Tree Rings of European Beech (Fagus sylvatica L.) Indicate the Relationship with Solar Cycles during Climate Change in Central and Southern Europe
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Tree-Ring Characteristics and Extreme Climatic Events
3.2. European Beech Tree-Ring Growth, Sunspot Number and Climate Variations
3.3. Cross-Correlation up to Fifteen Years Back in Relation to Tree Ring Growth
3.4. Spectral Analysis
4. Discussion
4.1. Different Growth Conditions of European Beech in Central Europe and the Southern Apennines
4.2. Solar Cycles, Climate Change and the Possible Link to European Beech
4.3. Feedback and the Relationship of Radial Growth to the Sunspot Number Across the Time Frame
4.4. Recorded Cycles in Beech Tree Rings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EUFORGEN. Fagus sylvatica, European Beech. Available online: http://www.euforgen.org/species/fagus-sylvatica/ (accessed on 10 January 2021).
- Dorado-Liñán, I.; Piovesan, G.; Martínez-Sancho, E.; Gea-Izquierdo, G.; Zang, C.; Cañellas, I.; Castagneri, D.; Di Filippo, A.; Gutiérrez, E.; Ewald, J.; et al. Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Glob. Chang. Biol. 2019, 25, 1296–1314. [Google Scholar] [CrossRef]
- Geßler, A.; Keitel, C.; Matyssek, R.; Seiler, W.; Rennenberg, H. Potential risks for European beech (Fagus sylvatica L.) in a changing climate Potential risks for European beech (Fagus sylvatica L.). Trees 2007, 21, 1–11. [Google Scholar] [CrossRef]
- Tegel, W.; Seim, A.; Hakelberg, D.; Hoffmann, S.; Panev, M.; Westphal, T.; Büntgen, U. A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur. J. For. Res. 2014, 133, 61–71. [Google Scholar] [CrossRef]
- Eilmann, B.; Sterck, F.; Wegner, L.; De Vries, S.M.G.; Von Arx, G.; Mohren, G.M.J.; Den Ouden, J. Wood structural differences between northern and southern beech provenances growing at a moderate site. Tree Physiol. 2014, 34, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Lenz, A.; Hoch, G.; Vitasse, Y. Fast acclimation of freezing resistance suggests no influence of winter minimum temperature on the range limit of European beech. Tree Physiol. 2016, 36, 490–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magri, D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 2008, 35, 450–463. [Google Scholar] [CrossRef]
- Kramer, K.; Degen, B.; Buschbom, J.; Hickler, T.; Thuiller, W.; Sykes, M.T.; de Winter, W. Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change-Range, abundance, genetic diversity and adaptive response. For. Ecol. Manag. 2010, 259, 2213–2222. [Google Scholar] [CrossRef]
- Penuelas, J.; Boada, M. A global change-induced biome shift in the Montseny mountains (NE Spain). Glob. Chang. Biol. 2003, 9, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Kolář, T.; Čermák, P.; Trnka, M.; Žid, T.; Rybníček, M. Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agric. For. Meteorol. 2017, 239, 24–33. [Google Scholar] [CrossRef]
- Muffler, L.; Weigel, R.; Hacket-Pain, A.J.; Klisz, M.; van der Maaten, E.; Wilmking, M.; Kreyling, J.; van der Maaten-Theunissen, M. Lowest drought sensitivity and decreasing growth synchrony towards the dry distribution margin of European beech. J. Biogeogr. 2020, 47, 1910–1921. [Google Scholar] [CrossRef]
- Bolte, A.; Hilbrig, L.; Grundmann, B.; Kampf, F.; Brunet, J.; Roloff, A. Climate change impacts on stand structure and competitive interactions in a southern Swedish spruce-beech forest. Eur. J. For. Res. 2010, 129, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Vacek, Z.; Vacek, S.; Slanař, J.; Bílek, L.; Bulušek, D.; Štefančík, I.; Králíček, I.; Vančura, K. Adaption of Norway spruce and European beech forests under climate change: From resistance to close-to-nature silviculture. Cent. Eur. For. J. 2019, 65, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Tumajer, J.; Altman, J.; Štěpánek, P.; Treml, V.; Doležal, J.; Cienciala, E. Increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree-ring network. Agric. For. Meteorol. 2017, 247, 56–64. [Google Scholar] [CrossRef]
- Vacek, S.; Moucha, P.; Bílek, L.; Mikeska, M.; Remeš, J.; Simon, J.; Hynek, V.; Šrůtka, P.; Schwarz, O.; Mánek, J.; et al. Péče o lesní ekosystémy v chráněných územích ČR. [Management of Forest Ecosystems in the Protected Areas of the Czech Republic]; Ministry of the Environment of the Czech Republic: Prague, Czech Republic, 2012. [Google Scholar]
- Conte, E.; Lombardi, F.; Battipaglia, G.; Palombo, C.; Altieri, S.; La Porta, N.; Marchetti, M.; Tognetti, R. Growth dynamics, climate sensitivity and water use efficiency in pure vs. mixed pine and beech stands in Trentino (Italy). For. Ecol. Manag. 2018, 409, 707–718. [Google Scholar] [CrossRef]
- Etzold, S.; Ziemińska, K.; Rohner, B.; Bottero, A.; Bose, A.K.; Ruehr, N.K.; Zingg, A.; Rigling, A. One Century of Forest Monitoring Data in Switzerland Reveals Species- and Site-Specific Trends of Climate-Induced Tree Mortality. Front. Plant Sci. 2019, 10, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aertsen, W.; Janssen, E.; Kint, V.; Bontemps, J.D.; Van Orshoven, J.; Muys, B. Long-term growth changes of common beech (Fagus sylvatica L.) are less pronounced on highly productive sites. For. Ecol. Manag. 2014, 312, 252–259. [Google Scholar] [CrossRef]
- Vacek, S.; Prokůpková, A.; Vacek, Z.; Bulušek, D.; Šimůnek, V.; Králíček, I.; Prausová, R.; Hájek, V. Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe. J. For. Sci. 2019, 65, 331–345. [Google Scholar] [CrossRef]
- Dittmar, C.; Zech, W.; Elling, W. Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—A dendroecological study. For. Ecol. Manag. 2003, 173, 63–78. [Google Scholar] [CrossRef]
- Šimůnek, V.; Vacek, Z.; Vacek, S.; Králíček, I.; Vančura, K. Growth variability of European beech (Fagus sylvatica L.) natural forests: Dendroclimatic study from Krkonoše National Park. Cent. Eur. For. J. 2019, 65, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Králíček, I.; Vacek, Z.; Vacek, S.; Remeš, J.; Bulušek, D.; Král, J.; Štefančík, I.; Putalová, T. Dynamics and structure of mountain autochthonous spruce-beech forests: Impact of hilltop phenomenon, air pollutants and climate. Dendrobiology 2017, 77, 119–137. [Google Scholar] [CrossRef]
- Vacek, S.; Hůnová, I.; Vacek, Z.; Hejcmanová, P.; Podrázský, V.; Král, J.; Putalová, T.; Moser, W.K. Effects of air pollution and climatic factors on Norway spruce forests in the Orlické hory Mts. (Czech Republic), 1979–2014. Eur. J. For. Res. 2015, 134, 1127–1142. [Google Scholar] [CrossRef]
- Špulák, O.; Souček, J. The Sibyla model and development of beech forests affected by air pollution. Cent. Eur. J. Biol. 2010, 5, 317–383. [Google Scholar] [CrossRef]
- Kooijman, A.M.; Emmer, I.M.; Fanta, J.; Sevink, J. Natural regeneration potential of the degraded Krkonoše forests. Land Degrad. Dev. 2000, 11, 459–473. [Google Scholar] [CrossRef]
- Vacek, S.; Vacek, Z.; Bílek, L.; Nosková, I.; Schwarz, O. Structure and development of forest stands on permanent research plots in the Krkonoše Mts. J. For. Sci. 2010, 56, 518–530. [Google Scholar] [CrossRef] [Green Version]
- Piovesan, G.; Biondi, F.; Di Filippo, A.; Alessandrini, A.; Maugeri, M. Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob. Chang. Biol. 2008, 14, 1265–1281. [Google Scholar] [CrossRef]
- Filippo, A.D.I.; Biondi, F.; Maugeri, M. Bioclimate and growth history affect beech lifespan in the Italian Alps and Apennines. Glob. Chang. Biol. 2012, 960–972. [Google Scholar] [CrossRef]
- Tognetti, R.; Lasserre, B.; Di Febbraro, M.; Marchetti, M. Modeling regional drought-stress indices for beech forests in Mediterranean mountains based on tree-ring data. Agric. For. Meteorol. 2019, 265, 110–120. [Google Scholar] [CrossRef]
- Di Filippo, A.; Biondi, F.; Čufar, K.; De Luis, M.; Grabner, M.; Maugeri, M.; Presutti Saba, E.; Schirone, B.; Piovesan, G. Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: Spatial and altitudinal climatic signals identified through a tree-ring network. J. Biogeogr. 2007, 34, 1873–1892. [Google Scholar] [CrossRef]
- Tartaglione, N.; Toniazzo, T.; Orsolini, Y.; Otterå, O.H. Impact of solar irradiance and geomagnetic activity on polar NOx, ozone and temperature in WACCM simulations. J. Atmos. Sol. Terr. Phys. 2020, 209, 105398. [Google Scholar] [CrossRef]
- Lockwood, M.; Owens, M.; Hawkins, E.; Jones, G.S.; Usoskin, I. Frost fairs, sunspots and the Little Ice Age. Astron. Geophys. 2017, 58, 2.17–2.23. [Google Scholar] [CrossRef] [Green Version]
- Mauas, P.J.D.; Buccino, A.P.; Flamenco, E. Solar activity forcing of terrestrial hydrological phenomena. Proc. Int. Astron. Union 2016, 12, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Antico, A.; Torres, M.E. Evidence of a decadal solar signal in the Amazon River: 1903 to 2013. Geophys. Res. Lett. 2016, 42, 10–782. [Google Scholar] [CrossRef] [Green Version]
- Li, H.Y.; Xue, L.J.; Wang, X.J. Relationship between solar activity and flood/drought disasters of the Second Songhua river basin. J. Water Clim. Chang. 2015, 6, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Almedeij, J. Long-term periodic drought modeling. Stoch. Environ. Res. Risk Assess. 2016, 30, 901–910. [Google Scholar] [CrossRef]
- Brugnara, Y.; Brönnimann, S.; Luterbacher, J.; Rozanov, E. Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets. Atmos. Chem. Phys. 2013, 13, 6275–6288. [Google Scholar] [CrossRef] [Green Version]
- Ormes, J.F. Cosmic rays and climate. Adv. Sp. Res. 2018, 62, 2880–2891. [Google Scholar] [CrossRef]
- Easterbrook, D.J. Cause of global climate changes: Correlation of global temperature, sunspots, solar irradiance, cosmic rays, and radiocarbon and berylium production rates. In Evidence-Based Climate Science Data Opposing CO2 Emissions as the Primary Source of Global Warming, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 245–262. [Google Scholar] [CrossRef]
- Tsiropoula, G. Signatures of solar activity variability in meteorological parameters. J. Atmos. Sol. Terr. Phys. 2003, 65, 469–482. [Google Scholar] [CrossRef]
- Singh, A.K.; Bhargawa, A. Delineation of possible influence of solar variability and galactic cosmic rays on terrestrial climate parameters. Adv. Sp. Res. 2020, 65, 1831–1842. [Google Scholar] [CrossRef]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Jayaraman, A.; Lubin, D.; Ramachandran, S.; Ramanathan, V.; Woodbridge, E. Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January-February 1996 pre-INDOEX cruise Z 10-. J. Geophys. Res. 1998, 103, 827–836. [Google Scholar] [CrossRef]
- Maghrabi, A.; Kudela, K. Relationship between time series cosmic ray data and aerosol optical properties: 1999–2015. J. Atmos. Sol. Terr. Phys. 2019, 190, 36–44. [Google Scholar] [CrossRef]
- Cecchini, S.; Galli, M.; Nanni, T.; Ruggiero, L. Solar variability and ring widths in fossil trees. Il Nuovo Cim. C 1996, 19, 527–536. [Google Scholar] [CrossRef]
- Muraki, Y.; Nakamura, T.; Kitagawa, H.; Masuda, K.; Nagaya, K.; Miyahara, H. Transition of solar cycle length in association with the occurrence of grand solar minima indicated by radiocarbon content in tree-rings. Quat. Geochronol. 2008, 3, 208–212. [Google Scholar] [CrossRef]
- Lüdecke, H.J.; Cina, R.; Dammschneider, H.J.; Lüning, S. Decadal and multidecadal natural variability in European temperature. J. Atmos. Sol. Terr. Phys. 2020, 205, 105294. [Google Scholar] [CrossRef]
- Bice, D.; Montanari, A.; Vučetić, V.; Vučetić, M. The influence of regional and global climatic oscillations on Croatian climate. Int. J. Climatol. 2012, 32, 1537–1557. [Google Scholar] [CrossRef]
- Laurenz, L.; Lüdecke, H.J.; Lüning, S. Influence of solar activity changes on European rainfall. J. Atmos. Sol. Terr. Phys. 2019, 185, 29–42. [Google Scholar] [CrossRef]
- Le Mouël, J.L.; Lopes, F.; Courtillot, V. A Solar Signature in Many Climate Indices. J. Geophys. Res. Atmos. 2019, 124, 2600–2619. [Google Scholar] [CrossRef]
- Piovesan, G.; Schirone, B. Winter North Atlantic oscillation effects on the tree rings of the Italian beech (Fagus sylvatica L.). Int. J. Biometeorol. 2000, 44, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Šimůnek, V.; Sharma, R.P.; Vacek, Z.; Vacek, S.; Hůnová, I. Sunspot area as unexplored trend inside radial growth of European beech in Krkonoše Mountains: A forest science from different perspective. Eur. J. For. Res. 2020. [Google Scholar] [CrossRef]
- Šimůnek, V.; Vacek, Z.; Sharma, R.; Vacek, S. Sunspot Cycles as the Underlaying Factor of European Beech Natural Developmen. In Proceedings of Central European Silviculture; Houšková, K., Černý, J., Eds.; Mendel University: Brno, Czech Republic, 2019; pp. 267–277. [Google Scholar]
- Kasatkina, E.A.; Shumilov, O.I.; Timonen, M. Solar activity imprints in tree ring-data from northwestern Russia. J. Atmos. Sol. Terr. Phys. 2019, 193, 105075. [Google Scholar] [CrossRef]
- Shumilov, O.I.; Kasatkina, E.A.; Mielikainen, K.; Timonen, M.; Kanatjev, A.G. Palaeovolcanos, Solar activity and pine tree-rings from the Kola Peninsula (northwestern Russia) over the last 560 years Palaeovolcanos. Int. J. Environ. Res. 2011, 5, 855–864. [Google Scholar]
- Rigozo, N.R.; Nordemann, D.J.R.; Echer, E.; Zanandrea, A.; Gonzalez, W.D. Solar variability effects studied by tree-ring data wavelet analysis. Adv. Sp. Res. 2002, 29, 1985–1988. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q. Bin Evidence of solar signals in tree rings of Smith fir from Sygera Mountain in southeast Tibet. J. Atmos. Sol. Terr. Phys. 2011, 73, 1959–1966. [Google Scholar] [CrossRef]
- Surový, P.; Ribeiro, N.A.; De Evora, U.; Pereira, J.S.; Superior, I.; Lisbon, D.A. Influence of solar activity cycles on cork growth—A hypothesis. In Proceedings of the 19th National Solar Physics Meeting Papradno; Dorotovič, I., Ed.; SÚH: Hurbanovo, Slovakia, 2008; pp. 67–72. [Google Scholar]
- Tolazs, R. Atlas Podnebí Česka; Český Hydrometeorologický Ústav: Praha, Czech Republic, 2007. [Google Scholar]
- Piovesan, G.; Bernabei, M.; Di Filippo, A.; Romagnoli, M. A long-term tree ring beech chronology from a high-elevation old-growth forest of Central Italy. Dendrochronologia 2003. [CrossRef]
- Rinntech. TSAP-Win: Time Series Analysis and Presentation for Dendrochronology and Related Applications; Rinntech: Heidelberg, Germany, 2003; Available online: http://www.rimatech.com (accessed on 20 June 2019).
- Larsson, L.-A. Cybis Elektronik & Data AB, Saltsjöbaden, Sweden. 2010. Available online: http://www.cybis.se/ (accessed on 20 June 2019).
- ČHMÚ Czech Hydrometeorological Institute. Available online: http://portal.chmi.cz/historicka-data/pocasi/uzemni-srazky (accessed on 25 June 2020).
- Protezione Civile—Regione Basilicata Abriola a Sellata Pierfaone. Available online: http://www.centrofunzionalebasilicata.it/it/ (accessed on 10 October 2020).
- WDC-SILSO Sunspot Data from the World Data Center SILSO, Royal Observatory of Belgium, Brussels. Available online: http://www.sidc.be/silso/datafiles (accessed on 20 October 2020).
- Team R Core. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Zang, C.; Buras, A.; Cecile, J.; Mudelsee, M.; Schulz, M.; Pucha-cofrep, D. Package ‘dplR’ R, Dendrochronology Program Library in R Version 2018. Available online: https://r-forge.r-project.org/projects/dplr/ (accessed on 25 June 2020).
- Bunn, A.; Mikko, K. Chronology Building in dplR; R Foundation for Statistical Computing: Vienna, Austria, 2018; pp. 1–13. [Google Scholar]
- Cook, E.R.; Shiyatov, S.G.; Mazepa, V.S.; Ecology, A.; Branch, U. Methods of Dendrochronology Applications; Cook, E.R., Kairiukstis, L.A., Eds.; Tree-Ring Laboratory, Lamont-Ooherty Geological Observatory, Columbia University: New York, NY, USA, 1990; ISBN 9789048140602. [Google Scholar]
- Fritts, H.C. Tree Rings and Climate; Academic Press Inc.: Tucson, AZ, USA, 1976. [Google Scholar]
- Schweingrub, F.H.; Eckstein, D.; Serre-Bachet, F.; Braker, O.U. Identification, Presentation and Interpretation of Event Years and Pointer Years in Dendrochronology. Dendrochronologia 1990, 8, 9–38. [Google Scholar]
- StatSoft. Statistica Electronic Manual; StatSoft: Tulsa, OK, USA, 2013. [Google Scholar]
- Lim, C.Y.; Stein, M. Properties of spatial cross-periodograms using fixed-domain asymptotics. J. Multivar. Anal. 2008, 99, 1962–1984. [Google Scholar] [CrossRef] [Green Version]
- Bunn, A.; Mikko, K.; Biondi, F.; Campelo, F.; Merian, P.; Qeadan, F.; Zang, C.; Pucha-Cofrep, D.; Wernicke, J. Dendrochronology Program Library in R. R package version 1.6.8. Dendrochronologia 2018, 26, 115–124. [Google Scholar] [CrossRef]
- Ligges, U.; Short, T.; Kienzle, P.; Schnackenberg, S.; Billinghurst, D.; Borchers, H.-W.; Carezia, A.; Dupuis, P.; Eaton, J.W.; Farhi, E.; et al. Package ‘Signal’ 2015. Available online: http://r-forge.r-project.org/projects/signal/ (accessed on 25 June 2020).
- Robson, T.M.; Rasztovits, E.; Aphalo, P.J.; Alia, R.; Aranda, I. Flushing phenology and fitness of European beech (Fagus sylvatica L.) provenances from a trial in La Rioja, Spain, segregate according to their climate of origin. Agric. For. Meteorol. 2013, 180, 76–85. [Google Scholar] [CrossRef]
- Vacek, S.; Hejcmanová, P.; Hejcman, M.; Vacek, Z. Growth, healthy status and seed production of differently aged allochtonous and autochtonous Pinus mugo stands in the Giant Mts. over 30 years. Eur. J. For. Res. 2013, 132, 801–813. [Google Scholar] [CrossRef]
- Putalová, T.; Vacek, Z.; Vacek, S.; Štefančík, I.; Bulušek, D.; Král, J. Tree-ring widths as an indicator of air pollution stress and climate conditions in different Norway spruce forest stands in the Krkonoše Mts. Cent. Eur. For. J. 2019, 65, 21–33. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Hauck, M.; Kopp, G.; Ruff, M.; Leuschner, C. European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees Struct. Funct. 2017, 31, 673–686. [Google Scholar] [CrossRef]
- Gazol, A.; Camarero, J.J.; Colangelo, M.; de Luis, M.; Martínez del Castillo, E.; Serra-Maluquer, X. Summer drought and spring frost, but not their interaction, constrain European beech and Silver fir growth in their southern distribution limits. Agric. For. Meteorol. 2019, 278, 107695. [Google Scholar] [CrossRef]
- Nolè, A.; Rita, A.; Ferrara, A.M.S.; Borghetti, M. Effects of a large-scale late spring frost on a beech (Fagus sylvatica L.) dominated Mediterranean mountain forest derived from the spatio-temporal variations of NDVI. Ann. For. Sci. 2018, 75, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Weemstra, M.; Eilmann, B.; Sass-Klaassen, U.G.W.; Sterck, F.J. Summer droughts limit tree growth across 10 temperate species on a productive forest site. For. Ecol. Manag. 2013, 306, 142–149. [Google Scholar] [CrossRef]
- Leonelli, G.; Denneler, B.; Bergeron, Y. Climate sensitivity of trembling aspen radial growth along a productivity gradient in northeastern British Columbia, Canada. Can. J. For. Res. 2008, 38, 1211–1222. [Google Scholar] [CrossRef]
- Urban, J.; Holušová, K.; Menšík, L.; Čermák, J.; Kantor, P. Tree allometry of Douglas fir and Norway spruce on a nutrient-poor and a nutrient-rich site. Trees Struct. Funct. 2013, 27, 97–110. [Google Scholar] [CrossRef]
- Lévesque, M.; Walthert, L.; Weber, P. Soil nutrients influence growth response of temperate tree species to drought. J. Ecol. 2016, 104, 377–387. [Google Scholar] [CrossRef]
- Šimůnek, V.; Vacek, Z.; Vacek, S. Solar cycles in salvage logging: National data from the Czech Republic confirm significant correlation. Forests 2020, 11, 973. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, C.; Marchi, M.; Fabbio, G.; Fares, S.; Bertini, G.; Piovosi, M.; Salvati, L. Exploring nonlinear intra-annual growth dynamics in Fagus sylvatica L. trees at the Italian ICP-forests level II network. Forests 2019, 10, 584. [Google Scholar] [CrossRef] [Green Version]
- Gray, L.J.; Woollings, T.J.; Andrews, M.; Knight, J. Eleven-year solar cycle signal in the NAO and Atlantic/European blocking. Q. J. R. Meteorol. Soc. 2016, 142, 1890–1903. [Google Scholar] [CrossRef] [Green Version]
- Adolphi, F.; Muscheler, R.; Svensson, A.; Aldahan, A.; Matthes, K. Persistent link between solar activity and Greenland climate during the Last Glacial Maximum. Nat. Geosci. 2014, 7, 662–666. [Google Scholar] [CrossRef]
- Ma, H.; Chen, H.; Gray, L.; Zhou, L.; Li, X.; Wang, R.; Zhu, S. Changing response of the North Atlantic/European winter climate to the 11 year solar cycle. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Kodera, K.; Kuroda, Y. Dynamical response to the solar cycle. J. Geophys. Res. Atmos. 2002, 107, ACL 5-1–ACL 5-12. [Google Scholar] [CrossRef] [Green Version]
- Brönnimann, S.; Ewen, T.; Griesser, T.; Jenne, R. Multidecadal signal of solar variability in the upper troposphere during the 20th century. Space Sci. Rev. 2006, 125, 305–317. [Google Scholar] [CrossRef]
- Lopez-Bustins, J.A.; Esteban, P.; Labitzke, K.; Langematz, U. The role of the stratosphere in Iberian Peninsula rainfall: A preliminary approach in February. J. Atmos. Sol. Terr. Phys. 2007, 69, 1471–1484. [Google Scholar] [CrossRef] [Green Version]
- Uğur, B.; Feriha, Y. Forecasting risky years for forest fires depending on sunspot cycle. J. For. Res. 2017, 4, 133–142. [Google Scholar]
- Kumar, V.; Dhaka, S.K.; Panwar, V.; Singh, N.; Rao, A.S.; Malik, S.; Yoden, S. Detection of solar cycle signal in the tropospheric temperature using COSMIC data. Curr. Sci. 2018, 115, 2232–2239. [Google Scholar] [CrossRef]
- Nagovitsyn, Y.A. Specific features in the effect of solar activity on the Earth’s climate changes. Geomagn. Aeron. 2014, 54, 1010–1013. [Google Scholar] [CrossRef]
- Hathaway, D.H. The solar cycle. Living Rev. Sol. Phys. 2015, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Bhargawa, A. Prediction of declining solar activity trends during solar cycles 25 and 26 and indication of other solar minimum. Astrophys. Space Sci. 2019, 364, 12. [Google Scholar] [CrossRef]
- Kristoufek, L. Has global warming modified the relationship between sunspot numbers and global temperatures? Phys. A Stat. Mech. Appl. 2017, 468, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Wu, R. Quantifying the internal variability in multi-decadal trends of spring surface air temperature over mid-to-high latitudes of Eurasia. Clim. Dyn. 2020, 55, 2013–2030. [Google Scholar] [CrossRef]
- Vacek, S.; Bílek, L.; Schwarz, O.; Hejcmanová, P.; Mikeska, M. Effect of Air Pollution on the Health Status of Spruce Stands Effect of Air Pollution on the Health Status of Spruce Stands. Mt. Res. Dev. 2013, 33, 40–50. [Google Scholar] [CrossRef]
- Dorotovič, I.; Louzada, J.L.; Rodrigues, J.C.; Karlovský, V. Impact of Solar Activity on the Growth of Pine Trees: Case Study. Eur. J. For. Res. 2014, 133, 639–648. [Google Scholar] [CrossRef]
- Kotsias, G.; Lolis, C.J.; Hatzianastassiou, N.; Levizzani, V.; Bartzokas, A. On the connection between large-scale atmospheric circulation and winter GPCP precipitation over the Mediterranean region for the period 1980–2017. Atmos. Res. 2020, 233, 104714. [Google Scholar] [CrossRef]
- Wibig, J.; Piotrowski, P. Impact of the air temperature and atmospheric circulation on extreme precipitation in Poland. Int. J. Climatol. 2018, 38, 4533–4549. [Google Scholar] [CrossRef]
- Jean, D.; Nordemann, R.; Echer, E.; Evangelista, H.; Pereira, M.; Echer, D.S. Solar activity imprints in tree ring width from Chile (1610–1991). J. Atmos. Sol. Terr. Phys. 2007, 69, 1049–1056. [Google Scholar]
- McCracken, K.G.; Beer, J.; McDonald, F.B. A five-year variability in the modulation of the galactic cosmic radiation over epochs of low solar activity. Geophys. Res. Lett. 2002, 29, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Matveev, S.M.; Chendev, Y.G.; Lupo, A.R.; Hubbart, J.A.; Timashchuk, D.A. Climatic Changes in the East-European Forest-Steppe and Effects on Scots Pine Productivity. Pure Appl. Geophys. 2017, 174, 427–443. [Google Scholar] [CrossRef]
- Tsonis, A.A.; Swanson, K.; Kravtsov, S. A new dynamical mechanism for major climate shifts. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Carl, G.; Doktor, D.; Koslowsky, D. Phase difference analysis of temperature and vegetation phenology for beech forest: A wavelet approach. Stoch. Environ. Res. Risk Assess. 2013, 27, 1221–1230. [Google Scholar] [CrossRef]
Name of Plot | GPS | Altitude (m) | Exposure * | Slope (°) | Height (m) | Diameter (cm) | Volume (m3 ha−1) | Soil Type | Köppen Classification |
---|---|---|---|---|---|---|---|---|---|
Chojnik 1 | 50°50′12.1″ N 15°38′27.8″ E | 510 | NW | 16 | 23 | 39 | 380 | Modal Cambisol | Dfb |
Rýchory 2 | 50°39′57.7″ N 15°53′05.2″ E | 760 | NE | 27 | 29 | 44 | 540 | Eutrophic Cambisols | Dfb |
Sellata 3 | 40°32′21.5″ N 15°47′39.9″ E | 1275 | E | 26 | 33 | 60 | 720 | Epileptic Phaeozems | Csa |
La Lama 4 | 40°28′22.5″ N 15°45′35.2″ E | 1340 | SE | 7 | 29 | 52 | 560 | Haplic Phaeozems | Csa |
Plot Name | No. Trees | Age (Min/Max) | Mean RW | Std. | R-bar | ESP | SNR | NPY |
---|---|---|---|---|---|---|---|---|
(Samples) | (mm) | (mm) | ||||||
Chojnik 1 | 29 | 90/123 | 1.99 | 0.78 | 0.41 | 0.94 | 17 | − |
Rýchory 2 | 33 | 103/182 | 1.05 | 0.53 | 0.26 | 0.92 | 11 | 1913, 1953, 2011, 2016 |
Sellata 3 | 40 | 94/152 | 2.33 | 0.69 | 0.25 | 0.95 | 19 | 1962, 1970, 1988, 1994, 2012, 2013, 2016, 2017 |
La Lama 4 | 38 | 125/247 | 1.73 | 0.58 | 0.34 | 0.92 | 12 | 1933, 1970, 1971, 1981, 2013, 2017 |
Years | 1900–2019 | 1986–2019 | 1970–1985 | 1900–1969 |
---|---|---|---|---|
Time Period | Whole Period | 3rd Period | 2nd Period | 1st Period |
Sunspot number | ||||
RWI Chojnik 1 | 0.26 | 0.37 | 0.07 | 0.31 |
RWI Rýchory 2 | 0.23 | 0.54 | −0.12 | 0.19 |
RWI Sellata 3 | −0.25 | −0.37 | −0.43 | 0.11 |
RWI La Lama 4 | −0.07 | −0.02 | −0.51 | 0.11 |
Annual temperature | ||||
RWI Chojnik 1 | 0.14 | 0.18 | 0.37 | 0.10 |
RWI Rýchory 2 | 0.05 | 0.28 | 0.37 | 0.07 |
RWI Sellata 3 | −0.04 | 0.02 | −0.07 | −0.02 |
RWI La Lama 4 | 0.08 | −0.23 | 0.12 | −0.08 |
Vegetation season temperature | ||||
RWI Chojnik 1 | 0.09 | 0.09 | 0.39 | 0.11 |
RWI Rýchory 2 | 0.08 | 0.28 | 0.32 | 0.15 |
RWI Sellata 3 | −0.06 | 0.04 | −0.21 | −0.02 |
RWI La Lama 4 | −0.12 | −0.39 | 0.12 | −0.14 |
Annual precipitation | ||||
RWI Chojnik 1 | −0.10 | 0.00 | −0.28 | −0.06 |
RWI Rýchory 2 | −0.18 | −0.10 | −0.48 | −0.19 |
RWI Sellata 3 | 0.10 | 0.05 | 0.32 | 0.06 |
RWI La Lama 4 | 0.15 | 0.02 | 0.11 | 0.24 |
Vegetation season precipitation | ||||
RWI Chojnik 1 | −0.08 | 0.04 | −0.21 | −0.07 |
RWI Rýchory 2 | −0.15 | −0.16 | −0.45 | −0.17 |
RWI Sellata 3 | 0.11 | −0.01 | 0.45 | 0.13 |
RWI La Lama 4 | 0.12 | 0.06 | 0.20 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimůnek, V.; Vacek, Z.; Vacek, S.; Ripullone, F.; Hájek, V.; D’Andrea, G. Tree Rings of European Beech (Fagus sylvatica L.) Indicate the Relationship with Solar Cycles during Climate Change in Central and Southern Europe. Forests 2021, 12, 259. https://doi.org/10.3390/f12030259
Šimůnek V, Vacek Z, Vacek S, Ripullone F, Hájek V, D’Andrea G. Tree Rings of European Beech (Fagus sylvatica L.) Indicate the Relationship with Solar Cycles during Climate Change in Central and Southern Europe. Forests. 2021; 12(3):259. https://doi.org/10.3390/f12030259
Chicago/Turabian StyleŠimůnek, Václav, Zdeněk Vacek, Stanislav Vacek, Francesco Ripullone, Vojtěch Hájek, and Giuseppe D’Andrea. 2021. "Tree Rings of European Beech (Fagus sylvatica L.) Indicate the Relationship with Solar Cycles during Climate Change in Central and Southern Europe" Forests 12, no. 3: 259. https://doi.org/10.3390/f12030259
APA StyleŠimůnek, V., Vacek, Z., Vacek, S., Ripullone, F., Hájek, V., & D’Andrea, G. (2021). Tree Rings of European Beech (Fagus sylvatica L.) Indicate the Relationship with Solar Cycles during Climate Change in Central and Southern Europe. Forests, 12(3), 259. https://doi.org/10.3390/f12030259