5-Aminolevulinic Acid Pretreatment Mitigates Drought and Salt Stresses in Poplar Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Short-Term Drought Experiments
2.3. Salt Treatment
2.4. Measurement of RWC in Poplar Leaves
2.5. Malonaldehyde Concentration and Electrolyte Leakage
2.6. Chlorophyll
2.7. Physiological Analysis
2.8. Measurement of Proline Content and Antioxidant Enzyme Activities
2.9. Total RNA Isolation and Gene Expression Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. ALA Alleviated Morphological Damage and Leaf RWC under Drought and Salt Stresses
3.2. ALA Reduced Leaf MDA and Electrolyte Leakage under Drought and Salt Stresses
3.3. ALA Improved Chlorophyll Content in Poplar Leaves under Drought and Salt Stresses
3.4. ALA Increased Photosythetic Capacity under Drought and Salt Stresses
3.5. ALA Increased Fluorescence Parameters under Drought and Salt Stresses
3.6. ALA Increased PRO Content under Drought and Salt Stresses
3.7. ALA Enhanced SOD and POD Activities under Drought and Salt Stresses
3.8. ALA Regulated the Expression of Aquaporins and Na+/H+ Antiporter Proteins under Salt Stresses
3.9. Model for the Mechanisms of ALA-Induced Stress Resistance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, J.; Lu, S.; Chen, Z.Z.; Lourenco, R.; Chiang, V.L. Genetic transformation of Populus trichocarpa genotype Nisqually-1: A functional genomic tool for woody plants. Plant. Cell Physiol. 2006, 47, 1582–1589. [Google Scholar] [CrossRef] [Green Version]
- Monclus, R.; Dreyer, E.; Villar, M.; Delmotte, F.M.; Delay, D.; Petit, J.M.; Barbaroux, C.; Le Thiec, D.; Brechet, C.; Brignolas, F. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides x Populus nigra. New Phytol. 2006, 169, 765–777. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Dong, Y.; Zhao, Y.; Geng, A.; Xia, X.; Yin, W. PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar. Plant. Biotechnol. J. 2016, 14, 849–860. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.K. Abiotic Stress Signaling and Responses in Plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant. Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef] [PubMed]
- Song, X.J.; Matsuoka, M. Bar the windows: An optimized strategy to survive drought and salt adversities. Genes Dev. 2009, 23, 1709–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, C.; Li, Q.; Yao, K.; Zhang, Y.; Meng, S.; Yin, W.; Xia, X. Populus trichocarpa PtNF-YA9, A Multifunctional Transcription Factor, Regulates Seed Germination, Abiotic Stress, Plant Growth and Development in Arabidopsis. Front. Plant. Sci 2018, 9, 954. [Google Scholar] [CrossRef]
- Zahoor, R.; Dong, H.R.; Abid, M.; Zhao, W.Q.; Wang, Y.H.; Zhou, Z.G. Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environ. Exp. Bot. 2017, 137, 73–83. [Google Scholar] [CrossRef]
- Pei, Z.F.; Ming, D.F.; Liu, D.; Wan, G.L.; Geng, X.X.; Gong, H.J.; Zhou, W.J. Silicon Improves the Tolerance to Water-Deficit Stress Induced by Polyethylene Glycol in Wheat (Triticum aestivum L.) Seedlings. J. Plant. Growth Regul. 2010, 29, 106–115. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Fedorowicz-Stronska, O.; Glowacka, K.; Waskiewicz, A.; Sadowski, J. CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiol. Plant. 2017, 39, 41. [Google Scholar] [CrossRef] [Green Version]
- Egamberdieva, D.; Redding, M.; Wirth, S. Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. Eur. J. Soil Biol. 2017, 78, 38–42. [Google Scholar] [CrossRef]
- Duc, N.H.; Csintalan, Z.; Posta, K. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant. Physiol. Bioch. 2018, 132, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Ghalati, R.E.; Shamili, M.; Homaei, A. Effect of putrescine on biochemical and physiological characteristics of guava (Psidium guajava L.) seedlings under salt stress. Sci. Hortic. 2020, 261, 108961. [Google Scholar] [CrossRef]
- Kapoor, R.T.; Hasanuzzaman, M. Exogenous kinetin and putrescine synergistically mitigate salt stress in Luffa acutangula by modulating physiology and antioxidant defense. Physiol. Mol. Biol. Pla. 2020, 26, 2125–2137. [Google Scholar] [CrossRef]
- Ahmad, S.; Cui, W.W.; Kamran, M.; Ahmad, I.; Meng, X.P.; Wu, X.R.; Su, W.N.; Javed, T.; El-Serehy, H.A.; Jia, Z.K.; et al. Exogenous Application of Melatonin Induces Tolerance to Salt Stress by Improving the Photosynthetic Efficiency and Antioxidant Defense System of Maize Seedling. J. Plant. Growth Regul. 2021, 40, 1270–1283. [Google Scholar] [CrossRef]
- Akram, N.A.; Iqbal, M.; Muhammad, A.; Ashraf, M.; Al-Qurainy, F.; Shafiq, S. Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress. Protoplasma 2017, 255, 1–12. [Google Scholar] [CrossRef] [PubMed]
- An, Y.Y.; Qi, L.; Wang, L.J. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants. PLoS ONE 2016, 11, e0147202. [Google Scholar] [CrossRef]
- Ali, B.; Gill, R.A.; Yang, S.; Gill, M.B.; Farooq, M.A.; Liu, D.; Daud, M.K.; Ali, S.; Zhou, W. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L. PLoS ONE 2015, 10, e0123328. [Google Scholar] [CrossRef] [PubMed]
- An, Y.Y.; Cheng, D.X.; Rao, Z.X.; Sun, Y.P.; Tang, Q.; Wang, L.J. 5-Aminolevulinic acid (ALA) promotes primary root elongation through modulation of auxin transport in Arabidopsis. Acta Physiol. Plant. 2019, 41, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Jiang, W.B.; Liu, H.; Liu, W.Q.; Kang, L.; Hou, X.L. Promotion by 5-aminolevulinic acid of germination of pakchoi (Brassica campestris ssp chinensis var. communis Tsen et Lee) seeds under salt stress. J. Integr. Plant. Biol. 2005, 47, 1084–1091. [Google Scholar] [CrossRef]
- Nunkaew, T.; Kantachote, D.; Kanzaki, H.; Nitoda, T.; Ritchie, R.J. Effects of 5-aminolevulinic acid (ALA)-containing supernatants from selected Rhodopseudomonas palustris strains on rice growth under NaCl stress, with mediating effects on chlorophyll, photosynthetic electron transport and antioxidative enzymes. Electron. J. Biotechn 2014, 17, 4. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Jiang, W.B.; Huang, B.J. Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. Physiol Plant. 2004, 121, 258–264. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wei, S.M.; Wang, J.N.; Su, X.Y.; Suo, B.; Qin, F.J.; Zhao, H.J. Exogenous application of 5-aminolevulinic acid on wheat seedlings under drought stress enhances the transcription of psbA and psbD genes and improves photosynthesis. Braz. J. Bot. 2018, 41, 275–285. [Google Scholar] [CrossRef]
- Czarnecki, O.; Glasser, C.; Chen, J.G.; Mayer, K.F.; Grimm, B. Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling. Front. Plant. Sci. 2012, 3, 236. [Google Scholar] [CrossRef] [Green Version]
- An, Y.; Liu, L.; Chen, L.; Wang, L. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells. Front. Plant. Sci. 2016, 7, 482. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liao, W.B.; Dawuda, M.M.; Hu, L.L.; Yu, J.H. Correction to: 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: A review. Plant. Growth Regul. 2019, 88, 327. [Google Scholar] [CrossRef] [Green Version]
- Balestrasse, K.B.; Tomaro, M.L.; Batlle, A.; Noriega, G.O. The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry 2010, 71, 2038–2045. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.; Wang, J.; Yu, X.C.; He, C.X.; Li, Y.S. Substrate Application of 5-Aminolevulinic Acid Enhanced Low-temperature and Weak-light Stress Tolerance in Cucumber (Cucumis sativus L.). Agronomy 2020, 10, 472. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, A.; Korkmaz, Y.; Demirkiran, A.R. Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ. Exp. Bot. 2010, 67, 495–501. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.M.; Gao, Y.; Yu, B.; Xia, C.X.; Bai, J.G. Pretreatment with 5-aminolevulinic acid mitigates heat stress of cucumber leaves. Biol. Plant. 2012, 56, 780–784. [Google Scholar] [CrossRef]
- Naeem, M.S.; Warusawitharana, H.; Liu, H.B.; Liu, D.; Ahmad, R.; Waraich, E.A.; Xu, L.; Zhou, W.J. 5-Aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast. Plant. Physiol. Bioch. 2012, 57, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Pei, Z.F.; Naeem, M.S.; Ming, D.F.; Liu, H.B.; Khan, F.; Zhou, W.J. 5-Aminolevulinic Acid Activates Antioxidative Defence System and Seedling Growth in Brassica napus L. under Water-Deficit Stress. J. Agron. Crop. Sci. 2011, 197, 284–295. [Google Scholar] [CrossRef]
- Niu, K.J.; Ma, X.; Liang, G.L.; Ma, H.L.; Jia, Z.F.; Liu, W.H.; Yu, Q.Q. 5-Aminolevulinic acid modulates antioxidant defense systems and mitigates drought-induced damage in Kentucky bluegrass seedlings. Protoplasma 2017, 254, 2083–2094. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.P.; Miao, M.M.; Wang, C.L. Effects of ALA on Photosynthesis, Antioxidant Enzyme Activity, and Gene Expression, and Regulation of Proline Accumulation in Tomato Seedlings Under NaCl Stress. J. Plant. Growth Regul. 2015, 34, 637–650. [Google Scholar] [CrossRef]
- Watanabe, K.; Tanaka, T.; Hotta, Y.; Kuramochi, H.; Takeuchi, Y. Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant. Growth Regul. 2000, 32, 97–101. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Li, H.Z.; Zhou, W.J.; Takeuchi, Y.; Yoneyama, K. Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant. Growth Regul. 2006, 49, 27–34. [Google Scholar] [CrossRef]
- Youssef, T.; Awad, M.A. Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer. J. Plant. Growth Regul. 2008, 27, 1–9. [Google Scholar] [CrossRef]
- Naeem, M.S.; Jin, Z.L.; Wan, G.L.; Liu, D.; Liu, H.B.; Yoneyama, K.; Zhou, W.J. 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). Plant. Soil 2010, 332, 405–415. [Google Scholar] [CrossRef]
- Xiong, J.L.; Wang, H.C.; Tan, X.Y.; Zhang, C.L.; Naeem, M.S. 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Plant. Physiol. Bioch. 2018, 124, 88–99. [Google Scholar] [CrossRef]
- Akram, N.A.; Ashraf, M.; Al-Qurainy, F. Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes. Sci. Hortic. 2012, 142, 143–148. [Google Scholar] [CrossRef]
- Kosar, F.; Akram, N.A.; Ashraf, M. Exogenously-applied 5-aminolevulinic acid modulates some key physiological characteristics and antioxidative defense system in spring wheat (Triticum aestivum L.) seedlings under water stress. S. Afr. J. Bot. 2015, 96, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Bao, Y.; Lu, Y.; He, F.; Wang, S.; Wang, D.; Yu, X.; Yin, W.; Xia, X.; Liu, C. Poplar Autophagy Receptor NBR1 Enhances Salt Stress Tolerance by Regulating Selective Autophagy and Antioxidant System. Front. Plant. Sci. 2021, 11, 2232. [Google Scholar] [CrossRef] [PubMed]
- Biber, P.D. Evaluating a Chlorophyll Content Meter on Three Coastal Wetland Plant Species. J. Agric. Food Environ. Sci. 2007, 1, 2. [Google Scholar]
- Genot, I.; Caye, G.; Meinesz, A.; Orlandini, M. Role of chlorophyll and carbohydrate contents in survival of Posidonia oceanica cuttings transplanted to different depths. Mar. Biol. 1994, 119, 23–29. [Google Scholar] [CrossRef]
- Hao, S.; Wang, Y.; Yan, Y.; Liu, Y.; Wang, J.; Chen, S. A Review on Plant Responses to Salt Stress and Their Mechanisms of Salt Resistance. Horticulturae 2021, 7, 132. [Google Scholar] [CrossRef]
- Kapilan, R.; Vaziri, M.; Zwiazek, J.J. Regulation of aquaporins in plants under stress. Biol. Res. 2018, 51, 4. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Gao, L.; Sun, R.; Yu, T.; Liang, Y.; Li, D.; Zheng, Y. Seed-specific expression of an acyl-acyl carrier protein thioesterase CnFatB3 from coconut (Cocos nucifera L.) increases the accumulation of medium-chain fatty acids in transgenic Arabidopsis seeds. Sci. Hortic. 2017, 223, 5–9. [Google Scholar] [CrossRef]
- Zavgorodnyaya, A.; Papenbrock, J.; Grimm, B. Yeast 5-aminolevulinate synthase provides additional chlorophyll precursor in transgenic tobacco. Plant. J. 1997, 12, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Sasikala, C.; Ramana, C.V.; Rao, P.R. 5-Aminolevulinic Acid: A Potential Herbicide/Insecticide from Microorganisms. Biotechnol. Prog. 2010, 10, 451–459. [Google Scholar] [CrossRef]
- Von Wettstein, D.; Gough, S.; Kannangara, C.G. Chlorophyll Biosynthesis. Plant. Cell 1995, 7, 1039–1057. [Google Scholar] [CrossRef]
- Akram, N.A.; Ashraf, M. Regulation in Plant Stress Tolerance by a Potential Plant Growth Regulator, 5-Aminolevulinic Acid. J. Plant. Growth Regul. 2013, 32, 663–679. [Google Scholar] [CrossRef]
- Yang, Z.; Chang, Z.; Sun, L.; Yu, J.; Huang, B. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass. PLoS ONE 2014, 9, e116283. [Google Scholar] [CrossRef]
- Al-Khateeb, S.A. Promotive Effect of 5-aminolevulinic Acid on Growth, Yield and Gas Exchange Capacity of Barley (Hordeum Vulgare L.) Grown under Different Irrigation Regimes. J. King Saud. Univ. Agric. Sci. 2006, 18, 103–111. [Google Scholar]
- Juan, H.E.; Mao-Fu, L.I.; Fan, W.U.; Shao-Peng, L.I.; Zhou, S.Y. Physiological response of banana seedling to exogenous ALA under drought stress. J. South. Agric. 2013, 44, 745–750. [Google Scholar] [CrossRef]
- An, Y.Y.; Liang, Z.S.; Zhao, R.K.; Zhang, J.; Wang, X.J. Organ-dependent responses of Periploca sepium to repeated dehydration and rehydration. S. Afr. J. Bot. 2011, 77, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Sairam, R.K.; Dharmar, K.; Chinnusamy, V.; Meena, R.C. Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata). J. Plant. Physiol. 2009, 166, 602–616. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant Cellular and Molecular Responses to High Salinity. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Hu, X.H.; Zhang, J.; Zhang, J.H.; Du, Q.J.; Li, J.M. H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures. BMC Plant. Biol. 2018, 18, 34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhou, Y.; Zhang, D.; Tang, X.; Li, Z.; Shen, C.; Han, X.; Deng, W.; Yin, W.; Xia, X. PtrWRKY75 overexpression reduces stomatal aperture and improves drought tolerance by salicylic acid-induced reactive oxygen species accumulation in poplar. Environ. Exp. Bot. 2020, 176, 104117. [Google Scholar] [CrossRef]
- Memon, S.A.; Hou, X.L.; Wang, L.J.; Li, Y. Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee). Acta Physiol. Plant. 2009, 31, 51–57. [Google Scholar] [CrossRef]
- Anwar, A.; Yan, Y.; Liu, Y.; Li, Y.; Yu, X. 5-Aminolevulinic Acid Improves Nutrient Uptake and Endogenous Hormone Accumulation, Enhancing Low-Temperature Stress Tolerance in Cucumbers. Int. J. Mol. Sci. 2018, 19, 3379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Jin, X.; Liao, W.B.A.; Hu, L.L.; Dawuda, M.M.; Zhao, X.J.; Tang, Z.Q.; Gong, T.Y.; Yu, J.H. 5-Aminolevulinic Acid (ALA) Alleviated Salinity Stress in Cucumber Seedlings by Enhancing Chlorophyll Synthesis Pathway. Front. Plant. Sci. 2018, 9, 635. [Google Scholar] [CrossRef] [Green Version]
- Niu, K.J.; Ma, H.L. The positive effects of exogenous 5-aminolevulinic acid on the chlorophyll biosynthesis, photosystem and calvin cycle of Kentucky bluegrass seedlings in response to osmotic stress. Environ. Exp. Bot. 2018, 155, 260–271. [Google Scholar] [CrossRef]
- Nguyen, H.; Kim, H.S.; Jung, S. Altered tetrapyrrole metabolism and transcriptome during growth-promoting actions in rice plants treated with 5-aminolevulinic acid. Plant. Growth Regul. 2016, 78, 133–144. [Google Scholar] [CrossRef]
- Tcherkez, G.; Limami, A.M. Net photosynthetic CO2 assimilation: More than just CO2 and O2 reduction cycles. New. Phytol. 2019, 223, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo-Argaez, R.; Schaffer, B.; Vazquez, A. Leaf gas exchange and stable carbon isotope composition of redbay and avocado trees in response to laurel wilt or drought stress. Environ. Exp. Bot. 2019, 171, 103948. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Marquez, F.J.; Nishio, N.; Nagai, S. Promotive effect of 5-aminolevulinic acid on the growth and photosynthesis of Spirulina platensis. J. Ferment. Bioeng. 1995, 79, 453–457. [Google Scholar] [CrossRef]
- Nishihara, E.; Kondo, K.; Parvez, M.M.; Takahashi, K.; Watanabe, K.; Tanaka, K. Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). J. Plant. Physiol. 2003, 160, 1085–1091. [Google Scholar] [CrossRef]
- Feng, X.X.; An, Y.Y.; Gao, J.J.; Wang, L.J. Photosynthetic Responses of Canola to Exogenous Application or Endogenous Overproduction of 5-Aminolevulinic Acid (ALA) under Various Nitrogen Levels. Plants 2020, 9, 1419. [Google Scholar] [CrossRef]
- Allakhverdiev, S.I. Salt Stress Inhibits the Repair of Photodamaged Photosystem II by Suppressing the Transcription and Translation of psbA Genes in Synechocystis. Plant. Physiol. 2002, 130, 1443–1453. [Google Scholar] [CrossRef] [Green Version]
- Ke, Q.B.; Wang, Z.; Ji, C.Y.; Jeong, J.C.; Lee, H.S.; Li, H.B.; Xu, B.C.; Deng, X.; Kwak, S.S. Transgenic poplar expressing codA exhibits enhanced growth and abiotic stress tolerance. Plant. Physiol. Biochem. 2016, 100, 75–84. [Google Scholar] [CrossRef]
- Sun, Y.P.; Zhang, Z.P.; Wang, L.J. Promotion of 5-aminolevulinic acid treatment on leaf photosynthesis is related with increase of antioxidant enzyme activity in watermelon seedlings grown under shade condition. Photosynthetica 2009, 47, 347–354. [Google Scholar] [CrossRef]
- Cai, C.; He, S.; An, Y.; Wang, L. Exogenous 5-aminolevulinic acid improves strawberry tolerance to osmotic stress and its possible mechanisms. Physiol. Plant. 2020, 168, 948–962. [Google Scholar] [CrossRef] [Green Version]
- Sairam, R.K.; Tyagi, A. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. India 2004, 86, 407–421. [Google Scholar]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Kishor, P.B.K.; Sangam, S.; Amrutha, R.N.; Laxmi, P.S.; Naidu, K.R.; Rao, K.R.S.S.; Rao, S.; Reddy, K.J.; Theriappan, P.; Sreenivasulu, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci. India 2005, 88, 424–438. [Google Scholar] [CrossRef]
- Islam, M.R.; Naznin, T.; Gupta, D.R.; Haque, M.A.; Hasanuzzaman, M.; Rohman, M.M. Insight into 5-aminolevulinic acid-induced modulation of cellular antioxidant metabolism to confer salinity and drought tolerance in maize. Biocell 2020, 44, 713–730. [Google Scholar] [CrossRef]
- Li, D.M.; Zhang, J.; Sun, W.J.; Li, Q.; Dai, A.H.; Bai, J.G. 5-Aminolevulinic acid pretreatment mitigates drought stress of cucumber leaves through altering antioxidant enzyme activity. Sci. Hortic. 2011, 130, 820–828. [Google Scholar] [CrossRef]
- Sahi, C.; Singh, A.; Blumwald, E.; Grover, A. Beyond osmolytes and transporters: Novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiol. Plant. 2006, 127, 1–9. [Google Scholar] [CrossRef]
- Munns, R.; Husain, S.; Rivelli, A.R.; James, R.A.; Condon, A.G.; Lindsay, M.P.; Lagudah, E.S.; Schachtman, D.P.; Hare, R.A. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant. Soil 2002, 247, 93–105. [Google Scholar] [CrossRef]
- Luu, D.T.; Maurel, C. Aquaporins in a challenging environment: Molecular gears for adjusting plant water status. Plant. Cell Environ. 2005, 28, 85–96. [Google Scholar] [CrossRef]
- Alexandersson, E.; Fraysse, L.; Sjovall-Larsen, S.; Gustavsson, S.; Fellert, M.; Karlsson, M.; Johanson, U.; Kjellbom, P. Whole gene family expression and drought stress regulation of aquaporins. Plant. Mol. Biol. 2005, 59, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.W.; He, S.S.; An, Y.Y.; Cao, R.X.; Sun, Y.P.; Tang, Q.; Wang, L.J. Hydrogen peroxide as a mediator of 5-aminolevulinic acid-induced Na+ retention in roots for improving salt tolerance of strawberries. Physiol. Plant. 2019, 167, 5–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Forward Primer (5’-3’) | Reverse Primer (5’-3’) |
---|---|---|
UBQ | AGACCTACACCAAGCCCAAGAAGAT | CCAGCACCGCACTCAGCATTAG |
NIP1 | GGCTGGCTGTGATGGTCT | ATCCCGCTGGCATTGTTCC |
PIP2 | CACTGGATTGGGCGCTGA | TGGTCATGCCAGGCCTTCT |
TIP1 | GAGCTTCCAACACACCCG | AGCAAGCGACAGTGGAGC |
TIP2 | GCAGCTCTTGATCCAGCCG | ATGGGGACTGCCAAGCCT |
NHX1 | CGGTGGATGAACGAGTCA | CCTATATCTAGGGGACCGATGTC |
SOS1 | TCCCGGTTTGTAGTTGTTGGA | GAAGTACGATTCCACCAGTGAAG |
Days | Treatments | Total Chlorophyll (mg/cm2) | Days | Treatments | Total Chlorophyll (mg/cm2) |
---|---|---|---|---|---|
0 | C | 0.033 ± 0.003 aA | 0 | C | 0.033 ± 0.003 bA |
C+A25 | 0.036 ± 0.000 aA | C+A25 | 0.036 ± 0.000 bA | ||
C+A100 | 0.034 ± 0.002 aA | C+A100 | 0.034 ± 0.002 bA | ||
D | 0.033 ± 0.001 aA | S | 0.033 ± 0.001 bA | ||
D+A25 | 0.035 ± 0.004 aA | S+A25 | 0.042 ± 0.003 aA | ||
D+A100 | 0.034 ± 0.001 aA | S+A100 | 0.035 ± 0.001 bA | ||
4 | C | 0.032 ± 0.003 aA | 4 | C | 0.032 ± 0.003 abA |
C+A25 | 0.035 ± 0.002 aA | C+A25 | 0.035 ± 0.002 aA | ||
C+A100 | 0.034 ± 0.002 aA | C+A100 | 0.034 ± 0.002 abA | ||
D | 0.026 ± 0.001 cB | S | 0.026 ± 0.002 cB | ||
D+A25 | 0.029 ± 0.002 bB | S+A25 | 0.030 ± 0.000 abcB | ||
D+A100 | 0.027 ± 0.002 bcB | S+A100 | 0.029 ± 0.002 bcB | ||
8 | C | 0.030 ± 0.002 abA | 8 | C | 0.030 ± 0.002 abA |
C+A25 | 0.031 ± 0.002 abA | C+A25 | 0.031 ± 0.002 abA | ||
C+A100 | 0.032 ± 0.001 aA | C+A100 | 0.032 ± 0.001 aA | ||
D | 0.026 ± 0.002 cB | S | 0.020 ± 0.002 dC | ||
D+A25 | 0.029 ± 0.001 bB | S+A25 | 0.028 ± 0.001 bcB | ||
D+A100 | 0.029 ± 0.002 bB | S+A100 | 0.027 ± 0.002 cB | ||
12 | C | 0.032 ± 0.002 aA | 12 | C | 0.032 ± 0.002 aA |
C+A25 | 0.032 ± 0.002 abA | C+A25 | 0.032 ± 0.002 abA | ||
C+A100 | 0.032 ± 0.000 aA | C+A100 | 0.032 ± 0.000 aA | ||
D | 0.020 ± 0.001 dC | S | 0.014 ± 0.001 dD | ||
D+A25 | 0.02s2 ± 0.00 cdC | S+A25 | 0.021 ± 0.001 cC | ||
D+A100 | 0.026 ± 0.002 bcB | S+A100 | 0.024 ± 0.005 bcB |
Days | Treatments | Pn (μmolm−2 s−1) | Gs (molm−2 s−1) | Tr (mmolm−2 s−1) |
---|---|---|---|---|
0 | C | 16.680 ± 0.751 cA | 0.496 ± 0.069 aA | 9.540 ± 1.233 bA |
C+A25 | 17.367 ± 0.535 bA | 0.517 ± 0.101 aA | 9.972 ± 1.297 bA | |
C+A100 | 17.308 ± 1.435 bA | 0.497 ± 0.031 aA | 9.920 ± 0.974 bA | |
D | 18.063 ± 0.270 bcA | 0.483 ± 0.069 aA | 9.210 ± 1.487 bA | |
D+A25 | 18.083 ± 0.397 aA | 0.487 ± 0.027 aA | 10.797 ± 0.933 abA | |
D+A100 | 18.08 ± 0.437 abA | 0.487 ± 0.040 aA | 11.067 ± 0.323 aA | |
4 | C | 13.842 ± 0.33 4bB | 0.510 ± 0.016 aA | 6.451 ± 0.123 aB |
C+A25 | 13.992 ± 0.156 aB | 0.524 ± 0.016 aA | 6.469 ± 0.106 aB | |
C+A100 | 14.167 ± 0.329 aB | 0.517 ± 0.030 aA | 6.033 ± 0.137 aB | |
D | 10.475 ± 0.845 cB | 0.276 ± 0.044 dB | 3.813 ± 0.181 cB | |
D+A25 | 14.108 ± 0.131 aB | 0.477 ± 0.043 bA | 5.237 ± 0.356 bB | |
D+A100 | 13.992 ± 0.808 aB | 0.396 ± 0.034 cB | 5.096 ± 0.235 bB | |
8 | C | 13.667 ± 0.841 bB | 0.465 ± 0.074 bA | 9.363 ± 0.771 abA |
C+A25 | 13.933 ± 0.342 bB | 0.523 ± 0.046 aA | 9.599 ± 0.416 aA | |
C+A100 | 14.575 ± 0.253 aB | 0.461 ± 0.012 bB | 9.077 ± 0.115 bA | |
D | 0.133 ± 0.040 dC | 0.010 ± 0.001 cC | 0.419 ± 0.027 cC | |
D+A25 | 0.768 ± 0.034 cC | 0.011 ± 0.001 cB | 0.518 ± 0.065 cC | |
D+A100 | 0.207 ± 0.024 dC | 0.009 ± 0.002 cC | 0.417 ± 0.067 cC |
Days | Treatments | Pn (μmolm−2 s−1) | Gs (molm−2 s−1) | Tr (mmolm−2 s−1) |
---|---|---|---|---|
0 | C | 16.68 ± 0.751 cA | 0.496 ± 0.069 aA | 9.540 ± 1.233 aA |
C+A25 | 17.367 ± 0.535 bA | 0.517 ± 0.101 aA | 9.972 ± 1.297 aA | |
C+A100 | 17.308 ± 1.435 bA | 0.497 ± 0.031 aA | 9.920 ± 0.974 aA | |
S | 17.375 ± 0.357 bA | 0.447 ± 0.011 bA | 9.855 ± 1.044 aA | |
S+A25 | 18.642 ± 0.458 aA | 0.491 ± 0.070 aA | 10.967 ± 0.689 aA | |
S+A100 | 18.013 ± 1.298 bA | 0.495 ± 0.020 aA | 10.367 ± 0.065 aA | |
4 | C | 13.842 ± 0.334 bB | 0.510 ± 0.016 aA | 6.451 ± 0.123 aB |
C+A25 | 13.992 ± 0.156 aB | 0.524 ± 0.016 aA | 6.469 ± 0.106 aB | |
C+A100 | 14.167 ± 0.329 aB | 0.517 ± 0.030 aA | 6.033 ± 0.137 aB | |
S | 10.468 ± 1.824 cB | 0.148 ± 0.050 cB | 2.864 ± 0.742 cB | |
S+A25 | 11.200 ± 0.432 cB | 0.224 ± 0.066 bB | 3.978 ± 0.854 bB | |
S+A100 | 11.063 ± 1.725 cB | 0.150 ± 0.061 bB | 2.542 ± 0.989 cB | |
8 | C | 13.667 ± 0.841 bB | 0.465 ± 0.074 bA | 9.363 ± 0.771 abA |
C+A25 | 13.933 ± 0.342 bB | 0.523 ± 0.046 aA | 9.599 ± 0.416 aA | |
C+A100 | 14.575 ± 0.253 aB | 0.461 ± 0.012 bB | 9.077 ± 0.115 bA | |
S | 2.292 ± 0.885 dC | 0.021 ± 0.008 cC | 0.759 ± 0.267 dC | |
S+A25 | 5.647 ± 0.950 cC | 0.048 ± 0.012 cC | 1.756 ± 0.374 cC | |
S+A100 | 5.500 ± 0.365 cC | 0.046 ± 0.006 cC | 1.753 ± 0.210 cC |
Days | Treatments | Fv/Fm | Y(II) | ETR(II) |
---|---|---|---|---|
0 | C | 0.822 ± 0.003 aB | 0.636 ± 0.009 bA | 57.133 ± 0.802 bA |
C+A25 | 0.828 ± 0.003 aA | 0.668 ± 0.003 aA | 59.500 ± 0.300 aA | |
C+A100 | 0.823 ± 0.002 aA | 0.667 ± 0.008 aA | 57.700 ± 1.000 aA | |
D | 0.821 ± 0.004 aA | 0.637 ± 0.013 bA | 60.067 ± 0.252 bA | |
D+A25 | 0.822 ± 0.002 aB | 0.669 ± 0.023 aA | 59.800 ± 0.300 aA | |
D+A100 | 0.826 ± 0.007 aA | 0.672 ± 0.007 aA | 60.067 ± 0.252 aA | |
4 | C | 0.836 ± 0.007 abA | 0.662 ± 0.004 bA | 59.967 ± 0.651 bA |
C+A25 | 0.846 ± 0.004 aA | 0.665 ± 0.004 aA | 60.067 ± 0.252 aA | |
C+A100 | 0.840 ± 0.010 abA | 0.668 ± 0.003 aA | 60.167 ± 0.551 aA | |
D | 0.786 ± 0.012 cB | 0.614 ± 0.008 bB | 57.233 ± 1.102 bB | |
D+A25 | 0.834 ± 0.004 abA | 0.673 ± 0.005 aA | 55.100 ± 0.702 aA | |
D+A100 | 0.826 ± 0.008 bA | 0.665 ± 0.006 aA | 54.767 ± 0.702 aA | |
8 | C | 0.833 ± 0.003 aA | 0.642 ± 0.011 bA | 60.000 ± 1.967 bA |
C+A25 | 0.838 ± 0.002 aA | 0.669 ± 0.003 aA | 60.500 ± 0.451 aA | |
C+A100 | 0.835 ± 0.015 aA | 0.670 ± 0.006 aA | 60.267 ± 0.451 aA | |
D | 0.785 ± 0.027 bB | 0.610 ± 0.008 cB | 60.400 ± 0.656 cB | |
D+A25 | 0.818 ± 0.006 aB | 0.670 ± 0.005 aA | 59.800 ± 0.500 aA | |
D+A100 | 0.817 ± 0.026 aA | 0.639 ± 0.033 bA | 57.933 ± 2.268 bA |
Days | Treatments | Fv/Fm | Y(II) | ETR(II) |
---|---|---|---|---|
0 | C | 0.822 ± 0.003 aB | 0.636 ± 0.009 cA | 57.133 ± 0.802 cA |
C+A25 | 0.828 ± 0.003 aA | 0.668 ± 0.003 bA | 60.067 ± 0.252 bA | |
C+A100 | 0.823 ± 0.002 aA | 0.667 ± 0.008 bA | 59.967 ± 0.651 bA | |
S | 0.822 ± 0.002 aA | 0.649 ± 0.008 cA | 58.367 ± 0.751 cA | |
S+A25 | 0.831 ± 0.006 aA | 0.684 ± 0.003 aA | 61.500 ± 0.300 aA | |
S+A100 | 0.827 ± 0.004 aA | 0.668 ± 0.008 bA | 60.033 ± 0.702 bA | |
4 | C | 0.836 ± 0.007 aA | 0.662 ± 0.004 bA | 59.500 ± 0.300 bA |
C+A25 | 0.846 ± 0.000 aA | 0.665 ± 0.004 aA | 59.800 ± 0.300 aA | |
C+A100 | 0.840 ± 0.010 aA | 0.668 ± 0.003 aA | 60.067 ± 0.252 aA | |
S | 0.812 ± 0.011 bAB | 0.539 ± 0.007 cB | 53.633 ± 0.351 cB | |
S+A25 | 0.815 ± 0.001 bB | 0.544 ± 0.013 cB | 50.550 ± 1.150 bB | |
S+A100 | 0.812 ± 0.005 bB | 0.615 ± 0.006 bB | 55.950 ± 0.212 bB | |
8 | C | 0.833 ± 0.003 aA | 0.642 ± 0.011 bA | 57.700 ± 1.000 bA |
C+A25 | 0.838 ± 0.002 aA | 0.668 ± 0.003 aA | 60.067 ± 0.252 aA | |
C+A100 | 0.835 ± 0.015 aA | 0.670 ± 0.006 aA | 60.167 ± 0.551 aA | |
S | 0.773 ± 0.035 bB | 0.536 ± 0.005 eB | 48.433 ± 0.651 eC | |
S+A25 | 0.823 ± 0.020 aAB | 0.556 ± 0.013 dB | 49.967 ± 1.150 dB | |
S+A100 | 0.786 ± 0.011 bC | 0.620 ± 0.004 cB | 55.767 ± 0.351 cB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, Z.; Han, S.; Yu, X.; Huang, M.; Lian, C.; Liu, C.; Yin, W.; Xia, X. 5-Aminolevulinic Acid Pretreatment Mitigates Drought and Salt Stresses in Poplar Plants. Forests 2021, 12, 1112. https://doi.org/10.3390/f12081112
Jiao Z, Han S, Yu X, Huang M, Lian C, Liu C, Yin W, Xia X. 5-Aminolevulinic Acid Pretreatment Mitigates Drought and Salt Stresses in Poplar Plants. Forests. 2021; 12(8):1112. https://doi.org/10.3390/f12081112
Chicago/Turabian StyleJiao, Zhiyin, Shuo Han, Xiao Yu, Mengbo Huang, Conglong Lian, Chao Liu, Weilun Yin, and Xinli Xia. 2021. "5-Aminolevulinic Acid Pretreatment Mitigates Drought and Salt Stresses in Poplar Plants" Forests 12, no. 8: 1112. https://doi.org/10.3390/f12081112
APA StyleJiao, Z., Han, S., Yu, X., Huang, M., Lian, C., Liu, C., Yin, W., & Xia, X. (2021). 5-Aminolevulinic Acid Pretreatment Mitigates Drought and Salt Stresses in Poplar Plants. Forests, 12(8), 1112. https://doi.org/10.3390/f12081112