Whole-Tree Harvest Effects on Macronutrients in an Oak-Dominated System after Seven Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Original Treatments
2.2. Site Remeasurements and Nutrient Analysis
3. Results
3.1. Woody Debris
3.2. Total Macronutrients
3.3. Soil Macronutrients
4. Discussion
4.1. Harvest Intensity Signal
4.2. Macronutrient Species Differences
4.3. Total Macronutrients
4.4. Magnitude of Differences
4.5. Nutrient Model Complications of the Original Study
4.6. Model—Woody Residues
4.7. Model—Deposition and Leaching
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Debris Type | Treatment | N | P | K | Ca | Mg | OM |
---|---|---|---|---|---|---|---|
CWD | WTH | 1 a ± <1 | 1 a ± <1 | 13 a ± 4 | 5 a ± <1 | 2 a ± <1 | 1400 a ± 600 |
WTH-5 cm | 17 b ± 2 | 15 b ± <1 | 125 b ± 22 | 49 b ± 6 | 23 b ± 2 | 13,000 b ± 3500 | |
SOH | 24 b ± 5 | 20 b ± 5 | 152 b ± 37 | 68 b ± 14 | 30 b ± 7 | 19,000 a ± 3000 | |
CON | 3 a ± 1 | 3 a ± 1 | 34 a ± 13 | 11 a ± 4 | 5 a ± 2 | 4100 b ± 1500 | |
FWD | WTH | 40 a ± 7 | 3 a ± <1 | 10 a ± 1 | 67 a ± 7 | 4.8 a ± <1 | 9000 c ± 1300 |
WTH-5 cm | 55 a ± 9 | 4.2 a ± 1 | 14 a ± 3 | 99 a ± 40 | 7.2 a ± 2 | 13,000 ac ± 2200 | |
SOH | 70 a ± 9 | 5.3 a ± 1 | 20 a ± 6 | 135 a ± 44 | 9.2 a ± 2 | 14,000 a ± 2400 | |
CON | 27 a ± 4 | 1.7 a ± <1 | 5.2 a ± 1 | 47 a ± 5 | 3.4 a ± <1 | 6000 b ± 800 | |
FF | WTH | 212 b ± 113 | 18 b ± 10 | 20 a ± 11 | 233 b ± 104 | 28 b ± 17 | 22,000 a ± 13,000 |
WTH-5 cm | 223 ab ± 75 | 16 ab ± 2 | 18 a ± 6 | 221 ab ± 74 | 27 ab ± 10 | 22,000 a ± 1800 | |
SOH | 203 a ± 59 | 17 a ± 7 | 22 a ± 9 | 242 a ± 25 | 30 a ± 16 | 20,000 a ± 13,000 | |
CON | 240 b ± 36 | 18 ab ± 5 | 20 a ± <1 | 268 ab ± 15 | 31 b ± 11 | 22,000 a ± 11,000 |
Year | Study | N | P | K | Ca | Mg |
---|---|---|---|---|---|---|
2010 | Wilhelm et al., 2013 [8] | 9.40 | 0.07 | 2.65 | 7.50 | 0.57 |
Schwede & Lear, 2014 [24] | 5.05 | 0.21 | - | 1.92 | 0.25 | |
2011 | Wilhelm et al., 2013 [8] | 4.16 | 0.24 | 16.90 | 34.10 | 0.81 |
Schwede & Lear, 2014 [24] | 4.60 | 0.20 | - | 1.78 | 0.24 |
References
- Boyle, J.R.; Phillips, J.J.; Ek, A.R. “Whole Tree” Harvesting: Nutrient Budget Evaluation. J. For. 1973, 71, 760–762. [Google Scholar]
- Olsson, B.A.; Bengtsson, J.; Lundkvist, H. Effects of different forest harvest intensities on the pools of exchangeable cations in coniferous forest soils. For. Ecol. Manag. 1996, 84, 135–147. [Google Scholar] [CrossRef]
- Silkworth, D.R.; Grigal, D.F. Determining and Evaluating Nutrient Losses Following Whole-tree Harvesting of Aspen. Soil Sci. Soc. Am. J. 1982, 46, 626–631. [Google Scholar] [CrossRef]
- Sverdrup, H.; Rosen, K. Long-term base cation mass balances for Swedish forests and the concept of sustainability. For. Ecol. Manag. 1998, 110, 221–236. [Google Scholar] [CrossRef]
- Thiffault, E.; Hannam, K.D.; Paré, D.; Titus, B.D.; Hazlett, P.W.; Maynard, D.G.; Brais, S. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review. Environ. Rev. 2011, 19, 278–309. [Google Scholar] [CrossRef]
- Premer, M.I.; Froese, R.E.; Vance, E.D. Whole-tree harvest and residue recovery in commercial aspen: Implications to forest growth and soil productivity across a rotation. For. Ecol. Manag. 2019, 447, 130–138. [Google Scholar] [CrossRef]
- Bowd, E.J.; Banks, S.C.; Strong, C.L.; Lindenmayer, D.B. Long-term impacts of wildfire and logging on forest soils. Nat. Geosci. 2019, 12, 113–118. [Google Scholar] [CrossRef]
- Wilhelm, K.; Rathsack, B.; Bockheim, J. Effects of timber harvest intensity on macronutrient cycling in oak-dominated stands on sandy soils of northwest Wisconsin. For. Ecol. Manag. 2013, 291, 1–12. [Google Scholar] [CrossRef]
- Rathsack, B. Harvest Intensity Impacts on Oak-Dominated Hardwood Ecosystems on Sandy Soil in Northeastern Wisconsin; University of Wisconsin: Madison, WI, USA, 2011. [Google Scholar]
- Kolka, R.; Grigal, D.; Nater, E. Forest soil mineral weathering rates: Use of multiple approaches. Geoderma 1996, 73, 1–21. [Google Scholar] [CrossRef]
- Richard, R.P.; Kane, E.S.; Bronson, D.R.; Kolka, R.K. Long-Term Ecosystem Nutrient Pool Status for Aspen Forest Harvest Simulations on Glacial Till and Sandy Outwash Soils. Forests 2021, 12, 1556. [Google Scholar] [CrossRef]
- Wilhelm, K. Effects of Timber Harvest Intensity on Macronutrient Cycling on Oak-Dominated Sandy Soils in Northwest Wisconsin; University of Wisconsin: Madison, WI, USA, 2011. [Google Scholar]
- Jurgensen, M.F.; Page-Dumroese, D.S.; Brown, R.E.; Tirocke, J.M.; Miller, C.A.; Pickens, J.B.; Wang, M. Estimating Carbon and Nitrogen Pools in a Forest Soil: Influence of Soil Bulk Density Methods and Rock Content. Soil Sci. Soc. Am. J. 2017, 81, 1689–1696. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of Total, Organic, and Available Forms of Phosphorus in Soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Menage, P.; Pridmore, B. Automated determination of phosphate using Bray No 1 Extractant. Notes Soil Tech. 1973, 20, 80–82. [Google Scholar]
- Lachat Instruments. QuikChem Method 12-107-04-1-F and Method 12-107-06-1-B; Lachat Instruments: Milwaukee, WI, USA, 1998. [Google Scholar]
- Fasth, B.G.; Harmon, M.E.; Sexton, J.; White, P. Decomposition of fine woody debris in a deciduous forest in North Carolina. J. Torrey Bot. Soc. 2011, 138, 192–206. [Google Scholar] [CrossRef]
- Pastor, J.; Bockheim, J.G. Distribution and Cycling of Nutrients in an Aspen-Mixed-Hardwood-Spodosol Ecosystem in Northern Wisconsin. Ecology 1984, 65, 339–353. [Google Scholar] [CrossRef]
- Perala, D.A.; Alban, D.H. Biomass, nutrient distribution and litterfall in Populus, Pinus and Picea stands on two different soils in Minnesota. Plant Soil 1982, 64, 177–192. [Google Scholar] [CrossRef]
- Slesak, R.A.; Palik, B.; D’Amato, A.W.; Kurth, V.J. Changes in soil physical and chemical properties following organic matter removal and compaction: 20-year response of the aspen Lake-States Long Term Soil Productivity installations. For. Ecol. Manag. 2017, 392, 68–77. [Google Scholar] [CrossRef]
- Cleavitt, N.L.; Battles, J.J.; Johnson, C.E.; Fahey, T.J. Long-term decline of sugar maple following forest harvest, Hubbard Brook Experimental Forest, New Hampshire. Can. J. For. Res. 2018, 48, 23–31. [Google Scholar] [CrossRef]
- Parton, W.; Silver, W.L.; Burke, I.C.; Grassens, L.; Harmon, M.E.; Currie, W.S.; King, J.Y.; Adair, E.C.; Brandt, L.A.; Hart, S.C.; et al. Global-Scale Similarities in Nitrogen Release Patterns During Long-Term Decomposition. Science 2007, 315, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Schwede, D.B.; Lear, G.G. A novel hybrid approach for estimating total deposition in the United States. Atmospheric Environ. 2014, 92, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Burns, R.M.; Honkala, B.H. Silvics of North America: Volume 2. Hardwoods; Forest Service, Agriculture Handbook 654; United States Department of Agriculture (USDA): Washington, DC, USA, 1990.
Observation | Wilhelm et al., 2013 [8] | Current Study |
---|---|---|
Soil 0–8 cm | 2010 | 2017 |
Soil 8–60 cm | 2010 | 2017 |
Mineralization + Weathering | 2010–2011 | |
Leachate | 2010–2011 | |
Forest Litter | 2010 | 2017 |
Fine Woody Debris | 2010 | 2017 |
Herbaceous and Shrub | 2010 | |
Tree Components | 2009 | |
Atmospheric Deposition | 2010–2011 |
Nut. Pool | Type | N | P | K | Ca | Mg | Debris |
---|---|---|---|---|---|---|---|
Total | CON | 544 a ± 41 | 123 a ± 17 | 366 a ± 56 | 1599 a ± 352 | 244 a ± 41 | |
SOH | 231 b ± 46 | 113 a ± 25 | 235 b ± 26 | 1672 a ± 295 | 241 a ± 33 | ||
WTH-5 cm | 332 b,c ± 85 | 118 a ± 24 | 229 b ± 43 | 1663 a ± 239 | 271 a ± 29 | ||
WTH | 142 b,d ± 31 | 129 a ± 19 | 172 b ± 13 | 1039 b ± 210 | 209 a ± 47 | ||
Woody Debris | CON | 30 a,b ± 25 | 1 b,c ± 1 | 4 a,c ± 3 | 29 a ± 14 | 2 b,c ± 1 | 4825 a,b ± 3921 |
SOH | 66 a,b ± 27 | 3 a,c ± 1 | 11 a ± 5 | 114 b ± 48 | 6 a,c ± 3 | 9772 a,b ± 4769 | |
WTH-5 cm | 89 a ± 50 | 4 a,c ± 2 | 12 a ± 7 | 90 a,b ± 41 | 6 a,c ± 3 | 14999 a ± 8535 | |
WTH | 9 b ± 9 | 0 b ± 0 | 1 b,c ± 1 | 9 c ± 8 | 1 b ± 1 | 1758 b ± 2101 | |
Forest Litter | CON | 22 a ± 6 | 1 a,b ± 0 | 2 a,b ± 1 | 26 a ± 13 | 2 a,b ± 1 | 1556 a ± 626 |
SOH | 17 a ± 4 | 1 a ± 0 | 1 a ± 0 | 18 a ± 6 | 2 a ± 0 | 842 a ± 241 | |
WTH-5 cm | 28 a ± 9 | 2 b ± 0 | 3 b ± 1 | 28 a ± 11 | 3 b ± 1 | 1319 a ± 406 | |
WTH | 21 a ± 5 | 1 a,b ± 0 | 2 a,b ± 1 | 18 a ± 5 | 3 a,b ± 1 | 1017 a ± 291 | |
Soil (0–8 cm) | CON | 35 a ± 18 | 8 a ± 2 | 78 a ± 29 | 346 a ± 144 | 60 a ± 17 | |
SOH | 82 a,b ± 21 | 9 a ± 5 | 69 a ± 16 | 751 b ± 191 | 73 a ± 14 | ||
WTH-5 cm | 121 b ± 59 | 11 a ± 4 | 65 a ± 12 | 602 a,b ± 158 | 65 a ± 14 | ||
WTH | 45 a ± 12 | 11 a ± 3 | 53 a ± 9 | 415 a ± 154 | 62 a ± 17 | ||
Soil (8–60 cm) | CON | 47 a ± 16 | 93 a ± 17 | 136 a ± 39 | 511 a ± 209 | 151 a ± 26 | |
SOH | 66 a,b ± 16 | 100 a ± 25 | 153 a ± 20 | 789 a,b ± 137 | 160 a,b ± 29 | ||
WTH-5 cm | 95 b ± 21 | 101 a ± 23 | 150 a ± 36 | 944 b ± 149 | 197 b ± 27 | ||
WTH | 67 a,b ± 24 | 116 a ± 18 | 115 a ± 13 | 596 a ± 120 | 143 a ± 40 |
Nut. Pool | Type | N | P | K | Ca | Mg | Debris |
---|---|---|---|---|---|---|---|
Total | SOH | −36 | −2 | −28 | 2 | 0 | |
WTH-5 cm | −25 | −1 | −29 | 2 | 5 | ||
WTH | −47 | 2 | −41 | −20 | −6 | ||
Woody Debris | SOH | 243 | 328 | 184 | 649 | 656 | 101 |
WTH-5 cm | 398 | 492 | 211 | 466 | 656 | 207 | |
WTH | −142 | −164 | −79 | −152 | −164 | −62 | |
Forest Litter | SOH | −2 | 0 | −3 | −2 | 0 | −2 |
WTH-5 cm | 1 | 4 | 3 | 1 | 2 | −1 | |
WTH | −1 | 0 | 0 | −2 | 2 | −1 | |
Soil (0–8 cm) | SOH | 275 | 2 | −17 | 147 | 21 | |
WTH-5 cm | 503 | 7 | −24 | 93 | 8 | ||
WTH | 58 | 7 | −46 | 25 | 3 | ||
Soil (8–60 cm) | SOH | 34 | 2 | 7 | 17 | 2 | |
WTH-5 cm | 86 | 2 | 5 | 27 | 10 | ||
WTH | 36 | 6 | −9 | 6 | −2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richard, R.; Kane, E.; Bronson, D.; Kolka, R. Whole-Tree Harvest Effects on Macronutrients in an Oak-Dominated System after Seven Years. Forests 2022, 13, 1532. https://doi.org/10.3390/f13101532
Richard R, Kane E, Bronson D, Kolka R. Whole-Tree Harvest Effects on Macronutrients in an Oak-Dominated System after Seven Years. Forests. 2022; 13(10):1532. https://doi.org/10.3390/f13101532
Chicago/Turabian StyleRichard, Robert, Evan Kane, Dustin Bronson, and Randall Kolka. 2022. "Whole-Tree Harvest Effects on Macronutrients in an Oak-Dominated System after Seven Years" Forests 13, no. 10: 1532. https://doi.org/10.3390/f13101532
APA StyleRichard, R., Kane, E., Bronson, D., & Kolka, R. (2022). Whole-Tree Harvest Effects on Macronutrients in an Oak-Dominated System after Seven Years. Forests, 13(10), 1532. https://doi.org/10.3390/f13101532