The Bamboo Rhizome Evolution in China Is Driven by Geographical Isolation and Trait Differentiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Species Distribution Data
2.3. Morphological Traits Data
2.4. Environmental Data
2.5. Statistical Analysis
3. Results
3.1. Distribution Patterns of Different Bamboos
3.2. Variations in Functional Traits across Different Bamboos
3.3. How Environmental Factors and Traits Influence Rhizome Evolution of Bamboos with Different Endemism
4. Discussion
4.1. Distribution Patterns of Bamboos with Different Endemism
4.2. Variations in Functional Traits of Bamboos with Different Functional Groups
4.3. Factors Influencing the Rhizome Evolution of Bamboos with Different Endemism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darwin, C. On the Origin of Species by Means of Natural Selection; John Murray: London, UK, 1859. [Google Scholar]
- Guo, Z.H.; Li, D.Z. Advances in the systematics and biogeography of the Bambusoideae (Gramineae) with remarks on some remaining problems. Plant Divers. 2002, 24, 431–438. [Google Scholar]
- Jiang, Z.H. Bamboo and Rattan in the World; China Forestry Publishing House: Beijing, China, 2007. [Google Scholar]
- Wen, T.H. Some ideas about the origin of bamboos. J. Bamboo Res. 1983, 2, 1–10. [Google Scholar]
- Makita, A. The significance of the mode of clonal growth in the life history of bamboos. Plant Species Biol. 1998, 13, 85–92. [Google Scholar] [CrossRef]
- Luo, J.; Liu, R.; Zhang, S.; Lian, C.; Fei, B. Comparative culm anatomy of metaxylem vessel pits in three different types of bamboo rhizome. IAWA J. 2019, 41, 141–158. [Google Scholar] [CrossRef]
- Kelchner, S.A. Bamboo Phylogeny Group, Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers. Mol. Phylogenet. Evol. 2013, 67, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Liese, W. The Anatomy of Bamboo Culms; INBAR Technical Report No.18; International Network for Bamboo and Rattan: Beijing, China, 1998. [Google Scholar]
- Fang, W. Bamboo Taxonomy; China Forestry Publishing House: Beijing, China, 1995. [Google Scholar]
- Xu, Z.E.; Chen, H.J.; Ji, L.F.; Zhou, M.B.; Guo, X.Q. Polymorphisms of the FT gene as a tool to identify underground rhizome types of bamboos. Euphytica 2017, 213, 1–10. [Google Scholar] [CrossRef]
- Clark, L.G. Bamboos: The centerpiece of the grass family. In The Bamboos; Chapman, G.P., Ed.; Academic Press: London, UK, 1997; pp. 237–248. [Google Scholar]
- Gu, H.J.; Zhang, C.C.; Wang, J.S.; Shi, X.W.; Xia, R.X.; Liu, B.; Chen, F.S.; Bu, W.S. Variation in basic morphological and functional traits of Chinese bamboo. Biodivers. Sci. 2019, 27, 585–594. [Google Scholar]
- Wang, X.P. Basic concepts of endemic species and their role in determining biodiversity centers. Resour. Sci. 1992, 4, 68–73. [Google Scholar]
- Han, J.G.; Fan, F.C.; Li, F. Origin, evolution and distribution of the Gramineae. Chin. Bull. Bot. 1996, 13, 10–14. [Google Scholar]
- Suissa, J.S.; Sundue, M.A. Diversity Patterns of Neotropical Ferns: Revisiting Tryon’s Centers of Richness and Endemism. Am. Fern J. 2020, 110, 211–232. [Google Scholar] [CrossRef]
- Richardson, J.E.; Pennington, R.T.; Pennington, T.D.; Hollingsworth, P.M. Rapid diversification of a species-rich genus of neotropical rain forest trees. Science 2001, 293, 2242–2245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.D. Plant Endemism and Biodiversity. Ecol. Sci. 1997, 16, 9–17. [Google Scholar]
- Qian, H.; Deng, T.; Jin, Y.; Mao, L.F.; Ricklefs, R.E. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. USA 2019, 116, 23192–23201. [Google Scholar] [CrossRef]
- Lamoreux, J.F.; Morrison, J.C.; Ricketts, T.R.H.; Olson, D.M.; Dinerstein, E.; McKnight, M.W.; Shugart, H.H. Global tests of biodiversity concordance and the importance of endemism. Nature 2006, 440, 212–214. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.H.; Zhang, S.Y.; Guo, Y.; Tang, Z. Conservation status of Primulaceae, a plant family with high endemism, in China. Biol. Conserv. 2020, 248, 1–10. [Google Scholar] [CrossRef]
- Hulshof, C.M.; Spasojevic, M.J. The edaphic control of plant diversity. Glob. Ecol. Biogeogr. 2020, 29, 1634–1650. [Google Scholar] [CrossRef]
- Li, X.M.; She, D.Y.; Zhang, D.Y.; Liao, W.J. Life history trait differentiation and local adaptation in invasive populations of Ambrosia artemisiifolia in China. Oecologia 2015, 177, 669–677. [Google Scholar] [CrossRef]
- Liu, X.; Ma, K. Plant functional traits—concepts, applications and future directions. Sci. Sin. Vitae 2015, 45, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Lin, H.; Chen, S.; Yang, Q. Altitudinal Patterns of Leaf Traits and Leaf Allometry in BambooPleioblastus amarus. Front. Plant Sci. 2018, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.; Li, C.; Lin, S.; Ren, L.; Ding, Y. Morphological Characteristics and Transcriptome Comparisons of the Shoot Buds from Flowering and Non-Flowering Pleioblastus pygmaeus. Forests 2020, 11, 1229. [Google Scholar] [CrossRef]
- Bu, W.S.; Huang, J.H.; Xu, H.; Zang, R.G.; Ding, Y.; Li, Y.D.; Lin, M.X.; Wang, J.S.; Zhang, C.C. Plant Functional Traits Are the Mediators in Regulating Effects of Abiotic Site Conditions on Aboveground Carbon Stock-Evidence From a 30 ha Tropical Forest Plot. Front. Plant Sci. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Raven, P.H.; Hong, D.Y. Flora of China: Poaceae Bambusoideae; Science Press: Beijing, China; Missouri Botanical Garden: St. Louis, MO, USA, 2006; Volume 9. [Google Scholar]
- Pavón Jordán, D.; Clausen, P.; Dagys, M.; Devos, K.; Encarnaçao, V.; Fox, A.D.; Frost, T.; Gaudard, C.; Hornman, M.; Keller, V. Habitat and species mediated short and long term distributional changes in waterbird abundance linked to variation in European winter weather. Divers. Distrib. 2019, 25, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Harguindeguy, N.; Diaz, S.; Gamier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.; Comwell, W.; Craine, J.; Gurvich, D. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Bowker, M.A.; Grace, J.B.; Powell, J.R. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology. Pedobiologia 2015, 58, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Ali, A.; Jucker, T.; Ruiz-Benito, P.; Wang, S.; Jiang, L.; Wang, X.; Lin, F.; Ye, J.; Hao, Z. Multiple abiotic and biotic pathways shape biomass demographic processes in temperate forests. Ecology 2019, 100, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Greuter, W. Botanical diversity, endemism, rarity, and extinction in the Mediterranean area: An analysis based on the published volumes of Med-Checklist. Bot. Chron. 1991, 10, 63–79. [Google Scholar]
- Yanis, B.-K.; George, A.V.; Vincent, S.; Trevor, R.H. Biogeography of the grasses (Poaceae): A phylogenetic approach to reveal evolutionary history in geographical space and geological time. Bot. J. Linn. Soc. 2010, 162, 543–557. [Google Scholar]
- Schoener, T.W. The newest synthesis: Understanding the interplay of evolutionary and ecological dynamics. Science 2011, 331, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Gorman, C.E.; Potts, B.M.; Schweitzer, J.A.; Bailey, J.K. Shifts in species interactions due to the evolution of functional differences between endemics and non-endemics: An endemic syndrome hypothesis. PLoS ONE 2014, 9, e111190. [Google Scholar]
- Anderson, S. Area and endemism. Q. Rev. Biol. 1994, 69, 451–471. [Google Scholar] [CrossRef]
- Hendry, A.P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Heredity 2016, 107, 25–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, F.C. Cultivation and Utilization on Bamboos; Nanjing Forestry University Printing House: Nanjing, China, 1998. [Google Scholar]
- Ma, N.X. Resources of sympodial bamboos in China and their utilization. J. Bamboo Res. 2004, 23, 1–5. [Google Scholar]
- Wu, Z.Y.; Sun, H.; Zhou, Z.K.; Peng, H.; Li, D.Z. Origin and differentiation of endemism in the flora of China. Acta Bot. Yunnanica 2005, 27, 577–604. [Google Scholar] [CrossRef]
- Chen, S.B.; Ouyang, Z.Y.; Fang, Y.; Li, Z.J. Geographic patterns of endemic seed plant genera diversity in China. Biodivers. Sci. 2011, 19, 414–423. [Google Scholar]
- López-Pujol, J.; Zhang, F.M.; Sun, H.Q.; Ying, T.S.; Ge, S. Centres of plant endemism in China: Places for survival or for speciation? J. Biogeogr. 2011, 38, 1267–1280. [Google Scholar] [CrossRef]
- Ye, X.Y.; Ma, P.F.; Yang, G.Q.; Guo, C.; Zhang, Y.X.; Chen, Y.M.; Guo, Z.H.; Li, D.Z. Rapid diversification of alpine bamboos associated with the uplift of the Hengduan Mountains. J. Biogeogr. 2019, 46, 2678–2689. [Google Scholar] [CrossRef]
- Moles, A.T.; Warton, D.I.; Warman, L.; Swenson, N.G.; Leishman, M.R. Global patterns in plant height. J. Ecol. 2009, 97, 923–932. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef]
- Milla, R.; Reich, P.B. The scaling of leaf area and mass: The cost of light interception increases with leaf size. Proc. R. Soc. B Biol. Sci. 2007, 274, 2109–2115. [Google Scholar] [CrossRef] [Green Version]
- Chapin III, F.S.; Autumn, K.; Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 1993, 142, S78–S92. [Google Scholar] [CrossRef]
- Falster, D.S.; Westoby, M. Plant height and evolutionary games. Trends Ecol. Evol. 2003, 18, 337–343. [Google Scholar] [CrossRef]
- Shafer, A.B.A.; Wolf, J.B.W.; Wiens, J. Widespread evidence for incipient ecological speciation: A meta-analysis of isolation-by-ecology. Ecol. Lett. 2013, 16, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.R.; Thrall, P.H.; Gill, A.M.; Nicotra, A.B. How plant life history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecol. 2002, 27, 291–310. [Google Scholar] [CrossRef]
- Cavender-Bares, J.; Gonzalez-Rodriguez, A.; Eaton, D.A.R.; Hipp, A.A.L.; Manos, P.S. Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): A genomic and population genetics approach. Mol. Ecol. 2015, 24, 3668–3687. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Shi, X.R.; Han, F.P.; Yuan, Z.Y. Increasing aridity, temperature and soil pH induce soil CNP imbalance in grasslands. Sci. Rep. 2016, 6, 1–9. [Google Scholar]
- Liu, M.G. Atlas of Physical Geography of China; SinoMaps Press: Beijing, China, 2007. [Google Scholar]
- Li, J.X.; Xiong, G.M.; Xu, W.T.; Li, Y.L.; Lu, Z.J.; Zhao, C.M.; Xie, Z.Q. Composition of plant life forms of subtropical shrubland in China and its correlation with temperature and precipitation. Chin. J. Plant Ecol. 2017, 41, 147–156. [Google Scholar]
- Coyne, J.A.; Orr, H.A. Speciation; Sinauer Associates: Sunderland, MA, USA, 2004; Volume 37. [Google Scholar]
- Zhang, W.G.; Ji, X.N.; Liu, Y.G.; Li, W.J.; Yang, G.Y. Gelidocalamus xunwuensis (Poaceae, Bambusoideae), a new species from southeastern Jiangxi, China. PhytoKeys 2017, 85, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Qin, Q.M.; Tong, Y.H.; Zheng, X.R.; Ni, J.B.; Xia, N.H. Sinosasa (Poaceae: Bambusoideae), a new genus from China. Taxon 2020, 70, 27–47. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.-J.; Zhang, C.-C.; Chen, F.-S.; Huang, J.-H.; Wang, J.-S.; Bruelheide, H.; Trogisch, S.; Fang, X.-M.; Li, J.-J.; Bu, W.-S. The Bamboo Rhizome Evolution in China Is Driven by Geographical Isolation and Trait Differentiation. Forests 2021, 12, 1280. https://doi.org/10.3390/f12091280
Gu H-J, Zhang C-C, Chen F-S, Huang J-H, Wang J-S, Bruelheide H, Trogisch S, Fang X-M, Li J-J, Bu W-S. The Bamboo Rhizome Evolution in China Is Driven by Geographical Isolation and Trait Differentiation. Forests. 2021; 12(9):1280. https://doi.org/10.3390/f12091280
Chicago/Turabian StyleGu, Han-Jiao, Can-Can Zhang, Fu-Sheng Chen, Ji-Hong Huang, Jin-Song Wang, Helge Bruelheide, Stefan Trogisch, Xiang-Min Fang, Jian-Jun Li, and Wen-Sheng Bu. 2021. "The Bamboo Rhizome Evolution in China Is Driven by Geographical Isolation and Trait Differentiation" Forests 12, no. 9: 1280. https://doi.org/10.3390/f12091280