Spatiotemporal Heterogeneity of Mangrove Root Sphere under a Tropical Monsoon Climate in Eastern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Root and Soil Sampling
2.3. Root and Soil Analysis
2.4. Data Analysis
3. Results
3.1. Proportion of Roots Among Root Size Classes
3.2. Spatial Variation in the Root Mass
3.3. Temporal Variation in the Root Biomass between Dry and Wet Seasons
3.4. Comparison between Root Biomass and Necromass
3.5. Salinity Differences
3.6. Variations in Nutrient Concentrations
4. Discussion
4.1. Seasonal and Zonal Variation in Root Biomass
4.2. Effects of Salinity Variation on Root Distribution
4.3. Effects of Nutrients on Root Distribution
4.4. Root Necromass Distribution
4.5. Implications for Mangrove Rehabilitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alongi, D.M. Carbon cycling and storage in mangrove forests. Ann. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.M. Carbon balance in salt marsh and mangrove ecosystems: A global synthesis. J. Mar. Sci. Eng. 2020, 8, 767. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Lamont, K.; Saintilan, N.; Kelleway, J.J.; Mazumder, D.; Zawadzki, A. Thirty-year repeat measures of mangrove above- and below-ground biomass reveals unexpectedly high carbon sequestration. Ecosystems 2020, 23, 370–382. [Google Scholar] [CrossRef]
- Xiong, Y.; Liao, B.; Wang, F. Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments. Mar. Pollut. Bull. 2018, 131, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.E.; Gong, W.K.; Wong, C.H. Allometry and partitioning of the mangrove, Rhizophora apiculata. For. Ecol. Manag. 2004, 188, 395–408. [Google Scholar] [CrossRef]
- Adame, M.F.; Cherian, S.; Reef, R.; Stewart-Koster, B. Mangrove root biomass and the uncertainty of belowground carbon estimations. For. Ecol. Manag. 2017, 403, 52–60. [Google Scholar] [CrossRef]
- Castañeda-Moya, E.; Twilley, R.R.; Rivera-Monroy, V.H.; Marx, B.D.; Coronado-Molina, C.; Ewe, S.M.L. Patterns of root dynamics in mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 2011, 14, 1178–1195. [Google Scholar] [CrossRef]
- Komiyama, A.; Havanond, S.; Srisawatt, W.; Mochida, Y.; Fujimoto, K.; Ohnishi, T.; Ishihara, S.; Miyagi, T. Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) C.B. Rob.) forest. For. Ecol. Manag. 2000, 139, 127–134. [Google Scholar] [CrossRef]
- Srikanth, S.; Lum, S.K.Y.; Chen, Z. Mangrove root: Adaptations and ecological importance. Trees 2016, 30, 451–465. [Google Scholar] [CrossRef]
- Ball, M.C. Ecophysiology of mangroves. Trees 1988, 2, 129–142. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Feller, I.C.; Reef, R.; Ruess, R.W. Variable effects of nutrient enrichment on soil respiration in mangrove forests. Plant Soil 2014, 379, 135–148. [Google Scholar] [CrossRef]
- Reef, R.; Feller, I.C.; Lovelock, C.E. Nutrition of mangroves. Tree Physiol. 2010, 30, 1148–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friesen, S.D.; Dunn, C.; Freeman, C. Decomposition as a regulator of carbon accretion in mangroves: A review. Ecol. Eng. 2018, 114, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Chalermchatwilai, B.; Poungparn, S.; Patanaponpaiboon, P. Distribution of fine-root necromass in a secondary mangrove forest in Trat province, Eastern Thailand. ScienceAsia 2011, 37, 1–5. [Google Scholar] [CrossRef]
- Poret, N.; Twilley, R.R.; Rivera-Monroy, V.H.; Coronado-Molina, C. Belowground decomposition of mangrove roots in Florida coastal Everglades. Estuar. Coasts 2007, 30, 491–496. [Google Scholar] [CrossRef]
- Ward, R.D.; Friess, D.A.; Day, R.H.; MacKenzie, R.A. Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosyst. Health Sustain. 2016, 2, e01211. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, M.; Morris, P.J.; Baird, A.J.; Dang, H.; Nguyen, T.T. Fine root production in a chronosequence of mature reforested mangrove. New Phytol. 2021. [Google Scholar] [CrossRef]
- Krauss, K.W.; Lovelock, C.E.; Cahoon, D.R.; Saintilan, N.; Reef, R.; Chen, L. How mangrove forests adjust to rising sea level. New Phytol. 2014, 202, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Ellison, A.M. Mangrove restoration: Do we know enough? Restor. Ecol. 2000, 8, 219–229. [Google Scholar] [CrossRef]
- Ellison, J.C. Biogeomorphology of Mangroves. In Coastal Wetlands: An Integrated Ecosystem Approach; Perillo, G., Wolanski, E., Cahoon, D., Hopkinson, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 687–715. [Google Scholar] [CrossRef]
- Feller, I.C.; Lovelock, C.E.; Berger, U.; McKee, K.L.; Joye, S.B.; Ball, M.C. Biocomplexity in mangrove ecosystems. Ann. Rev. Mar. Sci. 2010, 2, 395–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKee, K.L. Soil physiochemical patterns and mangrove species distribution–reciprocal effects? J. Ecol. 1993, 81, 477–487. [Google Scholar] [CrossRef]
- Peters, R.; Walther, M.; Lovelock, C.; Jiang, J.; Berger, U. The interplay between vegetation and water in mangroves: New perspectives for mangrove stand modelling and ecological research. Wetl. Ecol. Manag. 2020, 28, 697–712. [Google Scholar] [CrossRef]
- Ball, M.C. Patterns of secondary succession in a mangrove forest of southern Florida. Oecologia 1980, 44, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Piou, C.; Feller, I.C.; Berger, U.; Chi, F. Zonation patterns of Belizean offshore mangrove forests 41 years after a catastrophic hurricane. Biotropica 2006, 38, 365–374. [Google Scholar] [CrossRef]
- Schmiegelow, J.M.M.; Gianesella, S.M.F. Absence of zonation in a mangrove forest in southern Brazil. Braz. J. Oceanogr. 2014, 62, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Ellison, A.M.; Mukherjee, B.B.; Karim, A. Testing patterns of zonation in mangroves: Scale dependence and environmental correlates in the Sundarbans of Bangladesh. J. Ecol. 2000, 88, 813–824. [Google Scholar] [CrossRef]
- Crase, B.; Liedloff, A.; Vesk, P.A.; Burgman, M.A.; Wintle, B.A. Hydroperiod is the main driver of the spatial pattern of dominance in mangrove communities. Glob. Ecol. Biogeogr. 2013, 22, 806–817. [Google Scholar] [CrossRef]
- Komiyama, A.; Poungparn, S.; Umnouysin, S.; Rodtassana, C.; Pravinvongvuthi, T.; Noda, T.; Kato, S. Occurrence of seasonal water replacement in mangrove soil and the trunk growth response of Avicennia alba related to salinity changes in a tropical monsoon climate. Ecol. Res. 2019, 34, 428–439. [Google Scholar] [CrossRef]
- Poungparn, S.; Komiyama, A.; Tanaka, A.; Sangtiean, T.; Maknual, C.; Kato, S.; Tanapermpool, P.; Patanaponpaiboon, P. Carbon dioxide emission through soil respiration in a secondary mangrove forest of eastern Thailand. J. Trop. Ecol. 2009, 25, 393–400. [Google Scholar] [CrossRef]
- Poungparn, S.; Charoenphonphakdi, T.; Sangtiean, T.; Patanaponpaiboon, P. Fine root production in three zones of secondary mangrove forest in eastern Thailand. Trees 2016, 30, 467–474. [Google Scholar] [CrossRef]
- Umnouysin, S.; Sangtiean, T.; Poungparn, S. Zonal distribution of coarse woody debris and its contribution to net primary production in a secondary mangrove forest. Ecol. Res. 2017, 32, 51–60. [Google Scholar] [CrossRef]
- Poungparn, S.; Komiyama, A.; Sangteian, T.; Maknual, C.; Patanaponpaiboon, P.; Suchewaboripont, V. High primary productivity under submerged soil raises the net ecosystem productivity of a secondary mangrove forest in eastern Thailand. J. Trop. Ecol. 2012, 28, 303–306. [Google Scholar] [CrossRef]
- Poungparn, S.; Komiyama, A.; Umnouysin, S.; Rodtassana, C.; Sangtiean, T.; Maknual, C.; Pravinvongvuthi, T.; Suchewaboripont, V.; Kato, S. Ten-year estimation of net primary productivity in a mangrove forest under a tropical monsoon climate in eastern Thailand: Significance of the temperature environment in the dry season. Forests 2020, 11, 987. [Google Scholar] [CrossRef]
- Komiyama, A.; Poungparn, S.; Umnouysin, S.; Rodtassana, C.; Kato, S.; Pravinvongvuthi, T.; Sangtiean, T. Daily inundation induced seasonal variation in the vertical distribution of soil water salinity in an estuarine mangrove forest under a tropical monsoon climate. Ecol. Res. 2020, 35, 638–649. [Google Scholar] [CrossRef]
- Bukoski, J.; Elwin, A.; MacKenzie, R.A.; Sharma, S.; Purbopuspito, J.; Kopania, B.; Apwong, M.; Poolsiri, R.; Potts, M.D. The role of predictive model data in designing mangrove forest carbon programs. Environ. Res. Lett. 2020, 15, 084019. [Google Scholar] [CrossRef]
- Gnanamoorthy, P.; Selvam, V.; Deb Burman, P.K.; Chakraborty, S.; Karipot, A.; Nagarajan, R.; Ramasubramanian, R.; Song, Q.; Zhang, Y.; Grace, J. Seasonal variations of net ecosystem (CO2) exchange in the Indian tropical mangrove forest of Pichavaram. Estua. Coast. Shelf Sci. 2020, 243, 106828. [Google Scholar] [CrossRef]
- Krauss, K.W.; Keeland, B.D.; Allen, J.A.; Ewel, K.C.; Johnson, D.J. Effects of season, rainfall, and hydrogeomorphic settings on mangrove tree growth in Micronesia. Biotropica 2006, 39, 161–170. [Google Scholar] [CrossRef]
- Nazim, K.; Ahmed, M.; Shaukat, S.S.; Khan, M.U.; Ali, Q.M. Age and growth rate estimation of grey mangrove Avicennia marina (Forsk.) Vierh from Pakistan. Pak. J. Bot. 2013, 45, 535–542. [Google Scholar]
- Feller, I.C.; McKee, K.L.; Whigham, D.F.; O’Neill, J.P. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 2003, 62, 145–175. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Feller, I.C.; McKee, K.L.; Engelbrecht, B.M.J.; Ball, M.C. The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panamá. Funct. Ecol. 2004, 18, 25–33. [Google Scholar] [CrossRef]
- Abrantes, K.G.; Johnston, R.; Connolly, R.M.; Sheaves, M. Importance of mangrove carbon for aquatic food webs in wet–dry tropical estuaries. Estuar. Coasts 2015, 38, 383–399. [Google Scholar] [CrossRef] [Green Version]
- Cormier, N.; Twilley, R.R.; Ewel, K.C.; Krauss, K.W. Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia. Hydrobiologia 2015, 750, 69–87. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Feller, I.C.; Ball, M.C.; Engelbrecht, B.M.; Ewe, M.L. Differences in plant function in phosphorus- and nitrogen-limited mangrove ecosystems. New Phytol. 2006, 172, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Feller, I.C.; Whigham, D.F.; McKee, K.L.; Lovelock, C.E. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia 2003, 134, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Redelstein, R.; Dinter, T.; Hertel, D.; Leuschner, C. Effects of inundation, nutrient availability and plant species diversity on fine root mass and morphology across a saltmarsh flooding gradient. Front. Plant Sci. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baujun, S.; Pumijumnong, N. Seasonal cambial activity of some mangrove trees in Inner Gulf of Thailand in dependence on climate. Songklanakarin J. Sci. Technol. 2012, 34, 337–344. [Google Scholar]
- Robert, E.M.; Jambia, A.H.; Schmitz, N.; De Ryck, D.J.; De Mey, J.; Kairo, J.G.; Dahdouh-Guebas, F.; Beeckman, H.; Koedam, N. How to catch the patch? A dendrometer study of the radial increment through successive cambia in the mangrove Avicennia. Ann. Bot. 2014, 113, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Santini, N.S.; Reef, R.; Lockington, D.A.; Lovelock, C.E. The use of fresh and saline water sources by the mangrove Avicennia marina. Hydrobiologia 2015, 745, 59–68. [Google Scholar] [CrossRef]
- Christensen, B.; Wium-Andersen, S. Seasonal growth of mangrove trees in southern Thailand. I, the phenology of Rhizophora apiculata Bl. Aquat. Bot. 1977, 3, 281–286. [Google Scholar] [CrossRef]
- Flores-Verdugo, F.J.; Day, J.W.; Briseno-Duenas, R. Structure, litter fall, decomposition, and detritus dynamics of mangroves in a Mexican coastal lagoon with an ephemeral inlet. Mar. Ecol. Prog. Ser. 1987, 35, 83–90. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Adame, M.F.; Bennion, V.; Hayes, M.; Reef, R.; Santini, N.; Cahoon, D.R. Sea level and turbidity controls on mangrove soil surface elevation change. Estuar. Coast. Shelf Sci. 2015, 153, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Muhammad-Nor, S.M.; Huxham, M.; Salmon, Y.; Duddy, S.J.; Mazars-Simon, A.; Mencuccini, M.; Meir, P.; Jackson, G. Exceptionally high mangrove root production rates in the Kelantan Delta, Malaysia; An experimental and comparative study. For. Ecol. Manag. 2019, 444, 214–224. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, X.; Guan, W.; Liao, B.; Chen, Y.; Li, M.; Zhong, C. Fine root functional group based estimates of fine root production and turnover rate in natural mangrove forests. Plant Soil 2017, 413, 83–95. [Google Scholar] [CrossRef]
- Kankong, P.; Poungparn, S.; Komiyama, A.; Rodtassana, C.; Pavinvongvuthi, T. Leaf phenology and trunk growth of Avicennia alba (Blume) under a seasonally fluctuating saline environment in the tropical monsoon area of eastern Thailand. Ecol. Res. 2021. [Google Scholar] [CrossRef]
- Hogarth, P.J. The Biology of Mangrove, 3rd ed.; Oxford University Press: Oxford, UK, 2015; pp. 55–67. [Google Scholar]
- Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Cambridge, UK, 1994; pp. 16–24. [Google Scholar]
- Tamooh, F.; Huxham, M.; Karachi, M.; Mencuccini, M.; Kairo, J.G.; Kirui, B. Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. For. Ecol. Manag. 2008, 256, 1290–1297. [Google Scholar] [CrossRef]
- Parida, A.K.; Jha, B. Salt tolerance mechanisms in mangroves: A review. Trees 2010, 24, 199–217. [Google Scholar] [CrossRef]
- Cheng, H.; Inyang, A.; Li, C.; Fei, J.; Zhou, Y.; Wang, Y. Salt tolerance and exclusion in the mangrove plant Avicennia marina in relation to root apoplastic barriers. Ecotoxicology 2020, 29, 676–683. [Google Scholar] [CrossRef]
- Lawton, J.R.; Todd, A.; Naidoo, D.K. Preliminary investigations into the structure of the roots of the mangroves, Avicennia marina and Bruguiera gymnorrhiza, in relation to ion uptake. New Phytol. 1981, 88, 713–722. [Google Scholar] [CrossRef]
- Krishnamurthy, P.; Jyothi-Prakash, P.A.; Qin, L.; He, J.; Lin, Q.; Loh, C.; Kumar, P.P. Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis. Plant Cell Environ. 2014, 37, 1656–1671. [Google Scholar] [CrossRef] [PubMed]
- Adame, M.F.; Teutli, C.; Santini, N.S.; Caamal, J.P.; Zaldívar-Jiménez, A.; Hernández, R.; Herrera-Silveira, J.A. Root biomass and production of mangroves surrounding a karstic oligotrophic coastal lagoon. Wetlands 2014, 34, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Meesub, B.; Buranapratheprat, A.; Thaipichitburapa, P.; Kan-atireklarp, S.; Kan-atireklarp, S. Fluxes of dissolved inorganic nutrients and suspended sediment at the Trat river mouth, Trat province in 2018. Burapha Sci. J. 2021, 26, 526–544. [Google Scholar]
- Feller, I.C. Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol. Monogr. 1995, 65, 477–505. [Google Scholar] [CrossRef]
- Feller, I.C.; Lovelock, C.E.; McKee, K.L. Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems. Ecosystems 2007, 10, 347–359. [Google Scholar] [CrossRef]
- Naidoo, G. Differential effects of nitrogen and phosphorus enrichment on growth of dwarf Avicennia marina mangroves. Aquat. Bot. 2009, 90, 184–190. [Google Scholar] [CrossRef]
- Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Zhu, D.; Hui, D.; Wang, M.; Yang, Q.; Yu, S. Light and competition alter leaf stoichiometry of introduced species and native mangrove species. Sci. Total Environ. 2020. [Google Scholar] [CrossRef]
- Huxham, M.; Langat, J.; Tamooh, F.; Kennedy, H.; Mencuccini, M.; Skov, M.W.; Kairo, J. Decomposition of mangrove roots: Effects of location, nutrients, species identity and mix in a Kenyan forest. Estuar. Coast. Shelf Sci. 2010, 88, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Ola, A.; Staples, T.L.; Robinson, N.; Lovelock, C.E. Plasticity in the above- and below-ground development of mangrove seedlings in response to variation in soil bulk density. Estuar. Coasts 2020, 43, 111–119. [Google Scholar] [CrossRef]
- Chorchuhirun, B.; Kraichak, E.; Kermanee, P. Comparative anatomy of two mangrove species, Xylocarpus granatum and Xylocarpus moluccensis (Meliaceae). Thai J. Sci. Technol. 2020, 9, 355–367. [Google Scholar] [CrossRef]
- Biswas, S.R.; Mallik, A.U.; Choudhury, J.K.; Nishat, A. A unified framework for the restoration of Southeast Asian mangroves—bridging ecology, society and economics. Wetl. Ecol. Manag. 2009, 17, 365–383. [Google Scholar] [CrossRef]
- Ragavan, P.; Kathiresan, K.; Zimmer, M.; Zhou, R.; Aldrie Amir, A.; Mohan, P.M.; Rana, T.S. Three decades of global mangrove conservation–An overview. Malay. Nat. J. 2020, 72, 551–576. [Google Scholar]
- Smyth, K.; Elliott, M. Effects of changing salinity on the ecology of marine environment. In Stressors in the Marine Environment: Physiological and Ecological Responses; Societal Implications; Solan, M., Whiteley, N., Eds.; Oxford University Press: Oxford, UK, 2016; pp. 161–174. [Google Scholar]
- Alongi, D.M. Impact of global change on nutrient dynamics in mangrove forests. Forests 2018, 9, 596. [Google Scholar] [CrossRef] [Green Version]
- Rogers, K.; Kelleway, J.; Saintilan, N.; Megonigal, J.P.; Adams, J.B.; Holmquist, J.R.; Lu, M.; Schile-Beers, L.; Zawadzki, A.; Mazumder, D.; et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 2019, 567, 91–95. [Google Scholar] [CrossRef] [PubMed]
Element | Season | Root | Soil | ||||
---|---|---|---|---|---|---|---|
Avicennia | Rhizophora | Xylocarpus | Avicennia | Rhizophora | Xylocarpus | ||
TC | Dry | 47.70 ± 0.30 ns | 46.23 ± 0.81 ns | 47.70 ± 0.41 ns | 5.74 ± 0.12 ns | 7.70 ± 0.87 ns | 8.23 ± 0.80 ns |
(%) | Wet | 48.38 ± 0.45 a | 46.11 ± 0.21 b | 44.06 ± 1.47 ab | 5.92 ± 0.06 ns | 6.32 ± 0.20 ns | 6.07 ± 0.76 ns |
TN | Dry | 1.13 ± 0.03 a | 0.83 ± 0.03 b | 0.95 ± 0.03 c | 0.37 ± 0.01 ns | 0.36 ± 0.04 ns | 0.36 ± 0.03 ns |
(%) | Wet | 1.22 ± 0.02 a | 0.88 ± 0.03 b | 0.99 ± 0.04 b | 0.41 ± 0.004 a | 0.34 ± 0.01 b | 0.29 ± 0.03 b |
P | Dry | 0.19 ± 0.06 ns | 0.22 ± 0.02 ns | 0.22 ± 0.02 ns | 47.09 ± 1.22 a | 13.83 ± 0.88 b | 5.96 ± 0.28 c |
Wet | 0.26 ± 0.06 ns | 0.20 ± 0.05 ns | 0.23 ± 0.02 ns | 41.96 ± 1.04 a | 19.53 ± 2.96 b | 2.48 ± 0.21 c | |
C:N | Dry | 42.43 ± 0.94 a | 56.39 ± 2.05 b | 50.90 ± 2.07 b | 15.53 ± 0.32 a | 21.65 ± 0.36 b | 22.92 ± 0.50 b |
Wet | 39.61 ± 0.61 a | 53.23 ± 2.11 b | 44.82 ± 1.69 ab | 14.59 ± 0.11 a | 18.82 ± 0.34 b | 20.95 ± 0.37 b | |
N:P | Dry | 6.32 ± 1.25 ns | 3.76 ± 0.40 ns | 4.39 ± 0.39 ns | - | - | - |
Wet | 6.54 ± 2.09 ns | 7.76 ± 4.35 ns | 4.36 ± 0.40 ns | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hongwiset, S.; Rodtassana, C.; Poungparn, S.; Umnouysin, S.; Komiyama, A. Spatiotemporal Heterogeneity of Mangrove Root Sphere under a Tropical Monsoon Climate in Eastern Thailand. Forests 2021, 12, 966. https://doi.org/10.3390/f12080966
Hongwiset S, Rodtassana C, Poungparn S, Umnouysin S, Komiyama A. Spatiotemporal Heterogeneity of Mangrove Root Sphere under a Tropical Monsoon Climate in Eastern Thailand. Forests. 2021; 12(8):966. https://doi.org/10.3390/f12080966
Chicago/Turabian StyleHongwiset, Sarawan, Chadtip Rodtassana, Sasitorn Poungparn, Suthathip Umnouysin, and Akira Komiyama. 2021. "Spatiotemporal Heterogeneity of Mangrove Root Sphere under a Tropical Monsoon Climate in Eastern Thailand" Forests 12, no. 8: 966. https://doi.org/10.3390/f12080966
APA StyleHongwiset, S., Rodtassana, C., Poungparn, S., Umnouysin, S., & Komiyama, A. (2021). Spatiotemporal Heterogeneity of Mangrove Root Sphere under a Tropical Monsoon Climate in Eastern Thailand. Forests, 12(8), 966. https://doi.org/10.3390/f12080966