Comparison of Topsoil Organic Carbon Stocks on Slopes under Soil-Protecting Forests in Relation to the Adjacent Agricultural Slopes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Research cross Section | Soil Pit Number | Position of the Soil Pit * | Land Use ** | Percentage of Particle Size Fractions (mm) | Texture Class *** | Concentration of Available Forms(mg 100g−1) | CaCO3 (%) | pH KCl | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2.0–0.05 | 0.05–0.002 | <0.002 | P | K | Mg | |||||||
A-B | I | p | r | 55.4 | 40.8 | 3.8 | SL | 10.4 | 12.0 | 7.5 | - | 6.9 |
II | s | a | 53.9 | 42.1 | 3.9 | SL | 18.7 | 12.5 | 6.0 | 0.85 | 7.3 | |
III | f | a | 98.1 | 1.9 | 0.0 | S | 11.2 | 2.0 | 0.8 | 0.30 | 4.7 | |
A’-B’ | I | p | f | 55.4 | 40.8 | 3.8 | SL | 10.4 | 12.0 | 7.5 | - | 6.9 |
II | s | f | 57.3 | 39.2 | 3.5 | SL | 3.4 | 8.5 | 13.1 | 0.15 | 7.1 | |
III | f | r | 75.2 | 23.1 | 1.7 | LS | 2.8 | 20.0 | 5.2 | - | 5.4 | |
C-D | I | p | a | 72.1 | 25.3 | 2.6 | SL | 19.9 | 18.0 | 6.0 | - | 5.0 |
II | s | a | 66.4 | 30.4 | 3.2 | SL | 18.3 | 31.0 | 6.2 | 0.35 | 5.6 | |
III | f | a | 81.0 | 17.4 | 1.6 | LS | 11.0 | 15.5 | 3.0 | traces | 5.5 | |
C’-D’ | I | p | f | 74.9 | 23.2 | 1.9 | LS | 4.5 | 5.5 | 1.8 | - | 3.8 |
II | s | f | 81.0 | 17.9 | 1.1 | LS | 1.8 | 4.5 | 0.9 | - | 3.5 | |
III | f | f | 79.7 | 19.5 | 0.8 | LS | 2.8 | 8.5 | 2.9 | - | 3.2 | |
E-F | I | p | a | 78.2 | 19.6 | 2.2 | LS | 53.0 | 7.5 | 4.4 | 2.46 | 7.4 |
II | s | a | 86.7 | 12.1 | 1.2 | S | 24.6 | 7.0 | 3.3 | 0.70 | 7.2 | |
III | f | a | 84.0 | 14.6 | 1.4 | LS | 36.0 | 9.0 | 4.1 | 0.75 | 7.4 | |
E’-F’ | I | p | f | 81.9 | 17.0 | 1.1 | LS | 6.2 | 2.5 | 1.3 | - | 4.1 |
II | s | f | 90.4 | 9.6 | 0.0 | S | 2.7 | 1.0 | 0.9 | - | 3.7 | |
III | f | f | 90.2 | 9.4 | 0.4 | S | 5.9 | 1.5 | 1.6 | - | 4.3 | |
G-H | I | p | a | 92.1 | 7.5 | 0.4 | S | 23.9 | 5.5 | 2.2 | traces | 5.8 |
II | s | a | 87.8 | 11.5 | 0.7 | S | 22.9 | 6.0 | 2.0 | traces | 4.4 | |
III | f | a | 81.2 | 17.3 | 1.5 | LS | 20.3 | 10.0 | 3.4 | - | 4.6 | |
G’-H’ | I | p | f | 93.8 | 6.2 | 0.0 | S | 13.0 | 1.5 | 0.5 | - | 3.6 |
II | s | f | 95.2 | 4.6 | 0.2 | S | 15.9 | 1.5 | 0.5 | - | 4.2 | |
III | f | f | 89.4 | 10.0 | 0.6 | S | 9.5 | 2.0 | 1.0 | - | 4.0 | |
I-J | I | f | a | 68.2 | 29.2 | 2.6 | SL | 18.2 | 9.8 | 3.3 | 0.20 | 7.2 |
II | s | a | 83.8 | 14.9 | 1.3 | LS | 9.7 | 5.0 | 2.0 | 2.54 | 7.7 | |
III | p | a | 77.1 | 21.0 | 1.9 | LS | 3.8 | 4.0 | 1.8 | - | 4.8 | |
IV | s | a | 74.7 | 23.3 | 2.0 | LS | 13.2 | 9.0 | 4.2 | 0.55 | 7.3 | |
V | f | a | 74.6 | 23.5 | 1.9 | LS | 19.0 | 9.0 | 3.6 | 0.93 | 7.3 | |
I’-J’ | I | f | r | 62.6 | 35.0 | 2.4 | SL | 31.0 | 35.0 | 15.1 | traces | 6.5 |
II | s | r | 87.1 | 12.0 | 0.9 | S | 7.3 | 9.0 | 3.4 | 2.56 | 7.4 | |
III | p | f | 82.5 | 16.3 | 1.2 | LS | 5.4 | 10.5 | 3.4 | - | 4.1 | |
IV | s | f | 90.2 | 9.6 | 0.2 | S | 2.0 | 6.0 | 5.1 | - | 3.6 | |
V | f | a | 77.4 | 21.1 | 1.5 | LS | 18.2 | 13.0 | 3.2 | 0.35 | 7.2 |
References
- Degórski, M. Influence of forest management into the carbon storage in soil. Monit. Sr. Przyr. 2005, 6, 75–83. [Google Scholar]
- Ontl, T.A.; Schulte, L.A. Soil Carbon Storage. Nat. Educ. Knowl. 2012, 3, 35. [Google Scholar]
- Lei, Z.; Yu, D.; Zhou, F.; Zhang, Y.; Yu, D.; Zhou, Y.; Han, Y. Changes in soil organic carbon and its influencing factors in the growth of Pinus sylvestris var. mongolica plantation in Horqin Sandy Land, Northeast China. Sci. Rep. 2019, 9, 16453. [Google Scholar] [CrossRef] [PubMed]
- Schillaci, C.; Acutis, M.; Lombardo, L.; Lipani, A.; Fantappiè, M.; Märker, M.; Saia, S. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Sci. Total. Environ. 2017, 601–602, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Szopka, K.; Kabała, C.; Karczewska, A.; Jezierski, P.; Bogacz, A.; Waroszewski, J. The pools of soil organic carbon accumulated in the surface layers of forest soils in the Karkonosze Mountains, SW Poland. Soil Sci. Ann. 2016, 67, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Martin, D.; Tarsem, L.; Sachdev, C.B.; Sharma, J.P. Soil organic carbon storage changes with climate change, landform and land use conditions in Garwal hills of the Indian Himalayan mountains. Agric. Ecosyst. Environ. 2010, 138, 64–73. [Google Scholar] [CrossRef]
- Sinoga, J.D.R.; Pariente, S.; Diaz, A.R.; Murillo, J.F.M. Variability of relationship between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditio (South of Spain). Catena 2012, 94, 17–25. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Fasham, M.J.R.; Goulden, M.L.; Heimann, M.; Jaramillo, V.J.; Kheshgi, H.S.; Le Quere, C.; Scholes, R.J.; Wallace, D.W.R. Climate change. The Scientific Basis IPCC. Chapter 3. In The Carbon Cycle and Atmospheric Carbon Dioxide; Cambridge University Press: Cambridge, UK, 2001; pp. 183–237. [Google Scholar]
- Błońska, E.; Lasota, J. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils. Forests 2017, 8, 448. [Google Scholar] [CrossRef] [Green Version]
- Zwydak, M.; Błońska, E.; Lasota, J. Organic carbon accumulation in soil of different forest site types. Sylwan 2017, 161, 62–70. [Google Scholar]
- Abdullahi, A.C.; Siwar, C.; Shaharudin, M.I.; Anizan, I. Carbon Sequestration in Soils: The Opportunities and Challenges. In Carbon Capture, Utilization and Sequestration; Agarwal, R.K., Ed.; IntechOpen: Rijeka, Croatia, 2018; pp. 3–15. [Google Scholar]
- Hendrickson, O. Influences of global change on carbon sequestration by agricultural and forest soils. Environ. Rev. 2003, 11, 161–192. [Google Scholar] [CrossRef]
- Borrelli, P.; Paustian, K.; Panagos, P.; Jones, A.; Schütt, B.; Lugato, E. Effect of Good Agricultural and Environmental Conditions on erosion and soil organic carbon balance: A national case study. Land Use Policy 2016, 50, 408–421. [Google Scholar] [CrossRef]
- Dvorak, J.; Novak, L. Soil Conservation and Silviculture, 1st ed.; Elsevier: Amsterdam, The Netherlands; London, UK; New York, NY, USA; Tokyo, Japan, 1994; p. 396. [Google Scholar]
- Gray, D.H.; Sotir, R.B. Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control; John Wiley & Sons: New York, NY, USA, 1996; p. 194. [Google Scholar]
- Silva, G.L.; Lima, H.V.; Campanha, M.M.; Gilkes, R.J.; Oliveira, T.S. Soil physical quality of Luvisols under agroforestry, natural vegetation and conventional crop management systems in the Brazilian semi-arid region. Geoderma 2011, 167–168, 61–70. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Gray, D.H.; Leiser, A.T. Biotechnical Slope Protection and Erosion Control; Krieger Publishing Company: Malabar, FL, USA, 1982; p. 271. [Google Scholar]
- Lal, R. Water management in various crop production systems related to soil tillage. Soil Tillage Res. 1994, 30, 169–185. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion and Conservation, 3rd ed.; Blackwell Publishing: Oxford, MI, USA, 2005; p. 304. [Google Scholar]
- Davie, T. Forests for soil and water conservation—What does the science say? N. Z. J. For. 2006, 51, 8–9. [Google Scholar]
- Brang, P.; Schönenberger, W.; Ott, E.; Gardner, R.H. Forests as protection from natural hazards. In The Forests Handbook; Evans, J., Ed.; Blackwell Science Ltd.: Oxford, MI, USA, 2008; Volume 2, pp. 53–81. [Google Scholar]
- Germer, S.; Neill, C.; Krusche, A.V.; Elsenbeer, H. Influence of land-use change on near-surface hydrological processes: Undisturbed forest to pasture. J. Hydrol. 2010, 380, 473–480. [Google Scholar] [CrossRef]
- Galatsidas, S.; Amanatidou, D.; Soutsas, K. Applying multivariate statistics into forest management planning: Potential conditions of erosion danger in the forest of Thessaloniki, Greece. J. Environ. Prot. Ecol. 2015, 16, 233–242. [Google Scholar]
- Miura, S.; Amacher, M.; Hofer, T.; San-Miguel-Ayanz, J.; Thackway, R. Protective functions and ecosystem services of global forests in the past quarter-century. For. Ecol. Manag. 2015, 352, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Gerasimova, M.; Lebedeva-Verba, M. Topsoils—Mollic, Takyric and Yermic Horizons. In Interpretation of Micromorphological Features of Soils and Regoliths; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 351–368. [Google Scholar]
- Wiśniewski, P.; Kistowski, M. Structure and importance of soil-protecting forests in the areas administered by the RDSF Toruń. Bull. Geogr. Phys. Geogr. Ser. 2015, 8, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Błażejczyk, K. Climate and bioclimate of Poland. In Natural and Human Environment of Poland. A Geographical Overview; Degórski, M., Ed.; Polish Academy of Sciences; Institute of Geography and Spatial Organization Polish Geographical Society: Warsaw, Poland, 2006; pp. 31–48. [Google Scholar]
- Kondracki, J. Regional Geography of Poland; Polish Scientific Publishers: Warsaw, Poland, 2002; p. 441. [Google Scholar]
- Jankowski, M.; Przewoźna, B.; Bednarek, R. Topographical inversion of sandy soils due to local conditions in Northern Poland. Geomorphology 2011, 135, 277–283. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 192. [Google Scholar]
- Kabała, C. (Ed.) Soils of Lower Silesia: Origins, Diversity and Protection; Polish Society of Soil Science Wrocław Branch, Polish Humic Substances Society: Wrocław, Poland, 2015; p. 258. [Google Scholar]
- Gruszka, W. The concept of lichen refugia classification. A proposal based on the case study of Krajeńskie Lakeland, Poland. Ecol. Quest. 2017, 27, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Conacher, A.J.; Dalrymple, J.B. The nine unit landsurface model and pedogeomorphic research. Geoderma 1977, 18, 127–144. [Google Scholar]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jankowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classification, 6th edition—principles, classification scheme and correlations. Soil Sci. Annu. 2019, 70, 71–97. [Google Scholar] [CrossRef] [Green Version]
- Ditzler, C.; Scheffe, K.; Monger, H.C. Soil Science Division Staff. Soil Survey Manual. USDA Handbook 18; Government Printing Office: Washington, DC, USA, 2017; p. 603.
- SFIC. Forest Management Planning Instruction. Part II; State Forest Information Center: Warsaw, Poland, 2012; p. 160. [Google Scholar]
- Wiśniewski, P.; Märker, M. The role of soil-protecting forests in reducing soil erosion in young glacial landscapes of Northern-Central Poland. Geoderma 2019, 337, 1227–1235. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Y.; Wang, S.; Huang, X. Estimation of soil organic carbon storage and its fractions in a small karst watershed. Acta Geochim. 2018, 37, 113–124. [Google Scholar] [CrossRef]
- Mebius, L.J. A rapid method for the determination of organic carbon in soil. Anal. Chim. Acta 1960, 22, 120–124. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Kouzani, A.Z.; Kaynak, A.; Khoo, S.Y.; Norton, M.; Gates, W. Soil bulk density estimation methods: A review. Pedosphere 2018, 28, 581–596. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). ISO 11272-2017. Soil Quality—Determination of Dry Bulk Density; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Walter, K.; Don, A.; Tiemeyer, B.; Freibauer, A. Determining Soil Bulk Density for Carbon Stock Calculations: A Systematic Method Comparison. Soil Sci. Soc. Am. J. 2016, 80, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Jonczak, J. Influence of litho-morphogenetic, hydrologic and anthropogenic factors on sorptive and buffer properties of soils of erosional-denudational valleys: Case study from Sławieńska Plain. Pol. J. Soil Sci. 2012, 45, 205–220. [Google Scholar]
- Indoria, A.K.; Sharma, K.L.; Reddy, K.S. Chapter 18—Hydraulic properties of soil under warming climate. In Climate Change and Soil Interactions; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 473–508. [Google Scholar]
- Przewoźna, B. Changes of bulk density, air-water properties and morphology of soils in basins without outlets as an effect of erosion and anthropogenic denudation (a study from northwestern Poland). Soil Sci. Plant Nutr. 2014, 60, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Kobierski, M. Morphology, Properties and Mineralogical Composition of Eroded Luvisols in Selected Morainic Areas of the Kuyavian and Pomeranian Province; University of Science and Technology: Bydgoszcz, Poland, 2013; p. 121. [Google Scholar]
- Duan, A.; Lei, J.; Hu, X.; Zhang, J.; Du, H.; Zhang, X.; Guo, W.; Sun, J. Effects of Planting Density on Soil Bulk Density, pH and Nutrients of Unthinned Chinese Fir Mature Stands in South Subtropical Region of China. Forests 2019, 10, 351. [Google Scholar] [CrossRef] [Green Version]
- Gałka, B.; Łabaz, B.; Bogacz, A.; Bojko, O.; Kabała, C. Conversion of Norway spruce forests will reduce organic carbon pools in the mountain soils of SW Poland. Geoderma 2014, 213, 287–295. [Google Scholar] [CrossRef]
- Prietzel, J.; Christophel, D. Organic carbon stocks in forest soils of the German Alps. Geoderma 2014, 221–222, 27–39. [Google Scholar] [CrossRef]
- Nadeu, E.; Gobin, A.; Fiener, P.; van Wesemael, B.; van Oost, K. Modelling the impact of agricultural management on soil carbon stocks at the regional scale: The role of lateral fluxes. Glob. Chang. Biol. 2015, 21, 3181–3192. [Google Scholar] [CrossRef] [PubMed]
- Konen, M.; Burras, C.; Sandor, J. Organic carbon, texture, and quantitative color measurement relationships for cultivated soils in north central Iowa. Soil Sci. Soc. Am. J. 2003, 67, 1823–1830. [Google Scholar] [CrossRef]
- Lopes, M.I.M.S.; Ribeiro Dos Santos, A.; Zuliani Sandrin Camargo, C.; Bulbovas, P.; Giampaoli, P.; Domingos, M. Soil chemical and physical status in semideciduous Atlantic Forest fragments affected by atmospheric deposition in central-eastern São Paulo State, Brazil. iForest 2015, 8, 798–808. [Google Scholar] [CrossRef] [Green Version]
- Conforti, M.; Matteucci, G.; Buttafuoco, G. Organic carbon and total nitrogen topsoil stocks, biogenetic natural reserve ‘Marchesale’ (Calabria region, southern Italy). J. Maps 2016, 13, 91–99. [Google Scholar] [CrossRef]
- Percival, H.J.; Parfitt, R.L.; Scott, N.A. Factors controlling soil carbon levels in New Zealand grasslands: Is clay content important? Soil Sci. Soc. Am. J. 2000, 64, 1623–1630. [Google Scholar] [CrossRef]
- Silver, W.L.; Neff, J.; McGroddy, M.; Veldkamp, E.; Keller, M.; Cosme, R. Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 2000, 3, 193–209. [Google Scholar] [CrossRef]
- Bricklemyer, R.S.; Miller, P.R.; Turk, P.J.; Paustian, K.; Keck, T.; Nielsen, G.A. Sensitivity of the century model to scale-related soil texture variability. Soil Sci. Soc. Am. J. 2007, 71, 784–792. [Google Scholar] [CrossRef]
- Logah, V.; Tetteh, E.; Adegah, E.; Mawunyefia, J.; Ofosu, E.; Asante, D. Soil carbon stock and nutrient characteristics of Senna siamea grove in the semi-deciduous forest zone of Ghana. Open Geosci. 2020, 12, 443–451. [Google Scholar] [CrossRef]
Research Cross Section | Soil Pit Number | Position of the Soil Pit * | Land Use ** | SOM (%) | Corg (%) | ρ (g cm−3) | SOCP (kg m−2) |
---|---|---|---|---|---|---|---|
A-B | I | p | r | 0.94 | 0.55 | 1.610 | 2.46 |
II | s | a | 0.72 | 0.42 | 1.593 | 1.66 | |
III | f | a | 0.90 | 0.52 | 1.272 | 1.26 | |
A’-B’ | I | p | f | 0.94 | 0.55 | 1.610 | 2.46 |
II | s | f | 1.85 | 1.07 | 1.624 | 3.14 | |
III | f | r | 0.76 | 0.44 | 1.606 | 1.27 | |
C-D | I | p | a | 0.72 | 0.42 | 1.617 | 1.76 |
II | s | a | 1.35 | 0.78 | 1.600 | 2.88 | |
III | f | a | 0.36 | 0.21 | 1.610 | 0.77 | |
C’-D’ | I | p | f | 0.79 | 0.46 | 1.593 | 1.68 |
II | s | f | 1.48 | 0.86 | 1.477 | 2.03 | |
III | f | f | 1.84 | 1.07 | 1.485 | 2.22 | |
E-F | I | p | a | 0.53 | 0.31 | 1.611 | 1.54 |
II | s | a | 0.48 | 0.28 | 1.560 | 1.22 | |
III | f | a | 0.51 | 0.30 | 1.502 | 1.33 | |
E’-F’ | I | p | f | 0.49 | 0.28 | 1.322 | 0.68 |
II | s | f | 0.78 | 0.45 | 1.299 | 0.88 | |
III | f | f | 0.18 | 0.10 | 1.272 | 0.36 | |
G-H | I | p | a | 1.16 | 0.67 | 1.187 | 2.24 |
II | s | a | 0.91 | 0.53 | 1.388 | 1.90 | |
III | f | a | 1.01 | 0.59 | 1.424 | 2.17 | |
G’-H’ | I | p | f | 1.60 | 0.93 | 1.187 | 3.08 |
II | s | f | 0.77 | 0.45 | 1.176 | 1.58 | |
III | f | f | 0.74 | 0.43 | 1.557 | 1.47 | |
I-J | I | f | a | 0.49 | 0.28 | 1.643 | 1.26 |
II | s | a | 0.53 | 0.31 | 1.544 | 1.19 | |
III | p | a | 0.32 | 0.19 | 1.608 | 0.75 | |
IV | s | a | 0.54 | 0.31 | 1.490 | 1.17 | |
V | f | a | 0.53 | 0.31 | 1.502 | 1.29 | |
I’-J’ | I | f | r | 1.74 | 1.01 | 1.611 | 1.95 |
II | s | r | 0.92 | 0.53 | 1.598 | 1.02 | |
III | p | f | 1.32 | 0.77 | 1.603 | 3.68 | |
IV | s | f | 2.05 | 1.19 | 1.432 | 5.11 | |
V | f | a | 0.48 | 0.28 | 1.606 | 1.34 |
Position of the Soil Pit * | Corg (%) | ρ (g cm−3) | SOCP (kg m−2) | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Average | Min | Max | Average | Min | Max | Average | |
Research cross sections: A-B, C-D, E-F, G-H, I-J | |||||||||
p | 0.19 | 0.67 | 0.43 | 1.19 | 1.62 | 1.53 | 0.75 | 2.46 | 1.75 |
s | 0.28 | 0.78 | 0.44 | 1.39 | 1.60 | 1.53 | 1.17 | 2.88 | 1.67 |
f | 0.21 | 0.59 | 0.37 | 1.27 | 1.64 | 1.49 | 0.77 | 2.17 | 1.35 |
Research cross sections: A’-B’, C’-D’, E’-F’, G’-H’, I’-J’ | |||||||||
p | 0.28 | 0.93 | 0.60 | 1.19 | 1.61 | 1.46 | 0.68 | 3.68 | 2.32 |
s | 0.45 | 1.19 | 0.76 | 1.18 | 1.62 | 1.43 | 0.88 | 5.11 | 2.29 |
f | 0.10 | 1.07 | 0.55 | 1.27 | 1.61 | 1.52 | 0.36 | 2.22 | 1.44 |
Variable | Correlation Coefficient | |
---|---|---|
Agricultural Slopes | Slopes under Soil-Protecting Forests | |
Sand (2.0–0.05 mm) | −0.350 * | −0.153 * |
Silt (0.05–0.002 mm) | 0.347 * | 0.154 * |
Clay (<0.002 mm) | 0.365 * | 0.140 * |
P | 0.262 * | −0.149 * |
K | 0.447 ** | 0.544 ** |
Mg | 0.415 ** | 0.470 * |
pH | −0.213 * | 0.108 * |
Corg | 0.737 *** | 0.843 *** |
ρ | −0.201 * | 0.336 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewski, P.; Märker, M. Comparison of Topsoil Organic Carbon Stocks on Slopes under Soil-Protecting Forests in Relation to the Adjacent Agricultural Slopes. Forests 2021, 12, 390. https://doi.org/10.3390/f12040390
Wiśniewski P, Märker M. Comparison of Topsoil Organic Carbon Stocks on Slopes under Soil-Protecting Forests in Relation to the Adjacent Agricultural Slopes. Forests. 2021; 12(4):390. https://doi.org/10.3390/f12040390
Chicago/Turabian StyleWiśniewski, Paweł, and Michael Märker. 2021. "Comparison of Topsoil Organic Carbon Stocks on Slopes under Soil-Protecting Forests in Relation to the Adjacent Agricultural Slopes" Forests 12, no. 4: 390. https://doi.org/10.3390/f12040390
APA StyleWiśniewski, P., & Märker, M. (2021). Comparison of Topsoil Organic Carbon Stocks on Slopes under Soil-Protecting Forests in Relation to the Adjacent Agricultural Slopes. Forests, 12(4), 390. https://doi.org/10.3390/f12040390