Determination of Leaf pH without Grinding the Sample: Is It Closer to the Reality?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leaf Sample Collection and Non-Grinding Measurement Method
2.2. Drying Leaf Samples and Measuring Leaf pH with the Grinding Method
2.3. Effects of Dilution on Leaf pH Measurement with the Grinding Method
2.4. Data Analyses
3. Results
3.1. Comparison of Leaf pH Measured with Grinding and Non-Grinding Methods
3.2. Effects of Dilution on Leaf pH in the Grinding Method
4. Discussion
4.1. Comparison of Grinding and Non-Grinding Measurement Results
4.2. Effects of Grinding Measurement on Leaf pH
4.2.1. Drying
4.2.2. Grinding
4.2.3. Dilution
4.3. Conversion Equation between Grinding and Non-Grinding Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Egginton, S.; Taylor, E.W.; Raven, J.A. Regulation of Tissue pH in Plants and Animals: A Reappraisal of Current Techniques; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Felle, H.H. pH: Signal and Messenger in Plant Cells. Plant Biol. 2001, 3, 577–591. [Google Scholar] [CrossRef]
- Rengel, Z. (Ed.) Handbook of Plant Growth: pH as the Master Variable; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar]
- Cornelissen, J.H.C.; Sibma, F.; Van Logtestijn, R.S.P.; Broekman, R.A.; Thompson, K. Leaf pH as a Plant Trait: Species-Driven Rather than Soil-Driven Variation: Species versus Soil Chemistry Effects on Leaf pH. Funct. Ecol. 2011, 25, 449–455. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Quested, H.M.; van Logtestijn, R.S.P.; Pérez-Harguindeguy, N.; Gwynn-Jones, D.; Díaz, S.; Callaghan, T.V.; Press, M.C.; Aerts, R. Foliar pH as a New Plant Trait: Can It Explain Variation in Foliar Chemistry and Carbon Cycling Processes among Subarctic Plant Species and Types? Oecologia 2006, 147, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yan, Z.; Chen, Y.; Zhang, M.; Chen, J.; Han, W. Foliar pH, an Emerging Plant Functional Trait: Biogeography and Variability across Northern China. Glob. Ecol. Biogeogr. 2019, 28, 386–397. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New Handbook for Standardised Measurement of Plant Functional Traits Worldwide. Aust. J. Bot. 2013, 61, 167. [Google Scholar] [CrossRef]
- Masoero, G.; Cugnetto, A. The Raw pH in Plants: A Multifaceted Parameter. JAR 2018, 1, 18–34. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Zuo, J.; He, Z.; Wang, Y.; Liu, J.; Liu, W.; Cornelissen, J.H.C. Traits Including Leaf Dry Matter Content and Leaf pH Dominate over Forest Soil pH as Drivers of Litter Decomposition among 60 Species. Funct. Ecol. 2019, 33, 1798–1810. [Google Scholar] [CrossRef]
- Bui, H.T.; Odsuren, U.; Kwon, K.J.; Kim, S.Y.; Yang, J.C.; Jeong, N.R.; Park, B.J. Assessment of Air Pollution Tolerance and Particulate Matter Accumulation of 11 Woody Plant Species. Atmosphere 2021, 12, 1067. [Google Scholar] [CrossRef]
- Husson, O.; Audebert, A.; Benada, J.; Soglonou, B.; Tano, F.; Dieng, I.; Bousset, L.; Sarthou, J.P.; Joseph, S.; Menozzi, P.; et al. Leaf Eh and pH: A Novel Indicator of Plant Stress. Spatial, Temporal and Genotypic Variability in Rice (Oryza Sativa L.). Agronomy 2018, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; An, S.; Yan, Z.; Ren, J.; Lu, X.; Ge, F.; Han, W. Variation and Potential Influence Factors of Foliar pH in Land-Water Ecozones of Three Small Plateau Lakes. J. Plant Ecol. 2021, 14, 504–514. [Google Scholar] [CrossRef]
- Luo, Y.; Yan, Z.; Liu, S.; Chen, J.; Li, K.; Mohammat, A.; Han, W. Variation in Desert Shrub Foliar pH in Relation to Drought and Salinity in Xinjiang, China. J. Veg. Sci. 2021, 32, e13031. [Google Scholar] [CrossRef]
- Liu, S.; Chen, J.; Han, W.; Zhang, W. Comparison of Pretreatment, Preservation and Determination Methods for Foliar PH of Plant Samples. J. Plant Ecol. 2022, 15, 673–682. [Google Scholar] [CrossRef]
- Kurkdjian, A.; Guern, J. Intracellular pH: Measurement and Importance in Cell Activity. Annu. Rev. Plant Biol. 1989, 40, 271–303. [Google Scholar] [CrossRef]
- Grignon, C.; Sentenac, H. pH and Ionic Conditions in the Apoplast. Annu. Rev. Plant Biol. 1991, 42, 103–128. [Google Scholar] [CrossRef]
- Tsai, H.H.; Schmidt, W. The Enigma of Environmental pH Sensing in Plants. Nat. Plants 2021, 7, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Song, W.; Huang, S.; Jiang, K.; Moriwaki, Y.; Wang, Y.; Men, Y.; Zhang, D.; Wen, X.; Han, Z.; et al. Extracellular pH Sensing by Plant Cell-Surface Peptide-Receptor Complexes. Cell 2022, 185, 3341–3355. [Google Scholar] [CrossRef]
- Rayle, D.L.; Cleland, R.E. The Acid Growth Theory of Auxin-Induced Cell Elongation Is Alive and Well. Plant Physiol. 1992, 99, 1271–1274. [Google Scholar] [CrossRef] [Green Version]
- Geilfus, C.M. The pH of the Apoplast: Dynamic Factor with Functional Impact Under Stress. Mol. Plant 2017, 10, 1371–1386. [Google Scholar] [CrossRef]
- Stoyanov, E.S.; Stoyanova, I.V.; Reed, C.A. The Structure of the Hydrogen Ion (Haq+) in Water. J. Am. Chem. Soc. 2010, 132, 1484–1485. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C. Ionic Strength and the Dissociation of Acids. Biochem. Educ. 1990, 18, 35–40. [Google Scholar] [CrossRef]
- Housecroft, C.E.; Sharpe, A.G. Inorganic Chemistry, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2012. [Google Scholar]
- Speer, M.; Kaiser, W.M. Ion Relations of Symplastic and Apoplastic Space in Leaves from Spinacia Oleracea L. and Pisum Sativum L. under Salinity. Plant Physiol. 1991, 97, 990–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, E.; Bloom, A.J. Mineral Nutrition of Plants: Principles and Perspectives, 2nd ed.; Sinauer Associates: Sunderland, UK, 2004. [Google Scholar]
- Yang, Y. Fluoride Resistance Mechanism of Different Trees. J. Henan Agric. Univ. 1999, 33, 84–88. [Google Scholar]
- Liu, S. Studies on Resistance of Garden Tress to Damage from Sulfur Dioxide Pollutant. J. Shenyang Agric. Univ. 1988, 19, 50–57. [Google Scholar]
- Mann, K.K.; SchuMann, A.W.; Spann, T.M. Response of Citrus to Exogenously Applied Salicylate Compounds during Abiotic and Biotic Stress. Proc. Fla. State Hortic. Soc. 2011, 124, 10. [Google Scholar]
- Lohe, R.N.; Tyagi, B.; Singh, V.; Kumar Tyagi, P.; Khanna, D.R.; Bhutiani, R. A Comparative Study for Air Pollution Tolerance Index of Some Terrestrial. Glob. J. Environ. Sci. Manag. 2015, 1, 10. [Google Scholar]
- TRY Plant Trait Database. Available online: https://www.try-db.org/TryWeb/Home.php (accessed on 16 September 2019).
- Han, Z.; Sun, H.; Gu, S.; Bao, W.; Yang, L. Responses of 9 Species of Arbor Trees to the Urban Traffic Environment. J. Fujian For. Sci. Technol. 2012, 39, 95–100. [Google Scholar]
- Riga, P.; Benedicto, L. Effects of Light-Diffusing Plastic Film on Lettuce Production and Quality Attributes. Span J. Agric. Res. 2017, 15, e0801. [Google Scholar] [CrossRef] [Green Version]
- Alhesnawi, A.S.M.; Alsalman, I.M.; Najem, N.A. Evaluation of Air Pollution Tolerance Index of Some Plants Species in Kerbala City, Iraq. J. Pharm. Sci. 2018, 10, 6. [Google Scholar]
- Chen, D.; Zheng, M. Study on Heightening Ornamental Plants Resistance to Air Pollution. J. Zhejiang For. Sci. Technol. 1992, 12, 6–10. [Google Scholar]
- Zhang, Y.; Yan, X. Changes of Pigments and Relative Substances in Leaves of Three Red-Leafed Tree Species from Prune L. in Growing Seasons. J. Yangtze Univ. (Nat. Sci. Ed.) 2008, 5, 16–19 + 127. [Google Scholar]
- Zhang, Y.; Xiao, W.; Ji, G.; Gao, C.; Chen, X.; Cao, Y.; Han, L. Effects of Multiscale-Mechanical Grinding Process on Physicochemical Properties of Black Tea Particles and Their Water Extracts. Food Bioprod. Process. 2017, 105, 171–178. [Google Scholar] [CrossRef]
- Frohnmeyer, H.; Grabov, A.; Blatt, M.R. A Role for the Vacuole in Auxin-Mediated Control of Cytosolic pH by Vicia Mesophyll and Guard Cells: Control of Cytosolic pH. Plant J. 2002, 13, 109–116. [Google Scholar] [CrossRef]
- Jeong, S.M.; Kim, S.Y.; Kim, D.R.; Jo, S.C.; Nam, K.C.; Ahn, D.U.; Lee, S.C. Effect of Heat Treatment on the Antioxidant Activity of Extracts from Citrus Peels. J. Agric. Food Chem. 2004, 52, 3389–3393. [Google Scholar] [CrossRef] [PubMed]
- Gümüşay, Ö.A.; Borazan, A.A.; Ercal, N.; Demirkol, O. Drying Effects on the Antioxidant Properties of Tomatoes and Ginger. Food Chem. 2015, 173, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Guiné, R.P.F.; Barroca, M.J.; Gonçalves, F.J.; Alves, M.; Oliveira, S.; Mendes, M. Artificial Neural Network Modelling of the Antioxidant Activity and Phenolic Compounds of Bananas Submitted to Different Drying Treatments. Food Chem. 2015, 168, 454–459. [Google Scholar] [CrossRef]
- Buchanan, B.B.; Gruissem, W.; Jones, R.L. Biochemistry and Molecular Biology of Plants; John Wiley & Sons, Ltd.: West Sussex, UK, 2015. [Google Scholar]
- Zhao, W.L. Basic Biochemistry; China Agricultural University Press: Beijing, China, 2008. [Google Scholar]
- Cheynier, V. Phenolic Compounds: From Plants to Foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Chisari, M.; Todaro, A.; Barbagallo, R.N.; Spagna, G. Salinity Effects on Enzymatic Browning and Antioxidant Capacity of Fresh-Cut Baby Romaine Lettuce (Lactuca Sativa L. Cv. Duende). Food Chem. 2010, 119, 1502–1506. [Google Scholar] [CrossRef]
- Lin, H.; Xi, Y.; Chen, S. The Relationship Between the Desiccation-Induced Browning and the Metabolism of Active Oxygen and Phenolics in Pericarp of Postharvest Longan Fruit. J. Plant Physiol. Mol. Biol. 2005, 3, 287–297. [Google Scholar]
- Yue, H. Advanced Inorganic Chemistry; China Machine Press: Beijing, China, 2002. [Google Scholar]
Treatment | n | Mean ± SE |
---|---|---|
Ground leaf pH | 129 | 4.99 A ± 0.05 |
Unground leaf pH | 129 | 4.75 B ± 0.06 |
Species | Ground Leaf Sample | Unground Leaf Sample | |
---|---|---|---|
Measured pH | Data Source | Measured pH ## | |
Ailanthus altissima | 6.7 (F) | [26] | 5.35 |
A. altissima | 6.5 (F) | [27] | 5.35 |
A. altissima | 5.26 (D) | # | 5.35 |
Citrus Sinensis | 6.63 *(F) | [28] | 4.99 |
Citrus limon | 4.96 (F) | [29] | 5.49 |
Daucus carota | 5.58 (D) | [30] | 5.99 |
Ginkgo biloba | 3.96 (D) | # | 4.41 |
G. biloba | 4.19 (D) | # | 4.41 |
G. biloba | 4.7 (F) | [27] | 4.41 |
G. biloba | 7.52 (D) | [31] | 4.41 |
Lactuca sativa | 5.98 *(F) | [32] | 5.97 |
Magnolia grandiflora | 6.57 (D) | [31] | 5.44 |
Olea Europaea | 6.90 (F) | [33] | 5.26 |
Prunus Persica | 5.62 (F) | [34] | 5.09 |
P. Persica | 5.56 (F) | [35] | 5.09 |
Quercus robur | 5.16 (D) | [30] | 4.87 |
Zea mays | 6.30 (D) | # | 4.84 |
Mean ± SE | 5.77 A ± 0.23 | - | 5.10 B ± 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Liu, S.; Hou, Y.; Luo, Y.; Han, W. Determination of Leaf pH without Grinding the Sample: Is It Closer to the Reality? Forests 2022, 13, 1640. https://doi.org/10.3390/f13101640
Chen J, Liu S, Hou Y, Luo Y, Han W. Determination of Leaf pH without Grinding the Sample: Is It Closer to the Reality? Forests. 2022; 13(10):1640. https://doi.org/10.3390/f13101640
Chicago/Turabian StyleChen, Jiashu, Sining Liu, Yufei Hou, Yan Luo, and Wenxuan Han. 2022. "Determination of Leaf pH without Grinding the Sample: Is It Closer to the Reality?" Forests 13, no. 10: 1640. https://doi.org/10.3390/f13101640