Soil Carbon Sequestration in Novel Ecosystems at Post-Mine Sites—A New Insight into the Determination of Key Factors in the Restoration of Terrestrial Ecosystems
Abstract
:1. Introduction
2. Factors Affecting Carbon Accumulation in RMS
2.1. The Age of Restoration and Dynamics of SOC Accumulation in Restored Novel Ecosystems
2.2. The Effect of Vegetation Types on SOC Accumulation
2.3. The Effect of Reclamation Treatments on SOC Accumulation
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bell, F.G.; Donnelly, L.J. Mining and Its Impact on the Environment; Taylor & Francis: London, UK; New York, NY, USA, 2006. [Google Scholar]
- Feng, Y.; Wang, J.; Bai, Z.; Reading, L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Sci. Rev. 2019, 191, 12–25. [Google Scholar] [CrossRef]
- Wick, A.F.; Stahl, P.D.; Ingram, L.J.; Vicklund, L. Soil aggregation and organic carbon in short-term stockpiles. Soil Use Manag. 2009, 25, 311–319. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Masto, R.E.; Yadav, A.; George, J.; Ram, L.C.; Shukla, S.P. Soil quality index for evaluation of reclaimed coal mine spoil. Sci. Total Environ. 2016, 542, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.K.; Lal, R. Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma 2011, 3–4, 168–176. [Google Scholar] [CrossRef]
- Maiti, S.K. Ecorestoration of the Coalmine Degraded Lands; Springer: New Delhi, India, 2013. [Google Scholar]
- Ussiri, D.A.N.; Lal, R. Carbon sequestration in reclaimed mine soils. Crit. Rev. Plant Sci. 2005, 24, 151–165. [Google Scholar] [CrossRef]
- Ahirwal, J.; Kumar, A.; Pietrzykowski, M.; Maiti, S.K. Reclamation of coal mine spoil and its effect on Technosol quality and carbon sequestration: A case study from India. Environ. Sci. Pollut. Res. 2018, 25, 27992–28003. [Google Scholar] [CrossRef]
- Pietrzykowski, M. Soil quality index as a tool for Scots pine (Pinus sylvestris) monoculture conversion planning on afforested, reclaimed mine land. J. For. Res. 2014, 25, 63–74. [Google Scholar] [CrossRef]
- Macdonald, S.E.; Landhäusser, S.M.; Skousen, J.; Franklin, J.; Frouz, J.; Hall, S.; Jacobs, D.F.; Quideau, S. Forest restoration following surface mining disturbance: Challenges and solutions. New For. 2015, 46, 703–732. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, A. The use of natural processes in reclamation- advantages and difficulties. Landsc. Urban Plan. 2000, 51, 89–100. [Google Scholar] [CrossRef]
- Pietrzykowski, M. Soil and plant communities development and ecological effectiveness of reclamation on a sand mine cast. J. For. Sci. 2008, 54, 554–565. [Google Scholar] [CrossRef] [Green Version]
- Pietrzykowski, M.; Socha, J. An estimation of Scots pine (Pinus sylvestris L.) ecosystem productivity on reclaimed post-mining sites in Poland (central Europe) using of allometric equations. Ecol. Eng. 2011, 37, 381–386. [Google Scholar] [CrossRef]
- Asensio, V.; Vega, F.A.; Andrade, M.L.; Covelo, E.F. Tree vegetation and waste amendments to improve the physical condition of copper mine soils. Chemosphere 2013, 90, 603–610. [Google Scholar] [CrossRef]
- Srivastava, N.K.; Ram, L.C.; Masto, R.E. Reclamation of overburden and lowland in coal mining area with fly ash and selective plantation: A sustainable ecological approach. Ecol. Eng. 2014, 71, 479–489. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Krzaklewski, W. Reclamation of Mine Lands in Poland. In Bio-Geotechnologies for Mine Site Rehabilitation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 493–513. [Google Scholar]
- Pietrzykowski, M.; Woś, B.; Haus, N. Scots pine needles macronutrient (N, P, K, CA, MG, and S) supply at different reclaimed mine soil substrates as an indicator of the stability of developed forest ecosystems Environ. Monit. Assess. 2013, 185, 7445–7457. [Google Scholar] [CrossRef] [Green Version]
- Wanga, D.; Zhanga, B.; Zhua, L.; Yang, Y.; Li, M. Soil and vegetation development along a 10-year restoration chronosequence in tailing dams in the Xiaoqinling gold region of Central China. Catena 2018, 167, 250–256. [Google Scholar] [CrossRef]
- Maharana, K.J.; Patel, K.A. Microbial biomass, microbial respiration and organic carbon indicates nutrient cycling in a chronosequence coal mine overburden spoil. IJES 2013, 4, 171–184. [Google Scholar]
- Shrestha, R.K.; Lal, R. Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA. Geoderma 2010, 157, 196–205. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Gruba, P.; Sproull, G. The effectiveness of Yellow lupine (Lupinus luteus L.) green manure cropping in sand mine cast reclamation. Ecol. Eng. 2017, 102, 72–79. [Google Scholar] [CrossRef]
- Otremba, K.; Kozłowski, M.; Tatusko-Krygier, N.; Pająk, M.; Kołodziej, B.; Bryk, M. Impact of alfalfa and NPK fertilization in agricultural reclamation on the transformation of Technosols in an area following lignite mining. Land Degrad. Dev. 2020, 32, 1179–1191. [Google Scholar] [CrossRef]
- Reverchon, F.; Yang, H.; Ho, T.Y.; Yan, G.; Wang, J.; Xu, Z.; Zhang, D. A preliminary assessment of the potential of using an acacia—biochar system for spent mine site rehabilitation. Environ. Sci. Pollut. Res. 2014, 22, 2138–2144. [Google Scholar] [CrossRef] [Green Version]
- Moghimian, N.; Hosseini, S.M.; Kooch, Y.; Darki, B.Z. Impacts of changes in land use/cover on soil microbial and enzyme activities. Catena 2017, 157, 407–414. [Google Scholar] [CrossRef]
- León, J.D.; Castellanos, J.; Casamitjana, M.; Osorio, N.W.; Loaiza, J.C. Alluvial gold-mining degraded soils reclamation using Acacia mangium Wild. plantations: An evaluation from biogeochemistry. In Plantations Biodiversity, Carbon Sequestration and Restoration; Hai, R., Ed.; Nova Sci Publishers: New York, NY, USA, 2013; pp. 155–176. [Google Scholar]
- Josa, R.; Jorba, M.; Vallejo, V.R. Opencast mine restoration in a Mediterranean semiarid environment: Failure of some common practices. Ecol. Eng. 2012, 42, 183–191. [Google Scholar] [CrossRef]
- Zhao, Z.; Bai, Z.; Zhang, Z.; Guo, D.; Li, J.; Xu, Z.; Pan, Z. Population structure and spatial distributions patterns of 17 years old plantation in a reclaimed spoil of Pingshuo opencast mine, China. Ecol. Eng. 2012, 44, 147–151. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Novo, L.A.B.; Pietrzykowski, M.; Maiti, S.K. Assessment of Forest Ecosystem Development in Coal Mine Degraded Land by Using Integrated Mine Soil Quality Index (IMSQI): The Evidence from India. Forests 2020, 11, 1310. [Google Scholar] [CrossRef]
- Restrepo, M.F.; Flórez, C.P.; Osorio, N.W.; León, J.D. Passive and active restoration strategies to activate soil biogeochemical nutrient cycles in a degraded tropical dry land. Int. Sch. Res. Not. 2013, 1–6. [Google Scholar] [CrossRef]
- Chaudhuri, S.; McDonald, L.M.; Skousen, J.; Pena-Yewtukhiw, E.M. Soil organic carbon molecular properties: Effects of time since reclamation in a mine soil chronosequence. Land Degrad. Dev. 2013, 26, 237–248. [Google Scholar] [CrossRef]
- Wick, A.F.; Daniels, W.L.; Orndorff, Z.W.; Alley, M.M. Organic matter accumulation post-mineral sands mining. Soil Use Manag. 2013, 29, 354–364. [Google Scholar] [CrossRef]
- Bodlák, L.; Krováková, K.; Kobesová, M.; Brom, J.; Stastny, J.; Pecharová, E. SOC content—An appropriate tool for evaluating the soil quality in a reclaimed post-mining landscape. Ecol. Eng. 2012, 43, 53–59. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K.; Reddy, M.S. Development of carbon, nitrogen and phosphate stocks of reclaimed coal mine soil within 8 years after forestation with Prosopis juliflora (Sw.) Dc. Catena 2017, 156, 42–50. [Google Scholar] [CrossRef]
- Barlizaa, C.J.; Rodrígueza, B.O.; León Peláeza, D.J.; Chávez, F.L. Planted forests for open coal mine spoils rehabilitation in Colombian drylands: Contributions of fine litterfall through an age chronosequence. Ecol. Eng. 2019, 138, 180–187. [Google Scholar] [CrossRef]
- Ivanova, E.; Pershina, E.; Karpova, D.; Rogova, O.; Abakumov, E.; Andronov, E. Soil microbiome in chronosequence of spoil heaps of Kursk Magnetic Anomaly. Biol. Commun. 2019, 64, 219–225. [Google Scholar] [CrossRef]
- Mukhopadhyaya, S.; Maiti, S.K.; Masto, R.E. Development of mine soil quality index (MSQI) for evaluation of reclamation success: A chronosequence study. Ecol. Eng. 2014, 71, 10–20. [Google Scholar] [CrossRef]
- Akala, V.A.; Lal, R. Soil organic carbon pools and sequestration rates in reclaimed minesoils in Ohio. J. Environ. Qual. 2001, 30, 2098–2104. [Google Scholar] [CrossRef] [PubMed]
- Juwarkar, A.A.; Mehrotra, K.L.; Nair, R.; Wanjari, T.; Singh, S.K.; Chakrabarti, T. Carbon sequestration in reclaimed manganese mine land at Gumgaon, India. Environ. Monit. Assess. 2010, 160, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Ussiri, D.A.N.; Lal, R.; Jacinthe, P.A. Soil Properties and Carbon Sequestration of Afforested Pastures in Reclaimed Minesoils of Ohio. J. Soil Sci. Soc. Am. 2006, 70, 1797–1806. [Google Scholar] [CrossRef]
- Zhang, P.P.; Zhang, Y.L.; Jia, J.C.; Cui, Y.X.; Wang, X.; Zhang, X.C.; Wang, Y.Q. Revegetation pattern affecting accumulation of organic carbon and total nitrogen in reclaimed mine soils. Peer J. 2020, 8, e8563. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.K.; Lal, R.; Jacinthe, P.A. Enhancing Carbon and Nitrogen Sequestration in Reclaimed Soils through Organic Amendments and Chiseling. J. Soil Sci. Soc. Am. 2009, 73, 1004–1011. [Google Scholar] [CrossRef]
- Parajuli, P.B.; Duffy, S. Evaluation of Soil Organic Carbon and Soil Moisture Content from Agricultural Fileds in Mississipi. J. Soil Sci. 2013, 3, 81–90. [Google Scholar]
- Hobley, E.U.; Wilson, B. The depth distribution of organic carbon in the soils of eastern Australia. Ecosphere 2016, 7, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Fan, L.; Wang, L. Restoration of soil carbon with different tree species in a post-mining land in eastern Loess Plateau, China. Ecol. Eng. 2020, 158, 106025. [Google Scholar] [CrossRef]
- Matos, E.S.; Freese, D.; Böhm, C.; Quinkenstein, A.; Hüttl, R.F. Organic matter dynamics in reclaimed lignite mine soils under Robinia pseudoacacia L. plantations of different ages in Germany. Commun. Soil Sci. Plant Anal. 2012, 43, 745–755. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Masto, R.E. Carbon storage in coal mine spoil by Dalbergia sissoo Roxb. Geoderma 2016, 284, 204–213. [Google Scholar] [CrossRef]
- Avera, B.N.; Strahm, B.D.; Burger, J.A.; Zipper, C.E. Development of ecosystem structure and function on reforested surface-mined lands in the Central Appalachian Coal Basin of the United States. New For. 2015, 46, 683–702. [Google Scholar] [CrossRef]
- Frouz, J.; Pižl, V.; Cienciala, E.; Kalčík, J. Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry 2009, 94, 111–121. [Google Scholar] [CrossRef]
- Vindušková, O.; Frouz, J. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: A quantitative review. Environ. Earth Sci. 2013, 69, 1685–1698. [Google Scholar] [CrossRef]
- Van Rooyen, M.W.; Van Rooyen, N.; Stoffberg, G.H. Carbon sequestration potential of post-mining reforestation activities on the KwaZulu-Natal coast, South Africa. Forestry 2013, 86, 211–223. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K. Assessment of carbon sequestration potential of revegetated coal mine overburden dumps: A chronosequence study from dry tropical climate. J. Environ. Manag. 2017, 201, 369–377. [Google Scholar] [CrossRef]
- Placek-Lapaja, A.; Grobelaka, A.; Fijalkowskia, K.; Singhb, B.R.; Almåsb, A.R.; Kacprzak, M. Post—Mining soil as carbon storehouse under polish conditions. J. Environ. Manag. 2019, 238, 307–314. [Google Scholar] [CrossRef]
- Greinert, A.; Drab, M.; Śliwińska, A. Storage Capacity of Organic Carbon in the Reclaimed Post-Mining Technosols. Environ. Prot. Eng. 2018, 44, 117–127. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Daniels, W.L. Estimation of carbon sequestration by pine (Pinus sylvestris L.) ecosystems developed on reforested post-mining sites in Poland on differing mine soil substrates. Ecol. Eng. 2014, 73, 209–218. [Google Scholar] [CrossRef]
- Akala, V.A.; Lal, R. Potential of mine land reclamation for soil organic carbon sequestration in Ohio. Land Degrad. Dev. 2000, 11, 289–297. [Google Scholar] [CrossRef]
- Sperow, M. Carbon Sequestration Potential in Reclaimed Mine Sites in Seven East-Central States. J. Environ. Qual. 2006, 35, 1428. [Google Scholar] [CrossRef] [PubMed]
- Filcheva, E.; Noustorova, M.; Gentcheva-Kostadinova, S.; Haigh, M.J. Organic accumulation and microbial action in surface coal-mine spoils. Pernik, Bulgaria. Ecol. Eng. 2000, 15, 1–15. [Google Scholar] [CrossRef]
- Adeli, A.; Brooks, J.P.; Read, J.J.; McGrew, R.; Jenkins, J.N. Post-reclamation age effects on soil physical properties and microbial activity under forest and pasture ecosystems. Commun. Soil Sci. Plant Anal. 2018, 50, 20–34. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K. Development of Technosol properties and recovery of carbon stock after 16 years of revegetation on coal mine degraded lands, India. Catena 2018, 166, 114–123. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Krzaklewski, W. Potential for carbon sequestration in reclaimed mine soil on reforested surface mining areas in Poland. Nat. Sci. 2010, 2, 1015–1021. [Google Scholar] [CrossRef]
- Stahl, P.D.; Anderson, J.D.; Ingram, L.J.; Schuman, G.E.; Mummey, D.L. Accumulation of Organic Carbon in Reclaimed Coal Mine Soils of Wyoming. In Proceedings of the National Meeting of the American Society of Mining and Reclamation and the 9th Billings Land Reclamation Symposium, Billings, MT, USA, 3–6 June 2003. [Google Scholar]
- Kumari, S.; Maiti, S.K. Reclamation of coalmine spoils with topsoil, grass, and legume: A case study from India. Environ. Earth Sci. 2019, 78, 429. [Google Scholar] [CrossRef]
- Li, C.; Gao, S.; Zhang, J.; Zhao, L.; Wang, L. Moisture effect on soil humus characteristics in a laboratory incuba-tion experiment. Soil Water Res. 2016, 11, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.; Maiti, S.K.; Masto, R.E. Use of Reclaimed Mine Soil Index (RMSI) for screening of tree species for reclamation of coal mine degraded land. Ecol. Eng. 2013, 57, 133–142. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Maiti, S.K. Trace metal accumulation and natural mycorrhizal colonisation in an afforested coalmine overburden dump—a case study from India. Int. J. Min. Reclam. Environ. 2011, 25, 187–207. [Google Scholar] [CrossRef]
- Mendes Filho, P.F.; Vasconcellos, R.L.F.; de Paula, A.M.; Cardoso, E.J.B.N. Evaluating the potential of forest species under microbial management for the restoration of degraded mining areas. Water Air Soil Poll. 2010, 208, 79–89. [Google Scholar] [CrossRef]
- Ahirwal, J.; Kumar, A.; Maiti, S.K. Effect of Fast-Growing Trees on Soil Properties and Carbon Storage in an Afforested Coal Mine Land (India). Minerals 2020, 10, 840. [Google Scholar] [CrossRef]
- Yao, F.U.; Changcun, L.I.N.; Jianjun, M.A.; Tingcheng, Z.H.U. Effects of plant types on physico-chemical properties of reclaimed mining soil in Inner Mongolia, China. Chin. Geogra. Sci. 2010, 20, 309–317. [Google Scholar]
- Horodecki, P.; Jagodziński, A.M. Site Type Effect on Litter Decomposition Rates: A Three-Year Comparison of Decomposition Process between Spoil Heap and Forest Sites. Forests 2019, 10, 353. [Google Scholar] [CrossRef] [Green Version]
- Smolander, A.; Kitunen, V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol. Biochem. 2002, 34, 651–660. [Google Scholar] [CrossRef]
- Zeng, Q.C.; Li, X.; Dong, Y.H.; Li, Y.Y.; An, S.S. Soil microbial biomass nitrogen and carbon, water soluble nitrogen and carbon under different arbors forests on the Loess Plateau. Acta Ecol. Sinica 2015, 35, 3598–3605. [Google Scholar]
- Šourková, M.; Frouz, J.; Fettweis, U.; Bens, O.; Hüttl, R.F.; Šantrucková, H. Soil development and properties of microbial biomass succession in reclaimed post-mining sites near Sokolov (Czech Republic) and near Cottbus (Germany). Geoderma 2005, 129, 73–80. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E. Microbial populations of arid lands and their potential for restoration of deserts. In Soil Biology and Agriculture in the Tropics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 109–137. [Google Scholar]
- Kheirfam, H.; Sadeghi, S.H.R.; Homaee, M.; Zarei Darki, B. Quality improvement of an erosion-prone soil through microbial enrichment. Soil Tillage Res. 2017, 165, 230–238. [Google Scholar] [CrossRef]
- Molina-Montenegro, M.A.; Oses, R.; Atala, C.; Torres-Díaz, C.; Bolados, G.; León-Lobos, P. Nurse effect and soil microorganisms are key to improve the establishment of native plants in a semiarid community. J. Arid Environ. 2016, 126, 54–61. [Google Scholar] [CrossRef]
- Raich, J.W.; Tufekcioglu, A. Vegetation and Soil respirations: Correlations and control. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Tewary, C.K.; Pandey, U.; Singh, J.S. Soil and litter respiration rates in different microhabitats of a mixed oak–conifer forest and their control by edaphic conditions and substrate quality. Plant Soil. 1982, 65, 233–238. [Google Scholar] [CrossRef]
- Pietrzykowski, M. Tree species selection and reaction to mine soil reconstructed at reforested post-mine sites: Central and eastern European experiences. Ecol. Eng. 2019, x3, 100012. [Google Scholar] [CrossRef]
- Józefowska, A.; Pietrzykowski, M.; Woś, B.; Cajthaml, T.; Frouz, J. The effects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils. Geoderma 2017, 292, 9–16. [Google Scholar] [CrossRef]
- Chatterjee, A.; Lal, R.; Shrestha, R.K.; Ussiri, D.A.N. Soil carbon pools of reclaimed mine soils under grass and forest land uses. Land Degrad. Dev. 2009, 20, 300–307. [Google Scholar] [CrossRef]
- Amichev, B.; Burger, J.A.; Rodrigue, J.A. Carbon sequestration by forests and soils on mind land in the Midwestern and Appalachian coalfields of the U.S. For. Ecol. Manag. 2008, 256, 1949–1959. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, I.; Caravaca, F.; Alguacil, M.M.; Hernández, G.; Roldán, A. Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. Appl. Soil Ecol. 2005, 30, 3–10. [Google Scholar] [CrossRef]
- Maharaj, S.; Barton, C.D.; Karathanasis, T.A.D.; Rowe, H.D.; Rimmer, S.M. Distinguishing “new” from “old” organic carbon in reclaimed coal mine sites using thermogravimetry: II. Field Valid. Soil Sci. 2007, 172, 302–312. [Google Scholar] [CrossRef]
- Schwenke, G.D.; Ayre, L.; Mulligan, D.R.; Bell, L.C. Soil stripping and replacementfor the rehabilitation of bauxite-mined land atWeipa II. Soil organicmatter dynamics in mine soil chronosequences. Aust. J. Soil Res. 2000, 38, 371–393. [Google Scholar]
- Čížková, B.; Woś, B.; Pietrzykowski, M.; Frouz, J. Development of soil chemical and microbial properties in reclaimed and unreclaimed grasslands in heaps after opencast lignite mining. Ecol. Eng. 2018, 123, 103–111. [Google Scholar] [CrossRef]
- Antonelli, P.M.; Fraser, L.H.; Gardner, W.C.; Broersma, K.; Karakatsoulis, J.; Phillips, M.E. Long term carbon sequestration potential of biosolids-amended copper and molybdenum mine tailings following mine site reclamation. Ecol. Eng. 2018, 117, 38–49. [Google Scholar] [CrossRef]
Tree Species | Age of the Plantation | SOC Total Stock (Mg ha−1) | SOC Accumulation Rate (Mg ha−1 Year−1) | Soil Depth (cm) | MAP(mm) | MAT (°C) | Reclaimed Mine Soil Substrate Type | General Reclamation Techniques | References |
---|---|---|---|---|---|---|---|---|---|
Mixed Forest | 5 | 9.11 | 1.82 | 0–20 | 1000 | 26 | Coal | Top soil with mixed forest | [28] |
10 | 19.89 | 1.99 | |||||||
25 | 41.37 | 1.65 | |||||||
Quercus liaotungensis | 11 | 32.59 | 1.59 | 0–30 | 431.1 | 10.0 | Coal | Leveling and top soiling | [44] |
Pinus tabuliformis | 16.04 | 0.37 | |||||||
Mixed Acacia auriculiformis, Sennasiamea, Acacia catechu and Dalbergia sissoo | 3 | 1.83 | 0.61 | 0–15 | 1375 | 25.7 | Coal | Regrading of spoil materials and plantation of tree species | [8] |
7 | 3.65 | 0.52 | |||||||
10 | 5.82 | 0.58 | |||||||
15 | 7.60 | 0.51 | |||||||
Prosopis juliflora | 2 | 8.1 | 4.05 | 0–60 | 975 | 27.5 | Coal | Regrading and top soiling | [33] |
3 | 12.6 | 4.20 | |||||||
4 | 17 | 4.25 | |||||||
5 | 19.2 | 3.84 | |||||||
6 | 27.5 | 4.58 | |||||||
7 | 32.8 | 4.69 | |||||||
8 | 45.4 | 5.68 | |||||||
Robinia pseudoacacia L. | 2 | 11.7 | 4 | 0–30 | 569 | 9.4 | Lignite | NK fertilization, and spread of a mixture of rye and alfalfa | [45] |
14 | 59.8 | ||||||||
Dalbergia sissoo | 2 | 1.1 | 0.55 | 0–15 | 1308 | 27 | Coal | Top soiling, farm yard manure, and NPK fertilizers | [46] |
16 | 8.91 | 0.56 | |||||||
Mixed Forest | 5 | 7.02 | 1.40 | 0–25 | 1230 | 16.2 | Coal | Loose-graded, hydroseeded, and NPK | [47] |
11 | 13.52 | 1.23 | |||||||
21 | 21.35 | 1.02 | |||||||
Alder (Alnus glutinosa) | 28 | 33.49 | 1.20 | 0–20 | 650 | 6.8 | Coal | n/a * | [48,49] |
Lime (Tilia cordata) | 31 | 34.51 | 1.12 | ||||||
Oak (Quercus robur) | 28 | 15.01 | 0.54 | ||||||
Spruce (Picea sp.) | 27 | 8.46 | 0.32 | ||||||
Pine (Pinus sp.) | 22 | 8.80 | 0.40 | ||||||
Casuarina equisetifolia | 6 | 3.19 | 0.53 | 0–30 | 1228 | 21.7 | Heavy mineral | Topsoil with a seed mixture of short-lived annual species | [50] |
9 | 3.75 | 0.42 | |||||||
12 | 9.35 | 0.78 | |||||||
15 | 11.55 | 0.77 | |||||||
Mixed Forest | 2 | 5.4 | 2.70 | 0–30 | 975 | 23 | Coal | Only backfilled dumps | [51] |
8 | 16.4 | 2.05 | |||||||
14 | 26.4 | 1.89 | |||||||
Scots pines and giant miscanthus plants. | n/a | 33 | n/a | 0–20 | n/a | n/a | Lignite | Sewage sludge | [52] |
45 | n/a | Compost | |||||||
Scots pines | 25 | 27.2 | 1.1 | O to C2 horizon | n/a | n/a | Lignite | Liming and NPK fertilizers | [53] |
37.4 | 1.50 | NPK fertilizers | |||||||
Scots pines | 12 | 63.1 | 5.20 | 0–110 | 580 | 7.6 | Lignite | Liming, NPK fertilization and sowing a mixture of grasses and leguminous plants | [54] |
17 | 45.9 | 2.70 | |||||||
21 | 22.6 | 1.08 | 0–110 | 700 | 8 | Sand | Top soiling, NPK fertilization, and lupine as green manure | ||
23 | 16.8 | 0.73 | |||||||
30 | 65.0 | 2.17 | 0–110 | 650 | 7 | Sulfur | Leguminous and grass crop with NPK fertilization | ||
30 | 34.4 | 1.15 | |||||||
Pasture land | 25 | 36.7 | 1.47 | 0–30 | n/a | n/a | Coal | Grading and application of stored top and subsoils | [55] |
Forest land | 37.1 | 1.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misebo, A.M.; Pietrzykowski, M.; Woś, B. Soil Carbon Sequestration in Novel Ecosystems at Post-Mine Sites—A New Insight into the Determination of Key Factors in the Restoration of Terrestrial Ecosystems. Forests 2022, 13, 63. https://doi.org/10.3390/f13010063
Misebo AM, Pietrzykowski M, Woś B. Soil Carbon Sequestration in Novel Ecosystems at Post-Mine Sites—A New Insight into the Determination of Key Factors in the Restoration of Terrestrial Ecosystems. Forests. 2022; 13(1):63. https://doi.org/10.3390/f13010063
Chicago/Turabian StyleMisebo, Amisalu Milkias, Marcin Pietrzykowski, and Bartłomiej Woś. 2022. "Soil Carbon Sequestration in Novel Ecosystems at Post-Mine Sites—A New Insight into the Determination of Key Factors in the Restoration of Terrestrial Ecosystems" Forests 13, no. 1: 63. https://doi.org/10.3390/f13010063
APA StyleMisebo, A. M., Pietrzykowski, M., & Woś, B. (2022). Soil Carbon Sequestration in Novel Ecosystems at Post-Mine Sites—A New Insight into the Determination of Key Factors in the Restoration of Terrestrial Ecosystems. Forests, 13(1), 63. https://doi.org/10.3390/f13010063