation Function of Danjiang River Basin in Qinling Mountains, China Based on InVEST Model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef]
Data | Data Source and Processing Method |
---|---|
Precipitation | The meteorological data were obtained from the National Meteorological Information Center (http://data.cma.cn/) (accessed on 20 September 2021). We selected the monthly data of 41 meteorological stations in northeast China from 1996 to 2020, and obtained the required annual value data for each station by calculation. Then we calculated the average precipitation for each station from 1996–2000, 2001–2005, 2006–2010, 2011–2015 and 2016–2020 [54]. Finally, interpolation calculations were performed using Anusplin 4.3 software to generate precipitation raster data for the years 2000, 2005, 2010, 2015 and 2020 [55]. |
Potential evapotranspiration | We calculated the monthly potential evapotranspiration at each meteorological station using the Penman-Monteith formula recommended by Food and Agriculture Organization of the United Nations (FAO), and obtained the required annual data for each station by calculation. Then we calculated the average potential evapotranspiration for each station from 1996–2000, 2001–2005, 2006–2010, 2011–2015 and 2016–2020 [54]. Finally, interpolation calculations were performed using Anusplin 4.3 software to generate precipitation raster data for the years 2000, 2005, 2010, 2015 and 2020 [55]. |
Soil data | The data mainly include soil type, soil texture (%clay, % silt, % sand, and % organic carbon) and soil depth, which are derived from the world soil database (HWSD v1.2) (https://www.fao.org) (accessed on 10 October 2021) constructed by Food and Agriculture Organization of the United Nations (FAO) and International Institute for Applied Systems Analysis (IIASA). |
Plant available water content (PAWC) | Calculated from soil texture: PAWC = 54.509 − 0.132sand% − 0.003(sand%)2 − 0.055silt% − 0.006(slit%)2 − 0.738clay% + 0.007(clay%)2 − 2.688OM% + 0.501(OM%)2, where OM% represents the content of soil organic matter [52]. |
Land use | The data were obtained from the Resource and Environment Science and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/) (accessed on 12 October 2021). We download the land use data of the study area in 2000, 2005, 2010, 2015, and 2020 from the website. |
Digital elevation model | The data were obtained from the Geospatial Data Cloud (http://www.gscloud.cn) (accessed on 15 October 2021), from which ASTER GDEM 30 m resolution elevation data were downloaded. |
Topographic index | Based on the data of DEM and soil depth, the spatial analysis tool in ArcGIS was used for calculation. |
Velocity coefficient | Data were obtained from the relevant studies and the InVEST model manual. |
Soil saturated hydraulic conductivity | It was calculated using SPAW software based on soil texture data. |
The parameter Z | The simulated water yield and the actual water resources in the Inner Mongolia Water Resources Bulletin were verified 10 times a year (50 times in total). When Z = 1.7, the simulated water yield is consistent with the public data (Figure S1). |
Lucode | LULC_Desc | LULC_Veg | kc | Root_Depth (mm) |
---|---|---|---|---|
1 | Farmland | 1 | 0.65 | 400 [56] |
2 | Woodland | 1 | 1 | 3500 |
3 | Grassland | 1 | 0.65 | 600 [57] |
4 | Water | 0 | 1 | 1 |
5 | Residential | 0 | 0.3 | 1 |
6 | Unused land | 0 | 1 | 1 |
Land Use 2000 | Land Use 2010 | |
---|---|---|
Climate 2010 | S1 | S2 |
Climate 2015 | S3 | S4 |
LULC Types | 2000 | 2005 | 2010 | 2015 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
104 km2 | % | 104 km2 | % | 104 km2 | % | 104 km2 | % | 104 km2 | % | |
Farmland | 0.53 | 11.8% | 0.54 | 12.0% | 0.68 | 15.1% | 0.68 | 15.1% | 0.66 | 14.6% |
Woodland | 1.33 | 29.5% | 1.34 | 29.7% | 1.48 | 32.8% | 1.48 | 32.8% | 1.48 | 32.8% |
Grassland | 2.44 | 54.1% | 2.41 | 53.4% | 1.66 | 36.8% | 1.65 | 36.6% | 1.69 | 37.5% |
Unused land | 0.16 | 3.5% | 0.17 | 3.8% | 0.64 | 14.2% | 0.64 | 14.2% | 0.61 | 13.5% |
Residential area | 0.03 | 0.7% | 0.03 | 0.7% | 0.03 | 0.7% | 0.04 | 0.9% | 0.05 | 1.1% |
Water | 0.02 | 0.4% | 0.02 | 0.4% | 0.02 | 0.4% | 0.02 | 0.4% | 0.02 | 0.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, P.; Lyu, S.; Diao, Z.; Zheng, Z.; He, J.; Su, D.; Zhang, J. How Does the Water Conservation Function of Hulunbuir Forest–Steppe Ecotone Respond to Climate Change and Land Use Change? Forests 2022, 13, 2039. https://doi.org/10.3390/f13122039
Ma P, Lyu S, Diao Z, Zheng Z, He J, Su D, Zhang J. How Does the Water Conservation Function of Hulunbuir Forest–Steppe Ecotone Respond to Climate Change and Land Use Change? Forests. 2022; 13(12):2039. https://doi.org/10.3390/f13122039
Chicago/Turabian StyleMa, Pu, Shihai Lyu, Zhaoyan Diao, Zhirong Zheng, Jing He, Derong Su, and Jingru Zhang. 2022. "How Does the Water Conservation Function of Hulunbuir Forest–Steppe Ecotone Respond to Climate Change and Land Use Change?" Forests 13, no. 12: 2039. https://doi.org/10.3390/f13122039
APA StyleMa, P., Lyu, S., Diao, Z., Zheng, Z., He, J., Su, D., & Zhang, J. (2022). How Does the Water Conservation Function of Hulunbuir Forest–Steppe Ecotone Respond to Climate Change and Land Use Change? Forests, 13(12), 2039. https://doi.org/10.3390/f13122039