Impact of Silica Addition on Alleviating Cadmium Stress: Case Studies of Three Afforestation Tree Species Seedlings in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Measurements
2.3.1. Determination of Growth Parameters
2.3.2. Determination of Enzyme Activities and Chlorophyll Content
2.3.3. Determination of Cd Concentrations, Translocation Factor (TF) and Bioconcentration Factor (BCF)
2.3.4. Statistical Analysis
3. Results
3.1. Effects of Cd and Si on Growth Parameters of Three Kinds of Tree Specie Seedlings
3.2. Effects of Cd and Si Antioxidative Enzyme Activities
3.3. Effects of Cd and Si on Malondialdehyde (MDA) Content
3.4. Effects of Cd and Si on Chlorophyll Content
3.5. Effects of Cd and Si on Soil PH
3.6. Effects of Cd and Si on Cd Concentration of Different Fractions of Seedlings and Translocation Factor (TF) Values and Bioconcentration Factor (BCF) Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, P.; Samantaray, S.; Rout, G. Studies on cadmium toxicity in plants: A review. Environ. Pollut. 1997, 98, 29–36. [Google Scholar] [CrossRef]
- Kieffer, P.; Schröder, P.; Dommes, J.; Hoffmann, L.; Renaut, J.; Hausman, J.-F. Proteomic and enzymatic response of poplar to cadmium stress. J. Proteom. 2009, 72, 379–396. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Qian, P.; Jin, R.; Ali, S.; Khan, M.; Aziz, R.; Tian, T.; Zhou, W. Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress. Biol. Plant. 2014, 58, 131–138. [Google Scholar] [CrossRef]
- Arduini, I.; Godbold, D.L.; Onnis, A. Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol. Plant. 1996, 97, 111–117. [Google Scholar] [CrossRef]
- EF, A.A.; Abeer, H.; Alqarawi, A.; Hend, A.A. Alleviation of adverse impact of cadmium stress in sunflower (Helianthus annuus L.) by arbuscular mycorrhizal fungi’. Pak. J. Bot. 2015, 47, 785–795. [Google Scholar]
- Karyotis, T.; Iliadis, C.; Noulas, C.; Mitsibonas, T. Preliminary research on seed production and nutrient content for certain quinoa varieties in a saline–sodic soil. J. Agron. Crop Sci. 2003, 189, 402–408. [Google Scholar] [CrossRef]
- Qiu, T.; Andrus, R.; Aravena, M.-C.; Ascoli, D.; Bergeron, Y.; Berretti, R.; Berveiller, D.; Bogdziewicz, M.; Boivin, T.; Bonal, R.; et al. Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nat. Commun. 2022, 13, 2381. [Google Scholar] [CrossRef] [PubMed]
- Qiu, T.; Sharma, S.; Woodall, C.W.; Clark, J.S. Niche Shifts from Trees to Fecundity to Recruitment That Determine Species Response to Climate Change. Front. Ecol. Evol. 2022, 9, 719141. [Google Scholar] [CrossRef]
- Richards, A.E.; Forrester, D.I.; Bauhus, J.; Scherer-Lorenzen, M.J.T.P. The influence of mixed tree plantations on the nutrition of individual species: A review. Tree Physiol. 2010, 30, 1192–1208. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 2004, 50, 11–18. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.-P.; Tian, D.-D.; Guo, D.-J.; Chen, Z.-L.; Zhong, C.-S.; Nikpay, A.; Singh, M.; Rajput, V.D.; Singh, R.K.; et al. Influence of Silicon on Biocontrol Strategies to Manage Biotic Stress for Crop Protection, Performance, and Improvement. Plants 2021, 10, 2163. [Google Scholar] [CrossRef] [PubMed]
- Fauteux, F.; Rémus-Borel, W.; Menzies, J.G.; Bélanger, R.R. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett. 2005, 249, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, J.A.; Shivaraj, S.M.; Singh, P.; Navadagi, D.B.; Tripathi, D.K.; Dash, P.K.; Solanke, A.U.; Sonah, H.; Deshmukh, R. Role of silicon in mitigation of heavy metal stresses in crop plants. Plants 2019, 8, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mvondo-She, M.A.; Gatabazi, A.; Laing, M.D.; Ndhlala, A.R. A Review on the Role of Silicon Treatment in Biotic Stress Mitigation and Citrus Production. Agronomy 2021, 11, 2198. [Google Scholar] [CrossRef]
- Adrees, M.; Ali, S.; Rizwan, M.; Zia-Ur-Rehman, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Qayyum, M.F.; Irshad, M.K. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicol. Env. Saf. 2015, 119, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Chen, A.; He, N.; Yang, D.; Liu, M. Exogenous silicon alleviates cadmium toxicity in rice seedlings in relation to Cd distribution and ultrastructure changes. J. Soils Sediments 2017, 18, 1691–1700. [Google Scholar] [CrossRef]
- Vaculik, M.; Pavlovic, A.; Lux, A. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize. Ecotoxicol. Environ. Saf. 2015, 120, 66–73. [Google Scholar] [CrossRef]
- Kollárová, K.; Kusá, Z.; Vatehová-Vivodová, Z.; Lišková, D. The response of maize protoplasts to cadmium stress mitigated by silicon. Ecotoxicol. Environ. Saf. 2018, 170, 488–494. [Google Scholar] [CrossRef]
- Gheshlaghpour, J.; Asghari, B.; Khademian, R.; Sedaghati, B. Silicon alleviates cadmium stress in basil (Ocimum basilicum L.) through alteration of phytochemical and physiological characteristics. Ind. Crops Prod. 2021, 163, 113338. [Google Scholar] [CrossRef]
- Gu, H.-H.; Zhan, S.-S.; Wang, S.-Z.; Tang, Y.-T.; Chaney, R.L.; Fang, X.-H.; Cai, X.-D.; Qiu, R.-L. Silicon-mediated amelioration of zinc toxicity in rice (Oryza sativa L.) seedlings. Plant Soil 2012, 350, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Kaya, C.; Tuna, A.L.; Sonmez, O.; Ince, F.; Higgs, D. Mitigation effects of silicon on maize plants grown at high zinc. J. Plant Nutr. 2009, 32, 1788–1798. [Google Scholar] [CrossRef]
- de Jesus, L.R.; Batista, B.L.; da Silva Lobato, A.K. Silicon reduces aluminum accumulation and mitigates toxic effects in cowpea plants. Acta Physiol. Plant. 2017, 39, 1–14. [Google Scholar] [CrossRef]
- de Freitas, L.B.; Fernandes, D.M.; Maia, S.C.M.; Fernandes, A.M. Effects of silicon on aluminum toxicity in upland rice plants. Plant Soil 2017, 420, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Dorneles, A.O.S.; Pereira, A.S.; Sasso, V.M.; Possebom, G.; Tarouco, C.P.; Schorr, M.R.W.; Rossato, L.; Ferreira, P.A.A.; Tabaldi, L.A. Aluminum stress tolerance in potato genotypes grown with silicon. Bragantia 2019, 78, 12–25. [Google Scholar] [CrossRef] [Green Version]
- El-Beltagi, H.S.; Sofy, M.R.; Aldaej, M.I.; Mohamed, H.I. Silicon alleviates copper toxicity in flax plants by up-regulating antioxidant defense and secondary metabolites and decreasing oxidative damage. Sustainability 2020, 12, 4732. [Google Scholar] [CrossRef]
- Bosnić, D.; Nikolić, D.; Timotijević, G.; Pavlović, J.; Vaculík, M.; Samardžić, J.; Nikolić, M. Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity. Plant Soil 2019, 441, 629–641. [Google Scholar] [CrossRef]
- Alam, P.; Balawi, T.H.; Altalayan, F.H.; Hatamleh, A.A.; Ashraf, M.; Ahmad, P. Silicon attenuates the negative effects of chromium stress in tomato plants by modifying antioxidant enzyme activities, ascorbate–glutathione cycle and glyoxalase system. Acta Physiol. Plant. 2021, 43, 1–17. [Google Scholar] [CrossRef]
- Sarkar, U.; Tahura, S.; Das, U.; Amin Mintu, M.R.; Humayan Kabir, A. Mitigation of chromium toxicity in wheat (Triticum aestivum L.) through silicon. Gesunde Pflanz. 2020, 72, 237–244. [Google Scholar] [CrossRef]
- Li, P.; Song, A.; Li, Z.; Fan, F.; Liang, Y. Silicon ameliorates manganese toxicity by regulating both physiological processes and expression of genes associated with photosynthesis in rice (Oryza sativa L.). Plant Soil 2015, 397, 289–301. [Google Scholar] [CrossRef]
- Fridovich, I. Superoxide dismutases. Annu. Rev. Biochem. 1975, 44, 147–159. [Google Scholar] [CrossRef]
- Chance, B.; Maehly, A. [136] Assay of catalases and peroxidases. Methods Enzymol. 1955, 2, 764–775. [Google Scholar] [CrossRef]
- Beers, R.F.; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–140. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Al-aghabary, K.; Zhu, Z.; Shi, Q. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J. Plant Nutr. 2005, 27, 2101–2115. [Google Scholar] [CrossRef]
- Sozoniuk, M.; Nowak, M.; Dudziak, K.; Leśniowska-Nowak, J.; Kowalczyk, K. Quercus robur as a Potential Cd Phytostabilizator. Russ. J. Plant Physiol. 2020, 67, 294–302. [Google Scholar] [CrossRef]
- Kahle, H. Response of roots of trees to heavy metals. Environ. Exp. Bot. 1993, 33, 99–119. [Google Scholar] [CrossRef]
- Domínguez, M.T.; Madrid, F.; Marañón, T.; Murillo, J.M. Cadmium availability in soil and retention in oak roots: Potential for phytostabilization. Chemosphere 2009, 76, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Zorrig, W.; El Khouni, A.; Ghnaya, T.; Davidian, J.-C.; Abdelly, C.; Berthomieu, P. Lettuce (Lactuca sativa): A species with a high capacity for cadmium (Cd) accumulation and growth stimulation in the presence of low Cd concentrations. J. Hortic. Sci. Biotechnol. 2013, 88, 783–789. [Google Scholar] [CrossRef]
- Vaculík, M.; Lux, A.; Luxová, M.; Tanimoto, E.; Lichtscheidl, I. Silicon mitigates cadmium inhibitory effects in young maize plants. Environ. Exp. Bot. 2009, 67, 52–58. [Google Scholar] [CrossRef]
- Duan, C.; Wu, S.; Sang, Y.; Bahetibieke, W.; Ru, J.; Song, J.; Cui, X. Exogenous succinic acid mediates responses of Larix olgensis A. Henry to cadmium stress. Int. J. Phytoremediation 2019, 21, 742–751. [Google Scholar] [CrossRef]
- Parmar, P.; Kumari, N.; Sharma, V. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot. Stud. 2013, 54, 1–6. [Google Scholar] [CrossRef]
- Küpper, H.; Küpper, F.; Spiller, M. In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth. Res. 1998, 58, 123–133. [Google Scholar] [CrossRef]
- Wu, J.-W.; Shi, Y.; Zhu, Y.-X.; Wang, Y.-C.; Gong, H.-J. Mechanisms of enhanced heavy metal tolerance in plants by silicon: A review. Pedosphere 2013, 23, 815–825. [Google Scholar] [CrossRef]
- Rizwan, M.; Meunier, J.-D.; Davidian, J.-C.; Pokrovsky, O.; Bovet, N.; Keller, C. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ. Sci. Pollut. Res. 2016, 23, 1414–1427. [Google Scholar] [CrossRef] [PubMed]
- Dixit, V.; Pandey, V.; Shyam, R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J. Exp. Bot. 2001, 52, 1101–1109. [Google Scholar] [CrossRef] [Green Version]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Sofy, A.R.; Dawoud, R.A.; Sofy, M.R.; Mohamed, H.I.; Hmed, A.A.; El-Dougdoug, N.K. Improving regulation of enzymatic and non-enzymatic antioxidants and stress-related gene stimulation in Cucumber mosaic cucumovirus-infected cucumber plants treated with glycine betaine, chitosan and combination. Molecules 2020, 25, 2341. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xu, X.; Xiao, X.; Li, C. Responses to drought stress in two poplar species originating from different altitudes. Biol. Plant. 2009, 53, 511–516. [Google Scholar] [CrossRef]
- Muradoglu, F.; Gundogdu, M.; Ercisli, S.; Encu, T.; Balta, F.; Jaafar, H.Z.; Zia-Ul-Haq, M. Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol. Res. 2015, 48, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, M.A.; Ali, S.; Hameed, A.; Ishaque, W.; Mahmood, K.; Iqbal, Z. Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol. Environ. Saf. 2013, 96, 242–249. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, A.; Dai, J.; Wang, N.; Wu, D. Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum: A popular ornamental plant and potential Cd hyperaccumulator. Environ. Monit. Assess. 2012, 184, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Fu, Y.-Q.; Shen, H.; Wu, D.-M.; Cai, K.-Z. Silicon-mediated amelioration of Fe2+ toxicity in rice (Oryza sativa L.) roots. Pedosphere 2012, 22, 795–802. [Google Scholar] [CrossRef]
- Krantev, A.; Yordanova, R.; Janda, T.; Szalai, G.; Popova, L. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J. Plant Physiol. 2008, 165, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 2005, 17, 1866–1875. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Fang, J.; Huang, F.; Cai, K. Silicon amendment reduces soil Cd availability and Cd uptake of two Pennisetum species. Int. J. Environ. Res. Public Health 2019, 16, 1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mingjie, Y.; Xianyong, L.; Xiaoe, Y. Impact or Cd on growth and nutrient accumulation or different plant species. Chin. J. Appl. Ecol. 1998, 9, 89–94. [Google Scholar]
- Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Hodson, M.J.; Sangster, A. The interaction between silicon and aluminium in Sorghum bicolor (L.) Moench: Growth analysis and X-ray microanalysis. Ann. Bot. 1993, 72, 389–400. [Google Scholar] [CrossRef]
Numbers of Treatments | Combinations | |
---|---|---|
1 | Cd0 Si0 | Cd0 Si1 |
2 | Cd6 Si0 | Cd6 Si1 |
3 | Cd12 Si0 | Cd12 Si1 |
4 | Cd24 Si0 | Cd24 Si1 |
5 | Cd48 Si0 | Cd48 Si1 |
Species | Cd Concentration (mg kg−1) | Si Concentration (mg kg−1) | Si Concentration (mg kg−1) | Cd Concentration (mg kg−1) | ||||
---|---|---|---|---|---|---|---|---|
Root | Stem | Leaf | Root | Stem | Leaf | |||
Schima superba | 0 | Si0 | 1.646 ± 0.491c | 1.253 ± 0.047d | 1.600 ± 0.174e | 0.780 ± 0.177f | 0.127 ± 0.068g | |
Si1 | 4.320 ± 1.290a | 1.745 ± 0.301bc | 2.235 ± 0.217bc | 0.680 ± 0.011f | 0.530 ± 0.060g | |||
6 | Si0 | 1.336 ± 0.197c | 1.426 ± 0.150cd | 1.477 ± 0.165e | 22.016 ± 0.300e | 25.920 ± 2.272de | 0.193 ± 0.035d | |
Si1 | 3.785 ± 0.334a | 1.855 ± 0.070b | 2.06 ± 0.139cd | 22.746 ± 2.41e | 17.936 ± 2.110f | 0.113 ± 0.015d | ||
12 | Si0 | 1.900 ± 0.040bc | 1.153 ± 0.133de | 1.760 ± 0.131cd | 28.267 ± 1.164e | 22.360 ± 2.833de | 2.720 ± 0.191b | |
Si1 | 3.875 ± 0.544a | 2.280 ± 0.556a | 2.800 ± 0.070a | 20.257 ± 2.415cd | 17.013 ± 0.455f | 1.280 ± 0.325c | ||
24 | Si0 | 1.703 ± 0.255a | 1.026 ± 0.116de | 1.817 ± 0.104de | 43.337 ± 3.917ab | 37.990 ± 6.725b | 2.810 ± 0.612b | |
Si1 | 3.865 ± 0.256a | 1.330 ± 0.095d | 2.500 ± 0.150ab | 36.923 ± 2.495cde | 28.283 ± 3.391cd | 1.623 ± 0.359c | ||
36 | Si0 | 1.520 ± 0.376c | 0.817 ± 0.030e | 1.850 ± 0.020de | 83.793 ± 6.870a | 62.136 ± 1.995a | 4.150 ± 0.096a | |
Si1 | 2.680 ± 0.214b | 1.395 ± 0.098cd | 2.345 ± 0.463bc | 60.087 ± 1.581b | 36.187 ± 0.196bc | 2.683 ± 0.096b | ||
Chinese sweetgum | 0 | Si0 | 3.270 ± 0.319c | 2.650 ± 0.156de | 3.160 ± 0.987cd | 0.390 ± 0.007e | 0.127 ± 0.011f | |
Si1 | 4.333 ± 0.090b | 4.316 ± 0.280bc | 4.383 ± 0.198a | 0.336 ± 0.089e | 0.186 ± 0.040f | |||
6 | Si0 | 3.793 ± 0.178bc | 3.703 ± 0.267cd | 2.703 ± 0.266d | 3.220 ± 0.588e | 1.997 ± 0.455ef | 0.586 ± 0.068d | |
Si1 | 5.660 ± 0.402a | 4.843 ± 0.491b | 4.253 ± 0.168ab | 1.543 ± 0.254e | 1.683 ± 0.317ef | 0.323 ± 0.075e | ||
12 | Si0 | 3.363 ± 0.260c | 2.393 ± 0.345e | 2.420 ± 0.036d | 11.670 ± 0.916bc | 14.903 ± 0.551c | 1.543 ± 0.196bc | |
Si1 | 5.880 ± 0.186a | 6.323 ± 0.737c | 3.520 ± 0.156d | 8.620 ± 1.202d | 7.106 ± 0.861de | 0.556 ± 0.086d | ||
24 | Si0 | 3.756 ± 0.116bc | 2.453 ± 0.393e | 2.450 ± 0.446d | 24.540 ± 0.947a | 22.816 ± 1.384b | 2.346 ± 1.743ab | |
Si1 | 6.206 ± 0.065a | 6.523 ± 0.394a | 4.443 ± 0.542a | 16.726 ± 1.677b | 16.906 ± 0.643c | 0.956 ± 0.086cde | ||
36 | Si0 | 2.567 ± 0.239d | 2.790 ± 0.081de | 2.426 ± 0.392d | 26.987 ± 2.177a | 35.243 ± 4.496a | 3.680 ± 0.535a | |
Si1 | 4.377 ± 0.315b | 5.246 ± 0.284b | 2.613 ± 0.342d | 14.626 ± 0.483bc | 26.583 ± 3.912b | 1.766 ± 0.309bc | ||
Chinese fir | 0 | Si0 | 3.260 ± 0.329cd | 1.453 ± 0.203de | 1.270 ± 0.295cd | 0.293 ± 0.090f | 0.868 ± 0.196f | 0.480 ± 0.180e |
Si1 | 3.310 ± 0.255c | 1.785 ± 0.530cd | 1.263 ± 0.304cd | 0.393 ± 0.123f | 0.268 ± 0.228f | 0.473 ± 0.215e | ||
6 | Si0 | 2.740 ± 0.217d | 1.170 ± 0.036e | 0.933 ± 0.104d | 16.830 ± 1.518e | 21.770 ± 0.541e | 1.257 ± 0.223e | |
Si1 | 4.110 ± 0.518b | 2.095 ± 0.320bc | 1.930 ± 0.114a | 11.220 ± 1.680e | 16.093 ± 2.138e | 1.227 ± 0.225e | ||
12 | Si0 | 2.727 ± 0.225d | 1.607 ± 0.127de | 1.250 ± 0.158cd | 68.560 ± 1.647e | 42.763 ± 2.963d | 5.176 ± 0.098c | |
Si1 | 3.295 ± 0.150c | 2.370 ± 0.265ab | 1.745 ± 0.392ab | 40.746 ± 7.868d | 52.013 ± 5.838c | 4.440 ± 0.343d | ||
24 | Si0 | 3.330 ± 0.276cd | 1.623 ± 0.127de | 0.983 ± 0.045d | 91.263 ± 3.551b | 51.960 ± 4.869c | 6.633 ± 0.591b | |
Si1 | 4.765 ± 0.480b | 2.105 ± 0.293bc | 1.445 ± 0.112bc | 42.326 ± 5.028d | 39.483 ± 1.341d | 5.600 ± 0.552c | ||
36 | Si0 | 1.817 ± 0.265e | 1.446 ± 0.416de | 0.890 ± 0.173d | 112.650 ± 9.610a | 99.226 ± 7.930a | 8.650 ± 1.064a | |
Si1 | 5.760 ± 0.452a | 2.590 ± 0.112a | 1.530 ± 0.261bc | 67.010 ± 8.578c | 61.263 ± 6.524b | 5.900 ± 0.230bc |
Species | Cd Concentration (mg kg−1) | Si Concentraion (mg kg−1) | TF | |
---|---|---|---|---|
Root-Stem | Root-Leaf | |||
Schima superba | 0 | Si0 | 0.180 ± 0.118d | |
Si1 | 0.312 ± 0.132cd | |||
6 | Si0 | 1.177 ± 0.111a | 0.360 ± 0.004a | |
Si1 | 0.800 ± 0.177bc | 0.351 ± 0.001a | ||
12 | Si0 | 0.791 ± 0.097bc | 0.154 ± 0.009b | |
Si1 | 0.847 ± 0.096b | 0.195 ± 0.024b | ||
24 | Si0 | 0.878 ± 0.158b | 0.030 ± 0.007bc | |
Si1 | 0.764 ± 0.048bc | 0.014 ± 0.009c | ||
36 | Si0 | 0.753 ± 0.110bc | 0.008 ± 0.001c | |
Si1 | 0.603 ± 0.012c | 0.001 ± 0.003c | ||
Chinese sweetgum | 0 | Si0 | 0.335 ± 0.091f | |
Si1 | 0.559 ± 0.053ef | |||
6 | Si0 | 0.617 ± 0.034ef | 0.206 ± 0.037a | |
Si1 | 0.592 ± 0.173ef | 0.213 ± 0.056a | ||
12 | Si0 | 0.768 ± 0.097de | 0.133 ± 0.022bc | |
Si1 | 0.838 ± 0.134cde | 0.111 ± 0.009c | ||
24 | Si0 | 0.932 ± 0.090cd | 0.095 ± 0.069c | |
Si1 | 1.017 ± 0.107cd | 0.159 ± 0.049abc | ||
36 | Si0 | 1.318 ± 0.244b | 0.137 ± 0.023bc | |
Si1 | 1.521 ± 0.297b | 0.210 ± 0.018a | ||
Chinese fir | 0 | Si0 | 0.335 ± 0.091f | 1.832 ± 0.982a |
Si1 | 0.559 ± 0.053ef | 1.202 ± 0.512b | ||
6 | Si0 | 0.617 ± 0.034ef | 0.075 ± 0.017c | |
Si1 | 1.099 ± 0.173bc | 0.110 ± 0.009c | ||
12 | Si0 | 0.767 ± 0.097de | 0.075 ± 0.001c | |
Si1 | 0.838 ± 0.184cde | 0.112 ± 0.028c | ||
24 | Si0 | 0.932 ± 0.090cd | 0.073 ± 0.009c | |
Si1 | 1.017 ± 0.107cd | 0.134 ± 0.026c | ||
36 | Si0 | 1.317 ± 0.244b | 0.077 ± 0.104c | |
Si1 | 1.821 ± 0.296a | 0.088 ± 0.009c |
Species | Cd Concentration (mg kg−1) | Si Concentraion (mg kg−1) | BCF | ||
---|---|---|---|---|---|
Root | Stem | Leaf | |||
Schima superba | 0 | Si0 | 1.399 ± 0.387de | 0.222 ± 0.112e | |
Si1 | 0.968 ± 0.060de | 0.120 ± 0.009e | |||
6 | Si0 | 3.906 ± 0.067a | 4.589 ± 0.263a | 0.034 ± 0.004cd | |
Si1 | 2.839 ± 0.316a | 3.037 ± 0.422b | 0.019 ± 0.003e | ||
12 | Si0 | 2.413 ± 0.050a | 1.908 ± 0.215c | 0.247 ± 0.012a | |
Si1 | 1.647 ± 0.241de | 1.008 ± 0.091d | 0.103 ± 0.024bc | ||
24 | Si0 | 2.954 ± 0.169ab | 1.724 ± 0.396c | 0.226 ± 0.022ab | |
Si1 | 1.538 ± 0.072de | 0.753 ± 0.018de | 0.067 ± 0.014ab | ||
36 | Si0 | 2.535 ± 0.422b | 1.879 ± 0.030c | 0.225 ± 0.004ab | |
Si1 | 1.759 ± 0.065de | 1.062 ± 0.062d | 0.098 ± 0.007cd | ||
Chinese sweetgum | 0 | Si0 | 0.792 ± 0.045d | 0.362 ± 0.027d | |
Si1 | 1.143 ± 0.236bc | 0.631 ± 0.077cd | |||
6 | Si0 | 2.507 ± 0.057b | 1.567 ± 0.743a | 0.449 ± 0.145a | |
Si1 | 0.658 ± 0.210cd | 0.720 ± 0.264bcd | 0.238 ± 0.053b | ||
12 | Si0 | 1.421 ± 0.028bc | 1.091 ± 0.143abc | 0.388 ± 0.027a | |
Si1 | 0.923 ± 0.096d | 0.762 ± 0.091bcd | 0.103 ± 0.003bc | ||
24 | Si0 | 1.297 ± 0.016bc | 1.209 ± 0.114a | 0.222 ± 0.089b | |
Si1 | 0.763 ± 0.044d | 0.774 ± 0.050bcd | 0.120 ± 0.029b | ||
36 | Si0 | 1.122 ± 0.254bc | 1.441 ± 0.185a | 0.249 ± 0.021b | |
Si1 | 0.407 ± 0.004d | 0.740 ± 0.116bcd | 0.085 ± 0.008cd | ||
Chinese fir | 0 | Si0 | 0.867 ± 0.107e | 2.651 ± 0.789bc | 0.358 ± 0.161c |
Si1 | 1.093 ± 0.842e | 0.609 ± 0.324e | 2.360 ± 1.592a | ||
6 | Si0 | 3.260 ± 0.286c | 4.249 ± 0.646a | 0.772 ± 0.061cd | |
Si1 | 1.795 ± 0.212d | 2.591 ± 0.438bcd | 0.713 ± 0.184bc | ||
12 | Si0 | 6.907 ± 0.238a | 4.318 ± 0.468bcd | 1.609 ± 0.141ab | |
Si1 | 3.501 ± 0.795c | 4.480 ± 0.792a | 0.796 ± 0.214cd | ||
24 | Si0 | 4.823 ± 0.203b | 2.164 ± 0.251bc | 2.256 ± 0.361a | |
Si1 | 1.999 ± 0.317d | 1.557 ± 0.085d | 1.074 ± 0.156bc | ||
36 | Si0 | 3.381 ± 0.372c | 2.979 ± 0.320b | 1.535 ± 0.008ab | |
Si1 | 1.882 ± 0.261d | 1.719 ± 0.189d | 0.813 ± 0.273cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Jin, S.; Su, Y.; He, D.; Wang, Y.; Chen, Y.; Lin, C.; Liao, X.; Zheng, D. Impact of Silica Addition on Alleviating Cadmium Stress: Case Studies of Three Afforestation Tree Species Seedlings in Southern China. Forests 2022, 13, 1641. https://doi.org/10.3390/f13101641
Wang Z, Jin S, Su Y, He D, Wang Y, Chen Y, Lin C, Liao X, Zheng D. Impact of Silica Addition on Alleviating Cadmium Stress: Case Studies of Three Afforestation Tree Species Seedlings in Southern China. Forests. 2022; 13(10):1641. https://doi.org/10.3390/f13101641
Chicago/Turabian StyleWang, Ziyang, Shaofei Jin, Yi Su, Dongmei He, Yunxiang Wang, Yifei Chen, Chenlei Lin, Xiaoli Liao, and Dexiang Zheng. 2022. "Impact of Silica Addition on Alleviating Cadmium Stress: Case Studies of Three Afforestation Tree Species Seedlings in Southern China" Forests 13, no. 10: 1641. https://doi.org/10.3390/f13101641
APA StyleWang, Z., Jin, S., Su, Y., He, D., Wang, Y., Chen, Y., Lin, C., Liao, X., & Zheng, D. (2022). Impact of Silica Addition on Alleviating Cadmium Stress: Case Studies of Three Afforestation Tree Species Seedlings in Southern China. Forests, 13(10), 1641. https://doi.org/10.3390/f13101641