Linking Vegetation, Soil Carbon Stocks, and Earthworms in Upland Coniferous–Broadleaf Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Methods
3. Results
3.1. Texture of Soil-forming Rocks
3.2. Vegetation
3.3. Litter Quality
3.4. Soil Macrosaprophages
3.5. Soil Carbon Stock
3.6. Contribution of Vegetation and Earthworms to Soil Carbon Stock Variation
4. Discussion
4.1. Climatic Factors and Soil Carbon Stock
4.2. Texture of Soil-Forming Rocks and Soil Carbon Stock
4.3. Vegetation and Soil Carbon Stock
4.4. Litter Quality, Earthworms, and Soil Carbon Stock
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Framstad, E.; Wit, H.; Mäkipää, R.; Larjavaara, M.; Vesterdal, L.; Karltun, E. Biodiversity, carbon storage and dynamics of old northern forests; Nordic Council of Ministers: Copenhagen, Denmark, 2013.
- Amundson, R. The carbon budget in soils. Annu. Rev. Earth Planet. Sci. 2001, 29, 535–562. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Luetzow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Lukina, N.; Kuznetsova, A.; Tikhonova, E.; Smirnov, V.; Danilova, M.; Gornov, A.; Bakhmet, O.; Kryshen, A.; Tebenkova, D.; Shashkov, M.; et al. Linking Forest Vegetation and Soil Carbon Stock in Northwestern Russia. Forests 2020, 11, 979. [Google Scholar] [CrossRef]
- Vesterdal, L.; Schmidt, I.K.; Callesen, I.; Nilsson, L.O.; Gundersen, P. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For. Ecol. Manag. 2008, 255, 35–48. [Google Scholar] [CrossRef]
- Vesterdal, L.; Clarke, N.; Sigurdsson, B.D.; Gundersen, P. Do tree species influence soil carbon stocks in temperate and boreal forests? For. Ecol. Manag. 2013, 309, 4–18. [Google Scholar] [CrossRef]
- Shanin, V.; Komarov, A.; Mäkipää, R. Tree species composition affects productivity and carbon dynamics of different site types in boreal forests. Eur. J. For. Res. 2014, 133, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Gleixner, G. Soil organic matter dynamics: A biological perspective derived from the use of compound-specific isotopes studies. Ecol. Res. 2013, 28, 683–695. [Google Scholar] [CrossRef] [Green Version]
- Striganova, B.R. Nourishment of soil saprophages; Nauka: Moscow, Russia, 1980; pp. 8–15. (In Russian) [Google Scholar]
- Prescott, C.E.; Zabek, L.M.; Staley, C.L.; Kabzems, R. Decomposition of broadleaf and needle litter in forests of British Columbia: Influences of litter type, forest type, and litter mixtures. Can. J. For. Res. 2000, 30, 1742–1750. [Google Scholar] [CrossRef]
- Huang, W.; Gonzalez, G.; Zou, X. Earthworm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis. Appl. Soil Ecol. 2020, 150, 1–15. [Google Scholar] [CrossRef]
- Frouz, J.; Livečková, M.; Albrechtová, J.; Chroňáková, A.; Cajthaml, T.; Pižl, V.; Háněl, L.; Starý, J.; Baldrian, P.; Lhotáková, Z.; et al. Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. For. Ecol. Manag. 2016, 309, 87–95. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Plant Litter, 4th ed.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Spurgeon, D.J.; Keith, A.M.; Schmidt, O.; Lammertsma, D.R.; Faber, J.H. Land-use and land-management change: Relationships with earthworm and fungi communities and soil structural properties. BMC Ecol. 2013, 13, 46. [Google Scholar] [CrossRef] [Green Version]
- Kurakov, A.V.; Kharin, S.A.; Byzov, B.A. Changes in the composition and physiological and biochemical properties of fungi during passage through the digestive tract of earthworms. Biol. Bull. 2016, 43, 290–299. [Google Scholar] [CrossRef]
- Cao, J.; Wang, C.; Dou, Z.; Liu, M.; Ji, D. Hyphospheric impacts of earthworms and arbuscular mycorrhizal fungus on soil bacterial community to promote oxytetracycline degradation. J. Hazard. Mater. 2018, 341, 346–354. [Google Scholar] [CrossRef]
- Patoine, G.; Thakur, M.P.; Friese, J.; Nock, C.; Hönig, L.; Haase, J.; Scherer-Lorenzen, M.; Eisenhauer, N. Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community. Pedobiologia 2017, 65, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Lubbers, I.M.; Pulleman, M.M.; van Groenigen, J.W. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biol. Biochem. 2017, 105, 12–24. [Google Scholar] [CrossRef]
- Cardinale, B.; Srivastava, D.; Duffy, J.E.; Wright, J.P.; Downing, A.L.; Sankaran, M.; Jouseau, C. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 2016, 443, 989–992. [Google Scholar] [CrossRef]
- Sariyildiz, T.; Küçük, M. Litter mass loss rates in deciduous and coniferous trees in Artvin, northeast Turkey: Relationships with litter quality, microclimate, and soil characteristics. Turk. J. Agric. For. 2008, 32, 547–559. [Google Scholar]
- Weldmichael, T.G.; Denish, L.; Simon, B.; Micheli, E. The role of earthworms in soil carbon dynamics: A review. In Proceedings of the 3rd International young re-searcher scientific conference “Sustainable Regional Development-Challenges of Space & Society in the 21st Century”, Gödöllő, Hungary, 26 April 2018; pp. 1–14. [Google Scholar]
- Thomas, E.; Prabha, V.S.; Kurien, V.T.; Thomas, A.P. The potential of earthworms in soil carbon storage: A review. Environ. Exp. Biol. 2020, 18, 61–75. [Google Scholar]
- Geraskina, A.P. Impact of earthworms of different morpho-ecological groups on carbon accumulation in forest soils. Вoпрocы леснoй нaуkи 2021, 4, 1–15. (In Russian) [Google Scholar]
- WorldClim. Available online: https://worldclim.org/ (accessed on 7 July 2020).
- Grudzinskaya, I.A. Broad-Leaved Forests of Northwestern Caucasus Foothills; AS USSR: Moscow, Russia, 1953; pp. 5–187. (In Russian) [Google Scholar]
- Korotkov, K.O.; Morozova, O.V.; Belonovskaya, E.A. The USSR Vegetation Syntaxa Prodromus; Dr. Gregory E. Vilchek: Moscow, Russia, 1991. (In Russian) [Google Scholar]
- IUSS Working Group World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports; FAO: Rome, Italy, 2015. [Google Scholar]
- Krämer, I. Rainfall Partitioning and Soil Water Dynamics along a Tree Species Diversity Gradient in a Deciduous Old-Growth Forest in Central Germany. Ph.D. Thesis, University of Göttingen, Rostock, Germany, November 2009. [Google Scholar]
- Mamai, I.I. Landshafty Moskovskoi Oblasti i ikh Sovremennoe Sostoyanie (Landscapes of the Moscow Region and Their Current State); SGU: Smolensk, Russia, 1997. (In Russian) [Google Scholar]
- Ilyinskaya, S.A. Lesa Yuzhnogo Podmoskov’ya (Forests of the Southern Moscow Region); Nauka: Moscow, Russia, 1985. (In Russian) [Google Scholar]
- Muchnik, E.E.; Tikhonova, E.V.; Averchenkov, I.M.; Neslukhovsky, I.Y.; Zakharinsky, A.Y.; Komarov, A.V.; Kozhin, M.N.; Sementsova, M.V. Valuyevsky urban forest as a prospective protected area in “New Moscow”. Trans. KarRC RAS 2020, 8, 90–103. (In Russian) [Google Scholar] [CrossRef]
- Morozova, O.V.; Tikhonova, E.V. Differentiation of forest communities in the south-western part of the Moscow region. Izvestia Samarskogo NTs RAN 2012, 14, 1073–1077. (In Russian) [Google Scholar]
- Morozova, O.V.; Semenishchenkov, Y.A.; Tikhonova, E.V.; Belyaeva, N.G.; Kozhevnikova, M.V.; Chern’enkova, T.V. Nemoral herb spruce forests of European Russia. Rastitelnost’ Rossii 2017, 31, 33–58. [Google Scholar]
- Bulokhov, A.D.; Solomeshch, A.I. Ecological and Floristic Classification of Forests in the Southern Non-Black Earth Region; BGU: Bryansk, Russia, 2003. (In Russian) [Google Scholar]
- Evstigneev, O.I.; Korotkov, V.N. Pine forest succession on sandy ridges within outwash plain (sandur) in Nerussa-Desna Polesie. Russ. J. Ecosyst. Ecol. 2016, 1, 1–18. [Google Scholar]
- Gornov, A.V.; Gornova, M.V.; Tikhonova, E.V.; Shevchenko, N.E.; Kazakova, A.I. Evaluation of succession of coniferous-broad leaved forests of European part of Russia based on population approach. Lesovedenie 2018, 6, 16–30. (In Russian) [Google Scholar]
- Kuznetsova, A.I.; Lukina, N.V.; Tikhonova, E.V.; Gornov, A.V.; Gornova, M.V.; Smirnov, V.E.; Geraskina, A.P.; Shevchenko, N.E.; Tebenkova, D.N.; Chumachenko, S.I. Carbon Stock in Sandy and Loamy Soils of Coniferous–Broadleaved Forests at Different Succession Stages. Eurasian Soil Sci. 2019, 52, 756–768. [Google Scholar] [CrossRef]
- Shevchenko, N.E.; Kuznetsova, A.I.; Teben’kova, D.N.; Smirnov, V.E.; Geras’kina, A.P.; Gornov, A.V.; Grabenko, E.A.; Tikhonova, E.V.; Lukina, N.V. Suktsessionnaya dinamika rastitel’nosti i zapasy pochvennogo ugleroda v khvoino-shirokolistvennykh lesakh Severo-Zapadnogo Kavkaza (Succession dynamics of vegetation and storages of soil carbon in mixed forests of Northwestern Caucasus). Lesovedenie 2019, 3, 163–176. (In Russian) [Google Scholar]
- World Flora Online. Available online: http://www.worldfloraonline.org. (accessed on 23 March 2021).
- Order of the Russian Forestry Agency no. 10 of January 19, 1995. Handbook of Forest Inventory Standards for the North Caucasus. (In Russian). Available online: https://docs.cntd.ru/document/9017116. (accessed on 7 July 2021).
- Order of the State Committee for Forestry of the USSR no. 38 of February 28, 1989. All-Union Standards for Forest Inventory. Directory. (In Russian). Available online: http://base.garant.ru/70811050/ (accessed on 7 July 2021).
- Order of the Ministry of Natural Resources and Ecology of Russian Federation no. 20-r of June 30, 2017 on Recommendations for Qualitative Measurements of Absorption Volume of Greenhouse Gases. (In Russian). Available online: https://www.garant.ru/products/ipo/prime/doc/71612096/ (accessed on 7 July 2020).
- Gilyarov, M.S. Chapter Counting large soil invertebrates (mesofauna). In Methods of Soil and Zoological Research; Nauka: Moscow, Russia, 1975; pp. 12–29. (In Russian) [Google Scholar]
- Vsevolodova-Perel, T.S. Earthworms of the Fauna of Russia: Cadastre and Determinant; Nauka: Moscow, Russia, 1997; pp. 1–102. (In Russian) [Google Scholar]
- Likharev, I.M.; Rammelmeyer, E.U. Ground Mollusks of the Fauna of the USSR; Izdatel’stvo Academii Nauk SSSR: Moscow, Russia; Leningrad, Russia, 1952; pp. 1–512. (In Russian) [Google Scholar]
- Mamaev, B.M. Identifier of Insects on Larvae: A Manual for Teachers; Prosveshhenie: Moscow, Russia, 1972; pp. 1–400. (In Russian) [Google Scholar]
- Schmalfuss, H. World Catalog of Terrestrial Isopods (Isopoda: Oniscidea); Stuttgarter Beiträge zur Naturkunde: Stuttgart, Germany, 2003; pp. 1–341. [Google Scholar]
- Nordic Council of Ministers. The Working Group for Environmental Monitoring Methods for Integrated Monitoring in the Nordic Countries; Nordic Council of Ministers: Copenhagen, Denmark, 1989.
- Halonen, O.; Tulkki, H.; Derome, J. Nutrient analysis methods. In Metsantutkimuslaitoksen Tiedonantoja; Metsäntutkimuslaitos: Vantaa, Finland, 1983; Volume 121, pp. 1–28. [Google Scholar]
- GOST 12536-2014 Soils. Methods of Laboratory Granulometric (Grain-Size) and Microaggregate Distribution. (In Russian). Available online: http://base.garant.ru/71280200/ (accessed on 28 August 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 28 August 2021).
- Husson, F.; Le, S.; Pagès, J. Exploratory Multivariate Analysis by Example Using R, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2017. [Google Scholar]
- Le, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Mac Nally, R.; Walsh, C. Hierarchical partitioning public-domain software. Biodivers. Conserv. 2004, 13, 659–660. [Google Scholar] [CrossRef]
- Shmida, A.; Ellner, S. Coexistence of plant species with similar niches. Vegetatio 1984, 58, 29–55. [Google Scholar]
- Karpachevskii, L.O. Heterogeneity of Soil Cover in Forest Biogeocoenose; Izdatel’stvo MGU: Moscow, Russia, 1977. (In Russian) [Google Scholar]
- Shablii, I.V. Formation of Oak-Pine Stands in Fresh Sudubrava Conditions in the Southern Part of Polesye and Northern Forest-Steppe; USKhA: Moscow, Russia, 1990. (In Russian) [Google Scholar]
- Zonn, S.V. Mountain Forest Soils of Northwestern Caucasus; AS USSR: Moscow, Russia, 1950. (In Russian) [Google Scholar]
- Fujisaki, K.; Chapuis-Lardy, L.; Albrecht, A.; Razafimbelo, T.; Chotte, J.L.; Chevallier, T. Data synthesis of carbon distribution in particle size fractions of tropical soils: Implications for soil carbon storage potential in croplands. Geoderma 2018, 313, 41–51. [Google Scholar] [CrossRef]
- Balabane, M.; Plante, A.F. Aggregation and carbon storage in silty soil using physical fractionation techniques. Eur. J. Soil Sci. 2004, 55, 415–427. [Google Scholar] [CrossRef]
- Lützow, M.V.; Kogel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of Organic Matter in Temperate Soils: Mechanisms and Their Relevance under Different Soil Conditions—A Review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Cornelissen, J.H.; Lang, S.I.; Soudzilovskaia, N.A.; During, H.J. Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot. 2007, 99, 987–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhshandeh-Navroud, B.; Abrari Vajari, K.; Pilehvar, B.; Kooch, Y. The interactions between tree-herb layer diversity and soil properties in the oriental beech (Fagus orientalis Lipsky) stands in Hyrcanian forest. Env. Monit. Assess. 2018, 190, 425. [Google Scholar] [CrossRef]
- Smirnova, O.V. Carex pilosa. In Biological flora of Moscow region; Izdatel’stvo MGU: Moscow, Russia, 1980; Volume 6, pp. 66–74. (In Russian) [Google Scholar]
- Striganova, B.R.; Mazantseva, G.P. Age and size structure of a population of Pachyiulus foetidissimus (Diplopoda) in the Caucasus. Oikos 1979, 32, 416–421. [Google Scholar] [CrossRef]
- Shashkov, M.P. Population demographic approaches to studies of earthworms in the forests of Kaluga oblast. Lesovedenie 2016, 1, 55–64. (In Russian) [Google Scholar]
- Goncharov, A.A. The structure of trophic niches in the communities of soil invertebrates (mesofauna) of forest ecosystems. In Candidate’s Dissertation in Biology; Institute of Ecology and Evolution: Moscow, Russia, 2014. (In Russian) [Google Scholar]
- Perel’, T.S. Distribution and Distribution Patterns of Earthworms of the Fauna of the USSR; Nauka: Moscow, Russia, 1979. (In Russian) [Google Scholar]
- Rapoport, I.B.; Tsepkova, N.L. Earthworm Populations (Oligochaeta, Lumbricidae) in the Basin of the Middle Reaches of the Bol’shaya Laba River (Northwestern Caucasus, Buffer Zone of Caucasian Nature Reserve). Bio. Bull. 2019, 46, 1012–1029. [Google Scholar] [CrossRef]
- Geraskina, A.; Shevchenko, N. Spatial distribution of the epigeic species of earthworms Dendrobaena octaedra and D. attemsi (Oligochaeta: Lumbricidae) in the forest belt of the northwestern Caucasus. Turk. Zool. Derg. 2019, 43, 480–489. [Google Scholar] [CrossRef]
- Curry, J.P. Factors affecting the abundance of earthworms in soils. In Earthworm Ecology, 2nd ed.; Edwards, C.A., Ed.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Wardle, D.A.; Nilsson, M.C.; Zackrisson, O.; Gallet, C. Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol. Biochem. 2003, 35, 827–835. [Google Scholar] [CrossRef]
- Hilli, S. Significance of Litter Production of Forest Stands and Ground Vegetation in the Formation of Organic Matter and Storage of Carbon in Boreal Coniferous Forests. Available online: http://www.metla.fi/metinfo/forest-condition/intensive-monitoring/foliarchemistry.htm (accessed on 4 August 2021).
- Simon, J.; Dörken, V.M.; L.-M.-Arnold, A.; Adamczyk, B. Environmental conditions and species identity drive metabolite levels in green leaves and leaf litter of 14 temperate woody species. Forests 2018, 9, 775. [Google Scholar] [CrossRef] [Green Version]
- Sariyildiz, T. Effects of tree canopy on litter decomposition rates of Abies nordmanniana, Picea orientalis and Pinus sylvestris. Scand. J. For. Res. 2008, 23, 330–338. [Google Scholar] [CrossRef]
- Suarez, E.R.; Fahey, T.J.; Yavitt, J.B.; Groffman, P.M.; Bohlen, P.J. Patterns of litter disappearance in a northern hardwood forest invaded by exotic earthworms. Ecol. Appl. 2016, 16, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Holdsworth, A.R.; Frelich, L.E.; Reich, P.B. Leaf litter disappearance in earthworm-invaded northern hardwood forests: Role of tree species and the chemistry and diversity of litter. Ecosystems 2012, 15, 913–926. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, D.; Zhao, C. Functions of earthworm in ecosystem. Biodivers. Sci. 2007, 15, 142–153. [Google Scholar]
- Leskinen, P.; Lindner, M.; Verkerk, P.J.; Nabuurs, G.J.; Van Brusselen, J.; Kulikova, E.; Hassegawa, M.; Lerink, B. Russian forests and climate change. In What Science Can Tell Us 11; European Forest Institute: Joensuu, Finland, 2020. [Google Scholar]
Variables | Factor | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Regions | Forest Types in NC | Forest Types in MO | Forest Types in BP | |||||||||
R2 | p | n | R2 | p | n | R2 | p | n | R2 | p | n | |
Texture of soil forming rock | ||||||||||||
Proportion of particles <2 μm (%) | 0.86 | <0.001 | 27 | 0.36 | 0.259 | 9 | 0.31 | 0.123 | 9 | 0.44 | 0.179 | 9 |
Vegetation | ||||||||||||
Cover (%) | 0.64 | <0.001 | 100 | 0.82 | <0.001 | 36 | 0.25 | 0.018 | 22 | 0.37 | <0.001 | 42 |
SR | 0.12 | 0.002 | 100 | 0.72 | <0.001 | 36 | 0.58 | <0.001 | 22 | 0.93 | <0.001 | 42 |
SR herb | 0.31 | <0.001 | 100 | 0.72 | <0.001 | 36 | 0.50 | <0.001 | 22 | 0.63 | <0.001 | 42 |
SR woody | 0.12 | 0.003 | 100 | 0.44 | <0.001 | 36 | 0.57 | <0.001 | 22 | 0.13 | 0.068 | 42 |
Stem wood stock (t ha−1) | 0.20 | 0.066 | 27 | 0.89 | 0.001 | 9 | 0.55 | 0.022 | 9 | 0.75 | 0.016 | 9 |
Litter quality | ||||||||||||
BS (%) | 0.35 | <0.001 | 157 | 0.13 | 0.021 | 57 | 0.00 | 0.907 | 47 | 0.74 | <0.001 | 53 |
C/N | 0.01 | 0.380 | 157 | 0.16 | 0.010 | 57 | 0.05 | 0.118 | 47 | 0.52 | <0.001 | 53 |
pH | 0.06 | 0.010 | 157 | 0.09 | 0.074 | 57 | 0.01 | 0.560 | 47 | 0.80 | <0.001 | 53 |
N (%) | 0.25 | <0.001 | 157 | 0.46 | <0.001 | 57 | 0.07 | 0.078 | 47 | 0.43 | <0.001 | 53 |
Macrosaprophages biomass (g m−2) | ||||||||||||
A. worms | 0.02 | 0.025 | 435 | 0.06 | 0.002 | 207 | 0.06 | 0.016 | 93 | - | - | 135 |
En. worms | 0.26 | <0.001 | 435 | 0.03 | 0.063 | 207 | 0.12 | 0.001 | 93 | - | - | 135 |
Ep-en. worms | 0.25 | <0.001 | 435 | 0.01 | 0.424 | 207 | 0.05 | 0.025 | 93 | 0.03 | 0.169 | 135 |
Ep. worms | <0.01 | 0.859 | 435 | 0.03 | 0.055 | 207 | 0.01 | 0.289 | 93 | 0.08 | 0.004 | 135 |
Other | 0.07 | 0.009 | 141 | 0.06 | 0.155 | 63 | 0.03 | 0.349 | 33 | 0.00 | 0.997 | 45 |
Factor | Layer, cm | n | |||||
---|---|---|---|---|---|---|---|
FH, Cst | 0–30 cm, Cst | 30–50 cm, Cst | |||||
R2 | p | R2 | p | R2 | p | ||
Regions | 0.37 | <0.001 | 0.43 | <0.001 | 0.40 | <0.001 | 157 |
Forest types in NC | 0.07 | 0.025 | 0.44 | <0.001 | 0.29 | 0.004 | 57 |
Forest types in MO | 0.26 | 0.011 | 0.24 | <0.001 | 0.05 | 0.127 | 47 |
Forest types in BP | 0.48 | <0.001 | 0.24 | <0.001 | 0.07 | 0.298 | 53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsova, A.I.; Geraskina, A.P.; Lukina, N.V.; Smirnov, V.E.; Tikhonova, E.V.; Shevchenko, N.E.; Gornov, A.V.; Ruchinskaya, E.V.; Tebenkova, D.N. Linking Vegetation, Soil Carbon Stocks, and Earthworms in Upland Coniferous–Broadleaf Forests. Forests 2021, 12, 1179. https://doi.org/10.3390/f12091179
Kuznetsova AI, Geraskina AP, Lukina NV, Smirnov VE, Tikhonova EV, Shevchenko NE, Gornov AV, Ruchinskaya EV, Tebenkova DN. Linking Vegetation, Soil Carbon Stocks, and Earthworms in Upland Coniferous–Broadleaf Forests. Forests. 2021; 12(9):1179. https://doi.org/10.3390/f12091179
Chicago/Turabian StyleKuznetsova, Anastasiia I., Anna P. Geraskina, Natalia V. Lukina, Vadim E. Smirnov, Elena V. Tikhonova, Nikolay E. Shevchenko, Aleksey V. Gornov, Elena V. Ruchinskaya, and Daria N. Tebenkova. 2021. "Linking Vegetation, Soil Carbon Stocks, and Earthworms in Upland Coniferous–Broadleaf Forests" Forests 12, no. 9: 1179. https://doi.org/10.3390/f12091179
APA StyleKuznetsova, A. I., Geraskina, A. P., Lukina, N. V., Smirnov, V. E., Tikhonova, E. V., Shevchenko, N. E., Gornov, A. V., Ruchinskaya, E. V., & Tebenkova, D. N. (2021). Linking Vegetation, Soil Carbon Stocks, and Earthworms in Upland Coniferous–Broadleaf Forests. Forests, 12(9), 1179. https://doi.org/10.3390/f12091179