Comparison of Topsoil Organic Carbon Stocks on Slopes under Soil-Protecting Forests in Relation to the Adjacent Agricultural Slopes
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Research cross Section | Soil Pit Number | Position of the Soil Pit * | Land Use ** | Percentage of Particle Size Fractions (mm) | Texture Class *** | Concentration of Available Forms(mg 100g−1) | CaCO3 (%) | pH KCl | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2.0–0.05 | 0.05–0.002 | <0.002 | P | K | Mg | |||||||
A-B | I | p | r | 55.4 | 40.8 | 3.8 | SL | 10.4 | 12.0 | 7.5 | - | 6.9 |
II | s | a | 53.9 | 42.1 | 3.9 | SL | 18.7 | 12.5 | 6.0 | 0.85 | 7.3 | |
III | f | a | 98.1 | 1.9 | 0.0 | S | 11.2 | 2.0 | 0.8 | 0.30 | 4.7 | |
A’-B’ | I | p | f | 55.4 | 40.8 | 3.8 | SL | 10.4 | 12.0 | 7.5 | - | 6.9 |
II | s | f | 57.3 | 39.2 | 3.5 | SL | 3.4 | 8.5 | 13.1 | 0.15 | 7.1 | |
III | f | r | 75.2 | 23.1 | 1.7 | LS | 2.8 | 20.0 | 5.2 | - | 5.4 | |
C-D | I | p | a | 72.1 | 25.3 | 2.6 | SL | 19.9 | 18.0 | 6.0 | - | 5.0 |
II | s | a | 66.4 | 30.4 | 3.2 | SL | 18.3 | 31.0 | 6.2 | 0.35 | 5.6 | |
III | f | a | 81.0 | 17.4 | 1.6 | LS | 11.0 | 15.5 | 3.0 | traces | 5.5 | |
C’-D’ | I | p | f | 74.9 | 23.2 | 1.9 | LS | 4.5 | 5.5 | 1.8 | - | 3.8 |
II | s | f | 81.0 | 17.9 | 1.1 | LS | 1.8 | 4.5 | 0.9 | - | 3.5 | |
III | f | f | 79.7 | 19.5 | 0.8 | LS | 2.8 | 8.5 | 2.9 | - | 3.2 | |
E-F | I | p | a | 78.2 | 19.6 | 2.2 | LS | 53.0 | 7.5 | 4.4 | 2.46 | 7.4 |
II | s | a | 86.7 | 12.1 | 1.2 | S | 24.6 | 7.0 | 3.3 | 0.70 | 7.2 | |
III | f | a | 84.0 | 14.6 | 1.4 | LS | 36.0 | 9.0 | 4.1 | 0.75 | 7.4 | |
E’-F’ | I | p | f | 81.9 | 17.0 | 1.1 | LS | 6.2 | 2.5 | 1.3 | - | 4.1 |
II | s | f | 90.4 | 9.6 | 0.0 | S | 2.7 | 1.0 | 0.9 | - | 3.7 | |
III | f | f | 90.2 | 9.4 | 0.4 | S | 5.9 | 1.5 | 1.6 | - | 4.3 | |
G-H | I | p | a | 92.1 | 7.5 | 0.4 | S | 23.9 | 5.5 | 2.2 | traces | 5.8 |
II | s | a | 87.8 | 11.5 | 0.7 | S | 22.9 | 6.0 | 2.0 | traces | 4.4 | |
III | f | a | 81.2 | 17.3 | 1.5 | LS | 20.3 | 10.0 | 3.4 | - | 4.6 | |
G’-H’ | I | p | f | 93.8 | 6.2 | 0.0 | S | 13.0 | 1.5 | 0.5 | - | 3.6 |
II | s | f | 95.2 | 4.6 | 0.2 | S | 15.9 | 1.5 | 0.5 | - | 4.2 | |
III | f | f | 89.4 | 10.0 | 0.6 | S | 9.5 | 2.0 | 1.0 | - | 4.0 | |
I-J | I | f | a | 68.2 | 29.2 | 2.6 | SL | 18.2 | 9.8 | 3.3 | 0.20 | 7.2 |
II | s | a | 83.8 | 14.9 | 1.3 | LS | 9.7 | 5.0 | 2.0 | 2.54 | 7.7 | |
III | p | a | 77.1 | 21.0 | 1.9 | LS | 3.8 | 4.0 | 1.8 | - | 4.8 | |
IV | s | a | 74.7 | 23.3 | 2.0 | LS | 13.2 | 9.0 | 4.2 | 0.55 | 7.3 | |
V | f | a | 74.6 | 23.5 | 1.9 | LS | 19.0 | 9.0 | 3.6 | 0.93 | 7.3 | |
I’-J’ | I | f | r | 62.6 | 35.0 | 2.4 | SL | 31.0 | 35.0 | 15.1 | traces | 6.5 |
II | s | r | 87.1 | 12.0 | 0.9 | S | 7.3 | 9.0 | 3.4 | 2.56 | 7.4 | |
III | p | f | 82.5 | 16.3 | 1.2 | LS | 5.4 | 10.5 | 3.4 | - | 4.1 | |
IV | s | f | 90.2 | 9.6 | 0.2 | S | 2.0 | 6.0 | 5.1 | - | 3.6 | |
V | f | a | 77.4 | 21.1 | 1.5 | LS | 18.2 | 13.0 | 3.2 | 0.35 | 7.2 |
References
- Degórski, M. Influence of forest management into the carbon storage in soil. Monit. Sr. Przyr. 2005, 6, 75–83. [Google Scholar]
- Ontl, T.A.; Schulte, L.A. Soil Carbon Storage. Nat. Educ. Knowl. 2012, 3, 35. [Google Scholar]
- Lei, Z.; Yu, D.; Zhou, F.; Zhang, Y.; Yu, D.; Zhou, Y.; Han, Y. Changes in soil organic carbon and its influencing factors in the growth of Pinus sylvestris var. mongolica plantation in Horqin Sandy Land, Northeast China. Sci. Rep. 2019, 9, 16453. [Google Scholar] [CrossRef] [PubMed]
- Schillaci, C.; Acutis, M.; Lombardo, L.; Lipani, A.; Fantappiè, M.; Märker, M.; Saia, S. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Sci. Total. Environ. 2017, 601–602, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Szopka, K.; Kabała, C.; Karczewska, A.; Jezierski, P.; Bogacz, A.; Waroszewski, J. The pools of soil organic carbon accumulated in the surface layers of forest soils in the Karkonosze Mountains, SW Poland. Soil Sci. Ann. 2016, 67, 46–56. [Google Scholar] [CrossRef][Green Version]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Martin, D.; Tarsem, L.; Sachdev, C.B.; Sharma, J.P. Soil organic carbon storage changes with climate change, landform and land use conditions in Garwal hills of the Indian Himalayan mountains. Agric. Ecosyst. Environ. 2010, 138, 64–73. [Google Scholar] [CrossRef]
- Sinoga, J.D.R.; Pariente, S.; Diaz, A.R.; Murillo, J.F.M. Variability of relationship between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditio (South of Spain). Catena 2012, 94, 17–25. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Fasham, M.J.R.; Goulden, M.L.; Heimann, M.; Jaramillo, V.J.; Kheshgi, H.S.; Le Quere, C.; Scholes, R.J.; Wallace, D.W.R. Climate change. The Scientific Basis IPCC. Chapter 3. In The Carbon Cycle and Atmospheric Carbon Dioxide; Cambridge University Press: Cambridge, UK, 2001; pp. 183–237. [Google Scholar]
- Błońska, E.; Lasota, J. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils. Forests 2017, 8, 448. [Google Scholar] [CrossRef]
- Zwydak, M.; Błońska, E.; Lasota, J. Organic carbon accumulation in soil of different forest site types. Sylwan 2017, 161, 62–70. [Google Scholar]
- Abdullahi, A.C.; Siwar, C.; Shaharudin, M.I.; Anizan, I. Carbon Sequestration in Soils: The Opportunities and Challenges. In Carbon Capture, Utilization and Sequestration; Agarwal, R.K., Ed.; IntechOpen: Rijeka, Croatia, 2018; pp. 3–15. [Google Scholar]
- Hendrickson, O. Influences of global change on carbon sequestration by agricultural and forest soils. Environ. Rev. 2003, 11, 161–192. [Google Scholar] [CrossRef]
- Borrelli, P.; Paustian, K.; Panagos, P.; Jones, A.; Schütt, B.; Lugato, E. Effect of Good Agricultural and Environmental Conditions on erosion and soil organic carbon balance: A national case study. Land Use Policy 2016, 50, 408–421. [Google Scholar] [CrossRef]
- Dvorak, J.; Novak, L. Soil Conservation and Silviculture, 1st ed.; Elsevier: Amsterdam, The Netherlands; London, UK; New York, NY, USA; Tokyo, Japan, 1994; p. 396. [Google Scholar]
- Gray, D.H.; Sotir, R.B. Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control; John Wiley & Sons: New York, NY, USA, 1996; p. 194. [Google Scholar]
- Silva, G.L.; Lima, H.V.; Campanha, M.M.; Gilkes, R.J.; Oliveira, T.S. Soil physical quality of Luvisols under agroforestry, natural vegetation and conventional crop management systems in the Brazilian semi-arid region. Geoderma 2011, 167–168, 61–70. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Gray, D.H.; Leiser, A.T. Biotechnical Slope Protection and Erosion Control; Krieger Publishing Company: Malabar, FL, USA, 1982; p. 271. [Google Scholar]
- Lal, R. Water management in various crop production systems related to soil tillage. Soil Tillage Res. 1994, 30, 169–185. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion and Conservation, 3rd ed.; Blackwell Publishing: Oxford, MI, USA, 2005; p. 304. [Google Scholar]
- Davie, T. Forests for soil and water conservation—What does the science say? N. Z. J. For. 2006, 51, 8–9. [Google Scholar]
- Brang, P.; Schönenberger, W.; Ott, E.; Gardner, R.H. Forests as protection from natural hazards. In The Forests Handbook; Evans, J., Ed.; Blackwell Science Ltd.: Oxford, MI, USA, 2008; Volume 2, pp. 53–81. [Google Scholar]
- Germer, S.; Neill, C.; Krusche, A.V.; Elsenbeer, H. Influence of land-use change on near-surface hydrological processes: Undisturbed forest to pasture. J. Hydrol. 2010, 380, 473–480. [Google Scholar] [CrossRef]
- Galatsidas, S.; Amanatidou, D.; Soutsas, K. Applying multivariate statistics into forest management planning: Potential conditions of erosion danger in the forest of Thessaloniki, Greece. J. Environ. Prot. Ecol. 2015, 16, 233–242. [Google Scholar]
- Miura, S.; Amacher, M.; Hofer, T.; San-Miguel-Ayanz, J.; Thackway, R. Protective functions and ecosystem services of global forests in the past quarter-century. For. Ecol. Manag. 2015, 352, 35–46. [Google Scholar] [CrossRef]
- Gerasimova, M.; Lebedeva-Verba, M. Topsoils—Mollic, Takyric and Yermic Horizons. In Interpretation of Micromorphological Features of Soils and Regoliths; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 351–368. [Google Scholar]
- Wiśniewski, P.; Kistowski, M. Structure and importance of soil-protecting forests in the areas administered by the RDSF Toruń. Bull. Geogr. Phys. Geogr. Ser. 2015, 8, 123–132. [Google Scholar] [CrossRef]
- Błażejczyk, K. Climate and bioclimate of Poland. In Natural and Human Environment of Poland. A Geographical Overview; Degórski, M., Ed.; Polish Academy of Sciences; Institute of Geography and Spatial Organization Polish Geographical Society: Warsaw, Poland, 2006; pp. 31–48. [Google Scholar]
- Kondracki, J. Regional Geography of Poland; Polish Scientific Publishers: Warsaw, Poland, 2002; p. 441. [Google Scholar]
- Jankowski, M.; Przewoźna, B.; Bednarek, R. Topographical inversion of sandy soils due to local conditions in Northern Poland. Geomorphology 2011, 135, 277–283. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 192. [Google Scholar]
- Kabała, C. (Ed.) Soils of Lower Silesia: Origins, Diversity and Protection; Polish Society of Soil Science Wrocław Branch, Polish Humic Substances Society: Wrocław, Poland, 2015; p. 258. [Google Scholar]
- Gruszka, W. The concept of lichen refugia classification. A proposal based on the case study of Krajeńskie Lakeland, Poland. Ecol. Quest. 2017, 27, 65–75. [Google Scholar] [CrossRef][Green Version]
- Conacher, A.J.; Dalrymple, J.B. The nine unit landsurface model and pedogeomorphic research. Geoderma 1977, 18, 127–144. [Google Scholar]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jankowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classification, 6th edition—principles, classification scheme and correlations. Soil Sci. Annu. 2019, 70, 71–97. [Google Scholar] [CrossRef]
- Ditzler, C.; Scheffe, K.; Monger, H.C. Soil Science Division Staff. Soil Survey Manual. USDA Handbook 18; Government Printing Office: Washington, DC, USA, 2017; p. 603.
- SFIC. Forest Management Planning Instruction. Part II; State Forest Information Center: Warsaw, Poland, 2012; p. 160. [Google Scholar]
- Wiśniewski, P.; Märker, M. The role of soil-protecting forests in reducing soil erosion in young glacial landscapes of Northern-Central Poland. Geoderma 2019, 337, 1227–1235. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Y.; Wang, S.; Huang, X. Estimation of soil organic carbon storage and its fractions in a small karst watershed. Acta Geochim. 2018, 37, 113–124. [Google Scholar] [CrossRef]
- Mebius, L.J. A rapid method for the determination of organic carbon in soil. Anal. Chim. Acta 1960, 22, 120–124. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Kouzani, A.Z.; Kaynak, A.; Khoo, S.Y.; Norton, M.; Gates, W. Soil bulk density estimation methods: A review. Pedosphere 2018, 28, 581–596. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). ISO 11272-2017. Soil Quality—Determination of Dry Bulk Density; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Walter, K.; Don, A.; Tiemeyer, B.; Freibauer, A. Determining Soil Bulk Density for Carbon Stock Calculations: A Systematic Method Comparison. Soil Sci. Soc. Am. J. 2016, 80, 579–591. [Google Scholar] [CrossRef]
- Jonczak, J. Influence of litho-morphogenetic, hydrologic and anthropogenic factors on sorptive and buffer properties of soils of erosional-denudational valleys: Case study from Sławieńska Plain. Pol. J. Soil Sci. 2012, 45, 205–220. [Google Scholar]
- Indoria, A.K.; Sharma, K.L.; Reddy, K.S. Chapter 18—Hydraulic properties of soil under warming climate. In Climate Change and Soil Interactions; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 473–508. [Google Scholar]
- Przewoźna, B. Changes of bulk density, air-water properties and morphology of soils in basins without outlets as an effect of erosion and anthropogenic denudation (a study from northwestern Poland). Soil Sci. Plant Nutr. 2014, 60, 30–37. [Google Scholar] [CrossRef][Green Version]
- Kobierski, M. Morphology, Properties and Mineralogical Composition of Eroded Luvisols in Selected Morainic Areas of the Kuyavian and Pomeranian Province; University of Science and Technology: Bydgoszcz, Poland, 2013; p. 121. [Google Scholar]
- Duan, A.; Lei, J.; Hu, X.; Zhang, J.; Du, H.; Zhang, X.; Guo, W.; Sun, J. Effects of Planting Density on Soil Bulk Density, pH and Nutrients of Unthinned Chinese Fir Mature Stands in South Subtropical Region of China. Forests 2019, 10, 351. [Google Scholar] [CrossRef]
- Gałka, B.; Łabaz, B.; Bogacz, A.; Bojko, O.; Kabała, C. Conversion of Norway spruce forests will reduce organic carbon pools in the mountain soils of SW Poland. Geoderma 2014, 213, 287–295. [Google Scholar] [CrossRef]
- Prietzel, J.; Christophel, D. Organic carbon stocks in forest soils of the German Alps. Geoderma 2014, 221–222, 27–39. [Google Scholar] [CrossRef]
- Nadeu, E.; Gobin, A.; Fiener, P.; van Wesemael, B.; van Oost, K. Modelling the impact of agricultural management on soil carbon stocks at the regional scale: The role of lateral fluxes. Glob. Chang. Biol. 2015, 21, 3181–3192. [Google Scholar] [CrossRef] [PubMed]
- Konen, M.; Burras, C.; Sandor, J. Organic carbon, texture, and quantitative color measurement relationships for cultivated soils in north central Iowa. Soil Sci. Soc. Am. J. 2003, 67, 1823–1830. [Google Scholar] [CrossRef]
- Lopes, M.I.M.S.; Ribeiro Dos Santos, A.; Zuliani Sandrin Camargo, C.; Bulbovas, P.; Giampaoli, P.; Domingos, M. Soil chemical and physical status in semideciduous Atlantic Forest fragments affected by atmospheric deposition in central-eastern São Paulo State, Brazil. iForest 2015, 8, 798–808. [Google Scholar] [CrossRef]
- Conforti, M.; Matteucci, G.; Buttafuoco, G. Organic carbon and total nitrogen topsoil stocks, biogenetic natural reserve ‘Marchesale’ (Calabria region, southern Italy). J. Maps 2016, 13, 91–99. [Google Scholar] [CrossRef]
- Percival, H.J.; Parfitt, R.L.; Scott, N.A. Factors controlling soil carbon levels in New Zealand grasslands: Is clay content important? Soil Sci. Soc. Am. J. 2000, 64, 1623–1630. [Google Scholar] [CrossRef]
- Silver, W.L.; Neff, J.; McGroddy, M.; Veldkamp, E.; Keller, M.; Cosme, R. Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 2000, 3, 193–209. [Google Scholar] [CrossRef]
- Bricklemyer, R.S.; Miller, P.R.; Turk, P.J.; Paustian, K.; Keck, T.; Nielsen, G.A. Sensitivity of the century model to scale-related soil texture variability. Soil Sci. Soc. Am. J. 2007, 71, 784–792. [Google Scholar] [CrossRef]
- Logah, V.; Tetteh, E.; Adegah, E.; Mawunyefia, J.; Ofosu, E.; Asante, D. Soil carbon stock and nutrient characteristics of Senna siamea grove in the semi-deciduous forest zone of Ghana. Open Geosci. 2020, 12, 443–451. [Google Scholar] [CrossRef]
Research Cross Section | Soil Pit Number | Position of the Soil Pit * | Land Use ** | SOM (%) | Corg (%) | ρ (g cm−3) | SOCP (kg m−2) |
---|---|---|---|---|---|---|---|
A-B | I | p | r | 0.94 | 0.55 | 1.610 | 2.46 |
II | s | a | 0.72 | 0.42 | 1.593 | 1.66 | |
III | f | a | 0.90 | 0.52 | 1.272 | 1.26 | |
A’-B’ | I | p | f | 0.94 | 0.55 | 1.610 | 2.46 |
II | s | f | 1.85 | 1.07 | 1.624 | 3.14 | |
III | f | r | 0.76 | 0.44 | 1.606 | 1.27 | |
C-D | I | p | a | 0.72 | 0.42 | 1.617 | 1.76 |
II | s | a | 1.35 | 0.78 | 1.600 | 2.88 | |
III | f | a | 0.36 | 0.21 | 1.610 | 0.77 | |
C’-D’ | I | p | f | 0.79 | 0.46 | 1.593 | 1.68 |
II | s | f | 1.48 | 0.86 | 1.477 | 2.03 | |
III | f | f | 1.84 | 1.07 | 1.485 | 2.22 | |
E-F | I | p | a | 0.53 | 0.31 | 1.611 | 1.54 |
II | s | a | 0.48 | 0.28 | 1.560 | 1.22 | |
III | f | a | 0.51 | 0.30 | 1.502 | 1.33 | |
E’-F’ | I | p | f | 0.49 | 0.28 | 1.322 | 0.68 |
II | s | f | 0.78 | 0.45 | 1.299 | 0.88 | |
III | f | f | 0.18 | 0.10 | 1.272 | 0.36 | |
G-H | I | p | a | 1.16 | 0.67 | 1.187 | 2.24 |
II | s | a | 0.91 | 0.53 | 1.388 | 1.90 | |
III | f | a | 1.01 | 0.59 | 1.424 | 2.17 | |
G’-H’ | I | p | f | 1.60 | 0.93 | 1.187 | 3.08 |
II | s | f | 0.77 | 0.45 | 1.176 | 1.58 | |
III | f | f | 0.74 | 0.43 | 1.557 | 1.47 | |
I-J | I | f | a | 0.49 | 0.28 | 1.643 | 1.26 |
II | s | a | 0.53 | 0.31 | 1.544 | 1.19 | |
III | p | a | 0.32 | 0.19 | 1.608 | 0.75 | |
IV | s | a | 0.54 | 0.31 | 1.490 | 1.17 | |
V | f | a | 0.53 | 0.31 | 1.502 | 1.29 | |
I’-J’ | I | f | r | 1.74 | 1.01 | 1.611 | 1.95 |
II | s | r | 0.92 | 0.53 | 1.598 | 1.02 | |
III | p | f | 1.32 | 0.77 | 1.603 | 3.68 | |
IV | s | f | 2.05 | 1.19 | 1.432 | 5.11 | |
V | f | a | 0.48 | 0.28 | 1.606 | 1.34 |
Position of the Soil Pit * | Corg (%) | ρ (g cm−3) | SOCP (kg m−2) | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Average | Min | Max | Average | Min | Max | Average | |
Research cross sections: A-B, C-D, E-F, G-H, I-J | |||||||||
p | 0.19 | 0.67 | 0.43 | 1.19 | 1.62 | 1.53 | 0.75 | 2.46 | 1.75 |
s | 0.28 | 0.78 | 0.44 | 1.39 | 1.60 | 1.53 | 1.17 | 2.88 | 1.67 |
f | 0.21 | 0.59 | 0.37 | 1.27 | 1.64 | 1.49 | 0.77 | 2.17 | 1.35 |
Research cross sections: A’-B’, C’-D’, E’-F’, G’-H’, I’-J’ | |||||||||
p | 0.28 | 0.93 | 0.60 | 1.19 | 1.61 | 1.46 | 0.68 | 3.68 | 2.32 |
s | 0.45 | 1.19 | 0.76 | 1.18 | 1.62 | 1.43 | 0.88 | 5.11 | 2.29 |
f | 0.10 | 1.07 | 0.55 | 1.27 | 1.61 | 1.52 | 0.36 | 2.22 | 1.44 |
Variable | Correlation Coefficient | |
---|---|---|
Agricultural Slopes | Slopes under Soil-Protecting Forests | |
Sand (2.0–0.05 mm) | −0.350 * | −0.153 * |
Silt (0.05–0.002 mm) | 0.347 * | 0.154 * |
Clay (<0.002 mm) | 0.365 * | 0.140 * |
P | 0.262 * | −0.149 * |
K | 0.447 ** | 0.544 ** |
Mg | 0.415 ** | 0.470 * |
pH | −0.213 * | 0.108 * |
Corg | 0.737 *** | 0.843 *** |
ρ | −0.201 * | 0.336 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewski, P.; Märker, M. Comparison of Topsoil Organic Carbon Stocks on Slopes under Soil-Protecting Forests in Relation to the Adjacent Agricultural Slopes. Forests 2021, 12, 390. https://doi.org/10.3390/f12040390
Wiśniewski P, Märker M. Comparison of Topsoil Organic Carbon Stocks on Slopes under Soil-Protecting Forests in Relation to the Adjacent Agricultural Slopes. Forests. 2021; 12(4):390. https://doi.org/10.3390/f12040390
Chicago/Turabian StyleWiśniewski, Paweł, and Michael Märker. 2021. "Comparison of Topsoil Organic Carbon Stocks on Slopes under Soil-Protecting Forests in Relation to the Adjacent Agricultural Slopes" Forests 12, no. 4: 390. https://doi.org/10.3390/f12040390
APA StyleWiśniewski, P., & Märker, M. (2021). Comparison of Topsoil Organic Carbon Stocks on Slopes under Soil-Protecting Forests in Relation to the Adjacent Agricultural Slopes. Forests, 12(4), 390. https://doi.org/10.3390/f12040390