Ray Traits of Juvenile Wood and Mature Wood: Pinus massonia and Cunninghamia lanceolata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Quantitative Wood Anatomy
2.3. Scanning Electron Microscopy Observation
2.4. Data Analysis
3. Results and Discussion
3.1. Percentages of Different Cell Types
3.2. Ray Traits
3.3. Wood Axial Tissue Traits
3.4. Relationship of Wood Anatomical Traits in Relation to Ray Traits
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Butterfield, B.G.; Meylan, B.A. Three-Dimensional Structure of Wood. An Ultrastructural Approach. British Library Cataloguing in Publication Data; British Library: New York, NY, USA, 1980; p. 84. [Google Scholar]
- Fromm, J. Plant Cell Monographs; Springer: New York, NY, USA, 2013; pp. 3–39. [Google Scholar]
- Zhang, J.Q.; Li, S.M.; Xu, J.D. China Forest Resources Report; China Forestry Publishing House: Beijing, China, 1992; pp. 15, 28–29. [Google Scholar]
- Yin, Y.; Bian, M.; Song, K.; Xiao, F.; Jiang, X. Influence of microfibril angle on within-tree variations in the mechanical properties of Chinese fir (Cunninghamia lanceolata). IAWA J. 2011, 32, 431–442. [Google Scholar] [CrossRef]
- Moore, J.R.; Cown, D.J. Corewood (juvenile wood) and its impact on wood utilization. Curr. For. Rep. 2017, 3, 107–118. [Google Scholar]
- Luo, X.Q.; Jiang, X.M.; Yin, Y.F.; Li, D.Q.; Wang, B.G. Variations in wood properties of Masson Pine (Pinus massoniana L.) plantation. For. Res. 2002, 1, 28–33. [Google Scholar]
- Davies, F.T., Jr.; Lazarte, J.E.; Joiner, J.N. Initiation and development of roots in juvenile and mature leaf bud cuttings of Ficus pumila L. Botany 1982, 69, 804–811. [Google Scholar] [CrossRef]
- Bao, F.C.; Jiang, Z.H. Wood Properties of Main Tree Species from Plantation in China; China forestry publishing house: Beijing, China, 1998; pp. 5–36. [Google Scholar]
- Song, K.L. Changes of Structure and Performance of Cell Walls during the Transformation from Sapwood to Heartwood of Cunninghamia lanceolata. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2012. [Google Scholar]
- Kim, D.H.; Kim, S.H.; Jo, J.I.; Kim, J.H.; Purusatama, B.D.; Lee, S.H.; Kim, N.H. Ray properties in the stems of Dahurian larch (Larix gmelinii) and Japanese larch (Larix kaempferi). IAWA J. 2020, 42, 1–9. [Google Scholar] [CrossRef]
- Holden, R. Ray tracheids in the Coniferales. Int. J. Plant Sci. 1913, 55, 56–65. [Google Scholar] [CrossRef]
- Lev-Yadun, S.; Aloni, R. Differentiation of the ray system in woody plants. Bot. Rev. 1995, 61, 45–84. [Google Scholar] [CrossRef]
- Xue, Q.; Sun, W.; Fagerstedt, K.; Guo, X.; Dong, M.; Wang, W.; Cao, H. Effects of wood rays on the shrinkage of wood during the drying process. Bio-Resources 2018, 13, 7086–7095. [Google Scholar]
- Ona, T.; Sonoda, T.; Ito, K.; Shibata, M.; Tamai, Y.; Kojima, Y.; Ohshima, J.; Yokota, S.; Yoshizawa, N. Investigation of relationships between cell and pulp properties in Eucalyptus by examination of within-tree property variations. Wood Sci. Technol. 2001, 35, 229–243. [Google Scholar] [CrossRef]
- Baar, J.; Tippner, J.; Gryc, V. The relation of fiber length and ray dimensions to sound propagation velocity in wood of selected tropical hardwoods. IAWA J. 2013, 34, 49–60. [Google Scholar] [CrossRef]
- Dória, L.C.; Podadera, D.S.; Lima, R.S.; Lens, F.; Marcati, C.R. Axial sampling height outperforms site as predictor of wood trait variation. IAWA J. 2019, 40, 191–214. [Google Scholar] [CrossRef] [Green Version]
- IAWA Committee. IAWA List of Microscopic Features for Softwood Identification; Brill Publisher: Leiden, The Netherlands, 2004. [Google Scholar]
- Wilkins, A.P.; Papassotiriou, S. Wood anatomical variation of acacia melanoxylon in relation to latitude. IAWA J. 1989, 10, 201–207. [Google Scholar] [CrossRef]
- Pirralho, M.; Flores, D.; Sousa, V.B.; Quilhó, T.; Knapic, S.; Pereira, H. Evaluation on paper making potential of nine Eucalyptus species based on wood anatomical features. Ind. Crops Prod. 2014, 54, 327–334. [Google Scholar] [CrossRef]
- Martín, J.A.; Esteban, L.G.; Palacios, P.; Fernández, F.G. Variation in wood anatomical traits of Pinus sylvestris L. between Spanish regions of provenance. Trees 2010, 24, 1017–1028. [Google Scholar] [CrossRef]
- Larson, P.R. The Vascular Cambium Development and Structure; Springer: New York, NY, USA, 1994; pp. 363–451. [Google Scholar]
- Gregory, R.A.; Romberger, J.A. Cambium activity and height of uniseriate vascular rays in conifers. Int. J. Plant Sci. 1975, 136, 246–253. [Google Scholar]
- Yang, K.C.; Chen, Y.S.; Benson, C.A. Vertical and radial variation of nuclear elongation index of using sapwood ray parenchyma cells in a plantation tree of Cryptomeria Japonica. IAWA J. 1994, 15, 323–327. [Google Scholar] [CrossRef]
- Thompson, W.P. Ray tracheids in abies. Int. J. Plant Sci. 1912, 53, 331–338. [Google Scholar] [CrossRef]
- Thayn, G.F.; Tidwell, W.D. Flora of the lower cretaceous cedar Mountain Formation of Utah and Colorado, Part II, Mesembrioxylon stokesi. Great Basin Nat. 1984, 44, 257–262. [Google Scholar]
- Guo, J.; Guo, X.; Xiao, F.; Xiong, C.; Yin, Y. Influences of provenance and rotation age on heartwood ratio, stem diameter and radial variation in tracheid dimension of Cunninghamia lanceolata. Eur. J. Wood Prod. 2018, 76, 669–677. [Google Scholar] [CrossRef]
- Cown, D.J.; Donaldson, L.A.; Downes, G.M. A review of resin features in radiata pine. N. Z. J. For. Sci. 2011, 41, 41–61. [Google Scholar]
- Ickert-Bond, S.M. Reexamination of wood anatomical features in Pinus krempfii (Pinaceae). IAWA J. 2001, 22, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Fonti, P.; Tabakova, M.A.; Kirdyanov, A.V.; Bryukhanova, M.V.; von Arx, G. Variability of ray anatomy of Larix gmelinii along a forest productivity gradient in Siberia. Trees 2015, 29, 1165–1175. [Google Scholar] [CrossRef]
- Wimmer, R.; Grabner, M. A comparison of tree-ring features in Picea Abies as correlated with climate. IAWA J. 2020, 21, 403–416. [Google Scholar] [CrossRef]
- Mao, J.S.; Huang, X.T.; Yan, L. Temperature change characteristics of Chongzuo City from 1957 to 2017. Mod. Agric. Sci. Technol. 2019, 9, 93–197. [Google Scholar]
- Bao, F.C.; Jiang, Z.H.; Jiang, X.M.; Lu, X.X.; Luo, X.Q.; Zhang, S.Y. Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Sci. Technol. 2001, 35, 363–375. [Google Scholar] [CrossRef]
- Panshin, A.J.; Zeeuw, C. Textbook of Wood Technology, 4th ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Carmi, A.; Sachs, T.; Fahn, A. The relation of ray spacing to cambial growth. New Phytol. 1972, 71, 349–353. [Google Scholar] [CrossRef]
- Kim, N.H.; Kwon, S.M.; Chun, K.W. Radial variation of rays in two commercial softwoods grown in Korea. Wood Fiber Sci. 2009, 41, 138–144. [Google Scholar]
- Kim, D.W.; Hwang, S.W.; Lee, W.H. Property of Uljin-Geumgangsong wood (Pinus densiflora forma erecta Uyeki): Appearance pattern of resin canal and ray. J. Korean Wood Sci. Technol. 2014, 42, 78–87. [Google Scholar] [CrossRef]
- Lev-Yadun, S. The relationship between growth-ring width and ray density and ray height in cell number in the earlywood of Pinus Halepensis and Pinus Pinea. IAWA J. 1998, 19, 131–139. [Google Scholar] [CrossRef]
- Klinken, F. Über das gleitende wachstum der initialen im kambium der koniferen und den markstrahlenverlauf in ihrer sekundären rinde. Bibl. Bot. 1914, 19, 1–37. [Google Scholar]
- Bannan, M.W. Ray contacts and rate of anticlinal division in fusiform cambial cells of some Pinaceae. Can. J. Bot. 1965, 43, 487–508. [Google Scholar] [CrossRef]
- Wilczek, A.; Jura-Morawiec, J.; Kojs, P.; Iqbal, M.; Włoch, W. Correlation of intrusive growth of cambial initials to rearrangement of rays in the vascular cambium. IAWA J. 2011, 32, 313–331. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Chong, S.H.; Chun, S.K.; Park, B.S. Ray parenchyma and ray tracheid structure of four Korean pine wood species. J. Korea Furnit. Soc. 2006, 17, 101–107. [Google Scholar]
- Nakaba, S.; Kubo, T.; Funada, R. Differences in patterns of cell death between ray parenchyma cells and ray tracheids in the conifers Pinus densiflora and Pinus rigida. Trees 2008, 22, 623–630. [Google Scholar] [CrossRef]
- Tomczak, A. Relationships between selected tree characteristics and the properties of juvenile wood in Scots pine (Pinus sylvestris L.). For. Res. Pap. 2014, 75, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.D.; Denne, M.P. Variation in density of Picea sitchensis in relation to within-tree trends in tracheid diameter and wall thickness. Forestry 1997, 70, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Gričar, J.; Eler, K. The frequency of ray and axial parenchyma versus tree ring width in silver fir (Abies alba Mill.). Trees 2015, 29, 1023–1027. [Google Scholar] [CrossRef]
- Wodzicki, T.J.; Brown, C.L. Cellular differentiation of the cambium in the Pinaceae. Bot. Gaz. 1973, 134, 139–146. [Google Scholar] [CrossRef]
- Calquist, S. Living cells in wood. 1. Absence, scarcity and histology of axial parenchyma as keys to function. Bot. J. Linn. Soc. 2015, 177, 291–321. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.Y. Studies on the wood rays in coniferous woods mutual relation on the indicators of wood rays in coniferous woods. J. Korean Wood Sci. Technol. 1987, 15, 90–98. [Google Scholar]
- Fujiwara, S. Anatomy and properties of Japanese hardwoods II. Variation of dimensions of ray cells and their relation to basic density. IAWA J. 1992, 13, 397–402. [Google Scholar] [CrossRef]
- Spicer, R. Symplasmic networks in secondary vascular tissues: Parenchyma distribution and activity supporting long-distance transport. J. Exp. Bot. 2014, 65, 1829–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abreu, I.N.; Johansson, A.I.; Sokołowska, K.; Niittylä, T.; Sundberg, B.; Hvidsten, T.R.; Street, N.R.; Moritz, T. A metabolite roadmap of the wood-forming tissue in Populus tremula. New Phytol. 2020, 228, 1559–1572. [Google Scholar] [CrossRef] [PubMed]
- Blokhina, O.; Laitinen, T.; Hatakeyama, Y.; Delhomme, N.; Paasela, T.; Zhao, L.; Street, N.R.; Wada, H.; Kärkönen, A.; Fagerstedt, K. Ray parenchymal cells contribute to lignification of tracheids in developing xylem of Norway spruce. Plant Physiol. 2019, 181, 1552–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, H.; Plavcova, L.; Cvecko, P.; Fichtler, E.; Gillingham, M.A.F.; Martínez-Cabrera, H.I.; McGlinn, D.J.; Wheeler, E.; Zheng, J.; Zieminska, K.; et al. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytol. 2016, 209, 1553–1565. [Google Scholar] [CrossRef] [PubMed]
- Ladell, J.L. Ray thickenings in the walls of Conifer tracheids. Nature 1967, 213, 470–473. [Google Scholar] [CrossRef]
- Keith, C.T. Tangential wall thickenings in Conifer tracheids at ray contact areas. Wood Fiber Sci. 1975, 7, 129–135. [Google Scholar]
Wood Anatomical Features | Abbreviation | Unit | N 1 | Measurement 3 |
---|---|---|---|---|
Percentage of rays [18] | PR | % | 10 | On ten transverse sections. Rays area as a percentage of measured transverse section area |
Percentage of axial tracheids [18] | PT | % | 10 | Masson pine: 100% − (percentage of rays + percentage of axial resin canals) Chinese fir: 100% − (percentage of rays + percentage of axial parenchyma) |
Percentage of axial parenchyma [19] | PAP | % | 10 | On ten transverse sections. Axial parenchyma area as a percentage of measured transverse section area |
Percentage of axial resin canals [20] | PRC | % | 10 | On ten transverse sections. Axial resin canals area as a percentage of measured transverse section area |
Ray spacing [21] | RS | /mm | 30 | On ten tangential sections. Count the number of rays in 1 mm |
Ray number [10] | RN | /mm2 | 30 | On ten tangential sections. Count the number of rays in 1 mm2 |
Uniseriate ray height [22] | HUR | μm | 50 | On ten tangential sections. Individual uniseriate ray height; tails were included in the measurement |
Fusiform ray height [10] | HFR | μm | 50 | On the ten tangential sections. Individual fusiform ray height; tails were included in the measurement |
Ray parenchyma cell length 2 [23] | LRP | μm | 30 | On ten radial sections. Measure individual ray parenchyma cell length |
Ray tracheid length [24] | LRT | μm | 50 | On ten radial sections. Measure individual ray tracheid length |
Axial parenchyma cell length [25] | LAP | μm | 30 | On ten radial sections. Measure individual axial parenchyma cell length |
Radial wall thickness of earlywood axial tracheid [26] | RTET | μm | 30 | On ten transverse sections. The thickness of the single radial cell wall of earlywood axial tracheid on transverse section |
Tangential wall thickness of earlywood axial tracheid [26] | TTET | μm | 30 | On ten transverse sections. The thickness of the single tangential cell wall of earlywood axial tracheid on transverse section |
Radial wall thickness of latewood axial tracheid [26] | RTLT | μm | 30 | On ten transverse sections. The thickness of the single radial cell wall of latewood axial tracheid on transverse section |
Tangential wall thickness of latewood axial tracheid [26] | TTLT | μm | 30 | On ten transverse sections. The thickness of the single tangential cell wall of latewood axial tracheid on transverse section |
Percentage of Rays (%) | Percentage of Axial Tracheids (%) | Percentage of Axial Parenchyma (%) | Percentage of Axial Resin Canals (%) | Ray Spacing (/mm) | Ray Number (/mm2) | Uniseriate Ray Height (μm) | Fusiform Ray Height (μm) | Ray Parenchyma Cell Length 2 (μm) | Ray Tracheid Length (μm) | Axial Parenchyma Cell Length (μm) | Cell wall Thickness of Earlywood Axial Tracheid | Cell Wall Thickness of Latewood Axial Tracheid | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Radial (μm) | Tangential (μm) | Radial (μm) | Tangential (μm) | |||||||||||||
Masson pine | Juvenile wood | 3.9 ± 1.6 (0.3–7.2) | 95.3 ± 1.9 (89.6–99.0) | / | 0.8 ± 0.7 (0.3–3.2) | 6.3 ± 1.1 (4–10) | 35.3 ± 4.2 (22–45) | 157.3 ± 43.8 (69.4–306.7) | 192.4 ± 65.7 (81.7–532.5) | 168.5 ± 19.8 (128.2–225.3) | 111.3 ± 22.3 (64.1–169.6) | / | 2.5 ± 0.4 (1.2–4.4) | 2.2 ± 0.3 (1.2–4.2) | 6.8 ± 1.1 (3.7–9.8) | 6.3 ± 1.3 (4.1–8.2) |
Mature wood | 3.4 ± 1.4 (1.6–7.2) | 93.4 ± 2.3 (85.9–96.5) | / | 3.2 ± 1.6 (0.7–7.0) | 6.0 ± 1.3 (3–9) | 28.4 ± 3.0 (20–38) | 183.3 ± 67.0 (56.1–403.6) | 193.7 ± 67.8 (75.5–518.9) | 176.0 ± 28.6 (124.4–279.7) | 104.6 ± 40.2 (40.2–244.7) | / | 2.6 ± 0.8 (1.0–5.6) | 2.4 ± 0.5 (1.2–3.9) | 7.2 ± 1.2 (5.1–9.4) | 7.4 ± 1.5 (3.5–11.2) | |
p value 3 | 0.117 | 0.000 ** | / | 0.000 ** | 0.089 | 0.000 ** | 0.000 ** | 0.292 | 0.026 * | 0.034 * | / | 0.002 ** | 0.000 ** | 0.000 ** | 0.000 ** | |
Chinese fir | Juvenile wood | 9.3 ± 2.1 (5.7–13.9) | 89.9 ± 2.4 (84.5–93.5) | 0.8 ± 0.4 (0.1–1.8) | / | 9.4 ± 1.7 (6–13) | 46.5 ± 4.2 (35–55) | 244.8 ± 109.5 (79.4–684.6) | / | 164.6 ± 79.2 (47.6–488.1) | / | 138.9 ± 40.5 (74.5–283.2) | 2.1 ± 0.4 (1.4–3.5) | 2.0 ± 0.3 (1.0–4.7) | 4.7 ± 1.1 (2.6–7.6) | 5.3 ± 1.3 (2.8–9.4) |
Mature wood | 8.1 ± 1.6 (5.7–12.9) | 91.6 ± 1.7 (86.0–94.0) | 0.3 ± 0.3 (0.1–1.1) | / | 8.1 ± 1.2 (6–11) | 41.3 ± 4.8 (32–52) | 167.0 ± 109.2 (30.0–581.4) | / | 214.1 ± 61.3 (51.6–399.3) | / | 183.5 ± 49.7 (88.6–304.5) | 3.2 ± 0.5 (1.7–4.3) | 3.2 ± 0.6 (1.4–5.0) | 5.2 ± 0.7 (3.2–7.3) | 6.0 ± 0.7 (4.5–8.3) | |
p value 3 | 0.016 * | 0.004 ** | 0.000 ** | / | 0.000 ** | 0.000 ** | 0.000 ** | / | 0.000 ** | / | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Q.; Fu, F.; Wang, J.; He, T.; Jiang, X.; Zhang, Y.; Yin, Y.; Li, N.; Guo, J. Ray Traits of Juvenile Wood and Mature Wood: Pinus massonia and Cunninghamia lanceolata. Forests 2021, 12, 1277. https://doi.org/10.3390/f12091277
Meng Q, Fu F, Wang J, He T, Jiang X, Zhang Y, Yin Y, Li N, Guo J. Ray Traits of Juvenile Wood and Mature Wood: Pinus massonia and Cunninghamia lanceolata. Forests. 2021; 12(9):1277. https://doi.org/10.3390/f12091277
Chicago/Turabian StyleMeng, Qiulu, Feng Fu, Jie Wang, Tuo He, Xiaomei Jiang, Yonggang Zhang, Yafang Yin, Ning Li, and Juan Guo. 2021. "Ray Traits of Juvenile Wood and Mature Wood: Pinus massonia and Cunninghamia lanceolata" Forests 12, no. 9: 1277. https://doi.org/10.3390/f12091277
APA StyleMeng, Q., Fu, F., Wang, J., He, T., Jiang, X., Zhang, Y., Yin, Y., Li, N., & Guo, J. (2021). Ray Traits of Juvenile Wood and Mature Wood: Pinus massonia and Cunninghamia lanceolata. Forests, 12(9), 1277. https://doi.org/10.3390/f12091277