Water Regulation Ecosystem Services Following Gap Formation in Fir-Beech Forests in the Dinaric Karst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Indicators for Water Regulation ES
2.3. Meteorological Data and Soil Hydrological Measurements
2.4. The Brook90 Hydrological Model
2.5. Model Fitting and Testing
2.6. Statistical Analyses
3. Results
3.1. Model Fitting and Testing
3.2. Indicators of Water Regulation Ecosystem Services (ES)
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Kovačič, G.; Petrič, M.; Ravbar, N. Evaluation and Quantification of the Effects of Climate and Vegetation Cover Change on Karst Water Sources: Case Studies of Two Springs in South-Western Slovenia. Water 2020, 11, 3087. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- MEA. Ecosystems and Human Well-Being: Synthesis; World Resources Institute: Washington, DC, USA, 2005; p. 281. [Google Scholar]
- Wallace, K.J. Classification of ecosystem services: Problems and solutions. Biol. Conserv. 2007, 139, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Gan, Y. Ecosystem function for water retention and forest ecosystem conservation in a watershed of the Yangtze River. Biodivers. Conserv. 2002, 11, 599–614. [Google Scholar] [CrossRef]
- Guo, Z.; Xiao, X.; Li, D. An Assessment of Ecosystem Services: Water Flow Regulation and Hydroelectric Power Production. Ecol. Appl. 2000, 10, 925–936. [Google Scholar] [CrossRef]
- Pilaš, I.; Feger, K.-H.; Vilhar, U.; Wahren, A. Multidimensionality of scales and approaches for forest-water interactions. In Forest Management and the Water Cycle: An Ecosystem-Based Approach; Bredemeier, M., Ed.; Springer: Dordrecht, The Netherlands, 2011; Volume 212, pp. 351–380. [Google Scholar]
- Schüler, G. Identification of flood-generating forest areas and forestry measures for water retention. For. Snow Landsc. Res. 2006, 80, 99–114. [Google Scholar]
- European Economic Area. Water-Retention Potential of Europe’s Forests. A European Overview to Support Natural Water-Retention Measures. Available online: http://www.klimatilpasning.dk/media/966744/water-retention_potential_of_europes_forests.pdf (accessed on 25 October 2016).
- Hümann, M.; Schüler, G.; Müller, C.; Schneider, R.; Johst, M.; Caspari, T. Identification of runoff processes—The impact of different forest types and soil properties on runoff formation and floods. J. Hydrol. 2011, 409, 637–649. [Google Scholar] [CrossRef]
- Bila, K. Are bark beetles responsible for droughts in the Šumava Mts.? A mini-review. Eur. J. Environ. Sci. 2016, 6, 108–113. [Google Scholar]
- Zhang, M.; Liu, N.; Harper, R.; Li, Q.; Liu, K.; Wei, X.; Ning, D.; Hou, Y.; Liu, S. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. J. Hydrol. 2017, 546, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Horvat, A.; Jeršič, T.; Papež, J. Varstvo pred hudourniki in erozijo ob vse intenzivnejših vremenskih ekstremih. Impact of climatic change on flood and erosion control. Ujma 2008, 22, 200–208. [Google Scholar]
- Mina, M.; Bugmann, H.; Cordonnier, T.; Irauschek, F.; Klopcic, M.; Pardos, M.; Cailleret, M. Future ecosystem services from European mountain forests under climate change. J. Appl. Ecol. 2017, 54, 389–401. [Google Scholar] [CrossRef]
- Ritter, E.; Vesterdal, L. Gap formation in Danish beech (Fagus sylvatica) forests of low management intensity: Soil moisture and nitrate in soil solution. Eur. J. For. Res. 2006, 125, 139–150. [Google Scholar] [CrossRef]
- Zirlewagen, D.; von Wilpert, K. Modeling water and ion fluxes in a highly structured, mixed-species stand. For. Ecol. Manag. 2001, 143, 27–37. [Google Scholar] [CrossRef]
- Petrič, M. Characteristics of Recharge-Discharge Relations in Karst Aquifer; Založba ZRC, Inštitut za Raziskovanje Krasa ZRC SAZU (Zbirka Carsologica): Postojna, Ljubljana, 2002; p. 154. [Google Scholar]
- Petrič, M.; Kogovšek, J.; Ravbar, N. Effects of the vadose zone on groundwater flow and solute transport characteristics in mountainous karst aquifers—The case of the Javorniki–Snežnik massif (SW Slovenia). Acta Carsologica 2018, 47. [Google Scholar] [CrossRef] [Green Version]
- Ford, E.D.; Williams, P.W. Karst Hydrogeology. In Karst Hydrogeology and Geomorphology; Wiley: Chichester, UK, 2007; pp. 103–144. [Google Scholar]
- White, W.B.; Culver, D.C.; Herman, J.S.; Kane, T.C.; Mylroie, J.E. Karst Lands: The dissolution of carbonate rock produces unique landscapes and poses significant hydrological and environmental concerns. Am. Sci. 1995, 83, 450–459. [Google Scholar]
- Sarrazin, F.; Hartmann, A.; Pianosi, F.; Rosolem, R.; Wagener, T. V2Karst V1.1: A parsimonious large-scale integrated vegetation–recharge model to simulate the impact of climate and land cover change in karst regions. Geosci. Model Dev. 2018, 11, 4933–4964. [Google Scholar] [CrossRef] [Green Version]
- Janža, M.; Prestor, J. Ocena naravne ranljivosti vodonosnika v zaledju izvira Rižane po metodi SINTACS. Intrinsic vulnerability assessment of the aquifer in the Rižana spring chatcment by the method SINTACS. Geologija 2002, 45, 401–406. [Google Scholar] [CrossRef]
- Ravbar, N.; Šebela, S. The effectiveness of protection policies and legislative framework with special regard to karst landscapes: Insights from Slovenia. Environ. Sci. Policy 2015, 51, 106–116. [Google Scholar] [CrossRef]
- Stevanovic, Z.; Eftimi, R. Karstic sources of water supply for large consumers in Southeastern Europe—Sustainability, disputes and advantages. Geol. Croat. 2010, 63, 179–185. [Google Scholar] [CrossRef]
- Duan, J.; Yang, J.; Tang, C.; Chen, L.; Liu, Y.; Wang, L. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China. PLoS ONE 2017, 12, e0182706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Z.; Zeng, F.; Wang, K.; Zeng, Z.; Tang, H.; Zhang, H. Evaluation and Tradeoff Analysis of Ecosystem Service for Typical Land-Use Patterns in the Karst Region of Southwest China. Forests 2020, 11, 451. [Google Scholar] [CrossRef] [Green Version]
- Katzensteiner, K. Effects of harvesting on nutrient leaching in a Norway spruce (Picea abies Karst.) ecosystem on a Lithic Leptosol in the Northern Limestone Alps. Plant Soil 2003, 250, 59–73. [Google Scholar] [CrossRef]
- Urbančič, M.; Kutnar, L. Diversity of Soil Conditions and Ground Cover Vegetation in Forest on the Moraines of Pokljuka Plateau; Zbornik referatov Gorski gozd. XIX. Gozdarski študijski dnevi, Logarska dolina; Univerza v Ljubljani, Biotehniska fakulteta, Oddelek za gozdarstvo in obnovljive gozdne vire: Logarska dolina, Slovenia, 1998; pp. 223–241. [Google Scholar]
- Bončina, A.; Diaci, J.; Gašperšič, F. Long-term changes in tree species composition in the Dinaric mountain forests of Slovenia. For. Chron. 2003, 79, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Matthews, J.D. Silvicultural Systems; Clarendon Press: Oxford, UK, 1999; p. 284. [Google Scholar]
- Kermavnar, J.; Marinšek, A.; Eler, K.; Kutnar, L. Evaluating Short-Term Impacts of Forest Management and Microsite Conditions on Understory Vegetation in Temperate Fir-Beech Forests: Floristic, Ecological, and Trait-Based Perspective. Forests 2019, 10, 909. [Google Scholar] [CrossRef] [Green Version]
- Nagel, T.A.; Svoboda, M.; Diaci, J. Regeneration patterns after intermediate wind disturbance in an old-growth Fagus-Abies forest in southeastern Slovenia. For. Ecol. Manag. 2006, 226, 268–278. [Google Scholar] [CrossRef]
- Diaci, J.; Roženbergar, D.; Bončina, A. Natural forests in the temperate zone of Europe—Values and utilisation. In Proceedings of the International Conference of Interactions of Light and Regeneration in Slovenian Dinaric Alps: Patterns in Virgin and Managed Forests, Mukacheco, Ukraine, 13–17 October 2003; Commarmot, B., Ed.; Swiss Federal Research Institute WSL: Birmensdorf, Switzerland; Carpathian Biosphere Reserve: Rakhiv, Ukraine, 2005; pp. 154–160. [Google Scholar]
- Knight, D.H.; Yavitt, J.B.; Joyce, G.D. Water and nitrogen outflow from lodgepole pine forest after two levels of tree mortality. For. Ecol. Manag. 1991, 46, 215–225. [Google Scholar] [CrossRef]
- Prescott, C.E. Effects of clearcutting and alternative silvicultural systems on rates of decomposition and nitrogen mineralization in a coastal montane coniferous forest. For. Ecol. Manag. 1997, 95, 253–260. [Google Scholar] [CrossRef]
- Kermavnar, J.; Eler, K.; Marinšek, A.; Kutnar, L. Initial understory vegetation responses following different forest management intensities in Illyrian beech forests. Appl. Veg. Sci. 2019, 22, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Vilhar, U.; Starr, M.; Urbančič, M.; Smolej, I.; Simončič, P. Gap evapotranspiration and drainage fluxes in a managed and a virgin dinaric silver fir–beech forest in Slovenia: A modelling study. Eur. J. For. Res. 2005, 124, 165–175. [Google Scholar] [CrossRef]
- Roženbergar, D.; Kolar, U.; Čater, M.; Diaci, J. Comparison of four methods for estimating relative solar radiation in managed and old-growth silver fir-beech forest. Dendrobiology 2011, 65, 73–82. [Google Scholar]
- Vilhar, U.; Simončič, P.; Kajfež-Bogataj, L.; Katzensteiner, K.; Diaci, J. Mikroklimatske razmere v vrzelih in sestojih dinarskega jelovo-bukovega gozda. Microclimate conditions in gaps and mature stands of Dinaric silver fir-beech forests. ZbGL 2006, 81, 21–36. [Google Scholar]
- Urbančič, M.; Simončič, P.; Čater, M. Impacts of gaps on humus forms in dinaric silver fir-beech (Omphalodo-Fagetum) and soil solution quality. Mitteil. ÖBG 2005, 72, 179–187. [Google Scholar]
- Simončič, P.; Kalan, P.; Urbančič, M.; Vilhar, U. Soil properties in virgin and in managed dinaric fir-beech forests—Preliminary results. Mitt. Österr. Bodenkd. Ges. 2003, 69, 77–82. [Google Scholar]
- Kutnar, L.; Urbančič, M. Vpliv rastiščnih in sestojnih razmer na pestrost tal in vegetacije v izbranih bukovih in jelovo-bukovih gozdovih na Kočevskem. Influence of site and stand conditions on diversity of soil and vegetation in selected beech and fir-beech forests in the Kočevje region. ZbGL 2006, 80, 3–30. [Google Scholar]
- Grebenc, T.; Christensen, M.; Vilhar, U.; Čater, M.; Martin, P.M.; Simončič, P.; Kraigher, H. Response of ectomycorrhizal community structure to gap opening in natural and managed temperate beech-dominated forests. Can. J. For. Res. 2009, 39, 1375–1386. [Google Scholar] [CrossRef]
- Železnik, P.; Vilhar, U.; Starr, M.; de Groot, M.; Kraigher, H. Fine root dynamics in Slovenian beech forests in relation to soil temperature and water availability. Trees 2015, 30, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Čater, M.; Diaci, J.; Roženbergar, D. Gap size and position influence variable response of Fagus sylvatica L. and Abies alba Mill. For. Ecol. Manag. 2014, 325, 128–135. [Google Scholar] [CrossRef]
- Rozenbergar, D.; Diaci, J. Architecture of Fagus sylvatica regeneration improves over time in mixed old-growth and managed forests. For. Ecol. Manag. 2014, 318, 334–340. [Google Scholar] [CrossRef]
- Vilhar, U.; Roženbergar, D.; Simončič, P.; Diaci, J. Variation in irradiance, soil features and regeneration patterns in experimental forest canopy gaps. Ann. For. Sci. 2015, 72, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Vilhar, U.; Starr, M.; Katzensteiner, K.; Simončič, P.; Kajfež-Bogataj, L.; Diaci, J. Modelling drainage fluxes in managed and natural forests in the Dinaric karst: A model comparison study. Eur. J. For. Res. 2010, 129, 729–740. [Google Scholar] [CrossRef]
- Vilhar, U.; Simončič, P. Water status and drought stress after gap formation in managed and semi-natural silver fir-beech forests. Eur. J. For. Res. 2012, 131, 1381–1397. [Google Scholar] [CrossRef]
- Vilhar, U. Comparison of drought stress indices in beech forests: A modelling study. iFor. Biogeosci. For. 2016, 9, 635–642. [Google Scholar] [CrossRef]
- White, W.B. Geomorphology and Hydrology of Karst Terrains; Oxford University Press: Oxford, UK, 1988; p. 464. [Google Scholar]
- Dasgupta, S.; Mohanty, B.P.; Köhne, J.M. Impacts of Juniper Vegetation and Karst Geology on Subsurface Flow Processes in the Edwards Plateau, Texas. Vadose Zone J. 2006, 5, 1076–1085. [Google Scholar] [CrossRef] [Green Version]
- Heilman, J.; Litvak, M.E.; McInnes, K.J.; Kjelgaard, J.F.; Schwinning, S. Water-storage capacity controls energy partitioning and water use in karst ecosystems on the Edwards Plateau, Texas. Ecohydrology 2012, 7, 127–138. [Google Scholar] [CrossRef]
- Ferlan, M.; Eler, K.; Simončič, P.; Batič, F.; Vodnik, D. Carbon and water flux patterns of a drought-prone mid-succession ecosystem developed on abandoned karst grassland. Agric. Ecosyst. Environ. 2016, 220, 152–163. [Google Scholar] [CrossRef]
- Vodnik, D.; Gričar, J.; Lavrič, M.; Ferlan, M.; Hafner, P.; Eler, K. Anatomical and physiological adjustments of pubescent oak (Quercus pubescens Willd.) from two adjacent sub-Mediterranean ecosites. Environ. Exp. Bot. 2019, 165, 208–218. [Google Scholar] [CrossRef]
- Eilmann, B.; Weber, P.; Rigling, A.; Eckstein, D. Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia 2006, 23, 121–132. [Google Scholar] [CrossRef]
- Looker, N.; Martin, J.; Hoylman, Z.; Jencso, K.; Hu, J. Diurnal and seasonal coupling of conifer sap flow and vapour pressure deficit across topoclimatic gradients in a subalpine catchment. Ecohydrology 2018, 11, e1994. [Google Scholar] [CrossRef]
- Chirino, E.; Bellot, J.; Sanchez, J.R. Daily sap flow rate as an indicator of drought avoidance mechanisms in five Mediterranean perennial species in semi-arid southeastern Spain. Trees-Struct. Funct. 2011, 25, 593–606. [Google Scholar] [CrossRef]
- Vorobevskii, I.; Kronenberg, R.; Bernhofer, C. Global BROOK90 R Package: An Automatic Framework to Simulate the Water Balance at Any Location. Water 2020, 12, 2037. [Google Scholar] [CrossRef]
- Federer, C.A.; Vorosmarthy, C.; Fekete, B. Sensitivity of Annual Evaporation to Soil and Root Properties in Two Models of Contrasting Complexity. J. Hydrometeorol. 2003, 4, 1276–1290. [Google Scholar] [CrossRef]
- Van der Salm, C.; Reinds, G.; de Vries, W. Assessment of the water balance in European forests: A model study. WASP FOCUS 2004, 4, 175–190. [Google Scholar]
- Paul, K.I.; Polglase, P.J.; O’Connell, A.M.; Carlyle, J.C.; Smethurst, P.J.; Khanna, P.K.; Worledge, D. Soil water under forests (SWUF): A model of water flow and soil water content under a range of forest types. For. Ecol. Manag. 2003, 182, 195–211. [Google Scholar] [CrossRef]
- Holst, J.; Grote, R.; Offermann, C.; Ferrio, J.P.; Gessler, A.; Mayer, H.; Rennenberg, H. Water fluxes within beech stands in complex terrain. Int. J. Biometeorol. 2010, 54, 23–36. [Google Scholar] [CrossRef]
- Yanai, R.D.; Tokuchi, N.; Campbell, J.L.; Green, M.B.; Matsuzaki, E.; Laseter, S.N.; Brown, C.L.; Bailey, A.S.; Lyons, P.; Levine, C.R.; et al. Sources of uncertainty in estimating stream solute export from headwater catchments at three sites. Hydrol. Process. 2015, 29, 1793–1805. [Google Scholar] [CrossRef]
- Staudt, K.; Serafimovich, A.; Siebicke, L.; Pyles, R.D.; Falge, E. Vertical structure of evapotranspiration at a forest site (a case study). Agric. For. Meteorol. 2011, 151, 709–729. [Google Scholar] [CrossRef]
- Gabrovšek, F.; Knez, M.; Kogovšek, J.; Mihevc, A.; Mulec, J.; Perne, M.; Petrič, M.; Pipan, T.; Prelovšek, M.; Slabe, T.; et al. Development challenges in karst regions: Sustainable land use planning in the karst of Slovenia. Carbonates Evaporites 2011, 26, 365–380. [Google Scholar] [CrossRef]
- Turpaud, P.; Zini, L.; Ravbar, N.; Cucchi, F.; Petrič, M.; Urbanc, J. Development of a Protocol for the Karst Water Source Protection Zoning: Application to the Classical Karst Region (NE Italy and SW Slovenia). Water Resour. Manag. 2018, 32, 1953–1968. [Google Scholar] [CrossRef]
- Hartman, T. Hundred years of virgin forest conservation in Slovenia. In Virgin Forests and Forest Reserves in Central and Eastern European Countries; Diaci, J., Ed.; BF, Oddelek za Gozdarstvo: Ljubljana, Slovene, 1999; pp. 111–120. [Google Scholar]
- Bončina, A.; Diaci, J. Contemporary research on regeneration patterns of Central European virgin forests with recommendation for future research. ZbGL 1998, 56, 33–53. [Google Scholar]
- Kraigher, H.; Jurc, D.; Kalan, P.; Kutnar, L.; Levanič, T.; Rupel, M.; Smolej, I. Beech coarse woody debris characteristics in two virgin forest reserves in southern Slovenia. ZbGL 2002, 69, 91–134. [Google Scholar]
- Clark, D.F.; Kneeshaw, D.D.; Burton, P.J.; Antos, J.A. Coarse woody debris in sub-boreal spruce forest of west-central British Columbia. Can. J. For. Res. 1998, 28, 284–290. [Google Scholar] [CrossRef]
- Puncer, I. Dinarski jelovo-bukovi gozdovi na Kočevskem. Razprave 1980, 22, 161. [Google Scholar]
- Pisek, R. Vpliv strukturnih posebnosti sestojev v gozdnih rezervatih na razvoj monitoringa gozdnih ekosistemov. Influence of Structural Particularities of Forest Stands in Reserves on Improvement of Forest Ecosystem Monitoring. Magistrsko delo. Master’s Thesis, University of Ljubljana, Ljubljana, Slovene, 2010. [Google Scholar]
- U.S. Food and Agriculture Organization. Guidelines for Soil Description; FAO: Rome, Italy, 2006; p. 98. [Google Scholar]
- Wrold Reference Basefor Soil Resources. World Reference Base for Soil Resources 2006, First Update 2007; IUSS: Vienna, Austria; ISRIC: Wageningen, The Netherlands; FAO: Rome, Italy, 2007; p. 115. [Google Scholar]
- Vilhar, U. C dynamic of a beech stand in SE Slovenia—First results of the GOTILWA+ model. In Carbon Dynamics in Natural Beech Forests; Simončič, P., Ed.; Studia Forestalia Slovenica. Gozdarski Inštitut Slovenije: Ljubljana, Slovene, 2008; Volume 128. [Google Scholar]
- Federer, C.A. BROOK90 Manual: A Simulation Model for Evaporation, Soil Water and Streamflow, Version 3.1; USDA Forest Service: Durham, NH, USA, 1995; p. 40. [Google Scholar]
- Hammel, K.; Kennel, M. Charakterisierung und Analyse der Wasserverfuegbarkeit und des Wasserhaushalts von Waldstandorten in Bayern mit dem Simulationsmodell BROOK90. Forstl. Forsch. München 2001, 185, 135. [Google Scholar]
- Dirksen, C. Soil Physics Measurements; Catena Verl.: Reiskirchen, Germany, 1999; p. 154. [Google Scholar]
- Vogel, T.; Gerke, H.H.; Zhang, R.; Van Genuchten, M.T. Modeling flow and transport in a two-dimensional dual-permeability system with spatially variable hydraulic properties. J. Hydrol. 2000, 238, 78–89. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops—An energy combination theory. Quart. J. Royal Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Thompson, S.A. Hydrology for Water Management; Balkema: Rotterdam, The Netherlands, 1999; p. 476. [Google Scholar]
- Granier, A.; Reichstein, M.; Breda, N.; Janssens, I.A.; Falge, E.; Ciais, P.; Gruenwald, T.; Aubineth, M.; Berbigier, P.; Bernhofer, C.; et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. For. Meteorol. 2007, 143, 123–145. [Google Scholar] [CrossRef]
- Nikolova, P.S.; Raspe, S.; Andersen, C.P.; Mainiero, R.; Blaschke, H.; Matyssek, R.; Häberle, K.-H. Effects of the extreme drought in 2003 on soil respiration in a mixed forest. Eur. J. For. Res. 2009, 128, 87–98. [Google Scholar] [CrossRef]
- Sohn, J.A.; Gebhardt, T.; Ammer, C.; Bauhus, J.; Häberle, K.-H.; Matyssek, R.; Grams, T.E.E. Mitigation of drought by thinning: Short-term and long-term effects on growth and physiological performance of Norway spruce (Picea abies). For. Ecol. Manag. 2013, 308, 188–197. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Mátyás, C.; Bozic, G.; Gömöry, D.; Ivankovic, M.; Rasztovits, E. Juvenile growth response of European beech (Fagus sylvatica L.) to sudden change of climatic environment in SE European trials. iFor. Biogeosci. For. 2009, 2, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Clarke, N.; Žlindra, D.; Ulrich, E.; Mosello, R.; Derome, J.; Derome, K.; König, N.; Lövblad, G.; Draaijers, G.P.J.; Hansen, K.; et al. Sampling and Analysis of Deposition. Manual Part XIV. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; United Nations Economic Commission for Europe Convention on Long-range Transboundary Air Pollution; ICP Forests: Hamburg, Germany, 2016; Volume Part XIV, p. 68. [Google Scholar]
- Ritter, E.; Starr, M.; Vesterdal, L. Losses of nitrate from gaps of different sizes in a managed beech (Fagus sylvatica) forest. Can. J. For. Res. 2005, 35, 308–319. [Google Scholar] [CrossRef]
- Muscolo, A.; Sidari, M.; Bagnato, S.; Mallamaci, C.; Mercurio, R. Gap size effects on above- and below-ground processes in a silver fir stand. Eur. J. For. Res. 2010, 129, 355–365. [Google Scholar] [CrossRef]
- Jourdan, M.; Cordonnier, T.; Dreyfus, P.; Riond, C.; de Coligny, F.; Morin, X. Managing mixed stands can mitigate severe climate change impacts on ecosystem functioning. bioRxiv 2020, 1–51. [Google Scholar] [CrossRef]
- Schwaiger, F.; Poschenrieder, W.; Biber, P.; Pretzsch, H. Species Mixing Regulation with Respect to Forest Ecosystem Service Provision. Forests 2018, 9, 632. [Google Scholar] [CrossRef] [Green Version]
- Mina, M.; Martin-Benito, D.; Bugmann, H.; Cailleret, M. Forward modeling of tree-ring width improves simulation of forest growth responses to drought. Agric. For. Meteorol. 2016, 221, 13–33. [Google Scholar] [CrossRef] [Green Version]
- Ebel, B.A.; Mirus, B.B. Disturbance hydrology: Challenges and opportunities. Hydrol. Process. 2014, 28, 5140–5148. [Google Scholar] [CrossRef]
- Cognard-Plancq, A.-L.; Marc, V.; Didon-Lescot, J.-F.; Norman, M. The role of forest cover on streamflow down sub-Mediterranean mountain watersheds: A modelling approach. J. Hydrol. 2001, 254, 229–243. [Google Scholar] [CrossRef]
- Katzensteiner, K. Wasser- und Stoffhauhalt von Waldeokosystemen in den noerdlichen Kalkalpen; Universitaet fuer Bodenkultur: Wien, Austria, 2000; Volume 15, p. 159. [Google Scholar]
- Ritter, E.; Dalsgaard, L.; Einhorn, K.S. Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark. For. Ecol. Manag. 2005, 206, 15–33. [Google Scholar] [CrossRef]
- Diaci, J.; Adamic, T.; Rozman, A. Gap recruitment and partitioning in an old-growth beech forest of the Dinaric Mountains: Influences of light regime, herb competition and browsing. For. Ecol. Manag. 2012, 285, 20–28. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996. [Google Scholar]
- Luis, M.; Čufar, K.; Saz, M.; Longares, L.; Ceglar, A.; Kajfež-Bogataj, L. Trends in seasonal precipitation and temperature in Slovenia during 1951–2007. Reg. Environ. Chang. 2012, 14, 1801–1810. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Nagel, T.A.; Mikac, S.; Dolinar, M.; Klopcic, M.; Keren, S.; Svoboda, M.; Diaci, J.; Boncina, A.; Paulic, V. The natural disturbance regime in forests of the Dinaric Mountains: A synthesis of evidence. For. Ecol. Manag. 2017, 388, 29–42. [Google Scholar] [CrossRef]
- Kolström, M.; Lindner, M.; Vilén, T.; Maroschek, M.; Seidl, R.; Lexer, M.J.; Netherer, S.; Kremer, A.; Delzon, S.; Barbati, A.; et al. Reviewing the Science and Implementation of Climate Change Adaptation Measures in European Forestry. Forests 2011, 4, 961–982. [Google Scholar] [CrossRef] [Green Version]
- Bergès, L.; Balandier, P. Revisiting the use of soil water budget assessment to predict site productivity of sessile oak (Quercus petraea Liebl.) in the perspective of climate change. Eur. J. For. Res. 2010, 129, 199–208. [Google Scholar] [CrossRef]
Study Site | Year of Creation | Shape and Dimensions (m2) | Harvesting Method | Elevation (m a.s.l.) | Slope (%) | Aspect | Average Tree Height (m) 2001 2/2013 3 | Average Diameter at Breast Height 1 (cm) | Stem Volume 1 (m3 ha−1) | Ground Vegetation Cover (%) 2001 2/2013 3 | Soil Depth 4 (cm) | Stoniness 4 (% vol) | Soil Texture Class 4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Managed | forest | - | - | Thinning as part of an irregular shelterwood management system | 860 | 10 | south-east | 20 | 10–45 | 255 | 20/21 | 32.2 | 24.4 | Loam |
Experimental | gap | Winter 2000/2001 | Near circular, 2375 | Experimental clear-cut | 860 | 15 | south-east | 0.1/0.5 | <10 | - | 5.5/20 | 31.3 | 22.3 | Loam |
Old growth | forest | - | - | - | 880 | 10 | south-east | 27 | 41–50 | 746 | 22/24 | 32.6 | 29.7 | Clay loam |
Old growth | gap | Winter 2002/2003 | Irregular, 710 | Windstorms | 880 | 10 | south-east | 0.5/2.0 | <10 | - | 62/100 | 29.9 | 23.1 | Clay loam |
Years | Indicator | Experimental Gap | Old-Growth Gap | Managed Forest | Old-Growth Forest | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | ||
2001–2013 | DF | 81 | 75 | 86 | 78 | 88 | 70 | 71 | 80 | 63 | 72 | 81 | 65 |
SE | 11 | 9 | 15 | 2 | 1 | 5 | 2 | 1 | 2 | 1 | 1 | 2 | |
TRAN | 7 | 5 | 10 | 16 | 12 | 22 | 18 | 15 | 25 | 16 | 14 | 21 | |
I | 0 | 0 | 0 | 4 | 2 | 6 | 10 | 8 | 11 | 11 | 10 | 13 | |
ETP = SE + TRAN + I | 18 | 14 | 25 | 23 | 19 | 30 | 29 | 25 | 37 | 28 | 25 | 35 | |
Wet (2004, 2010) | DF | 86 | 86 | 86 | 82 | 84 | 80 | 76 | 73 | 79 | 77 | 74 | 81 |
SE | 9 | 9 | 9 | 3 | 1 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | |
TRAN | 5 | 5 | 5 | 13 | 13 | 13 | 16 | 15 | 16 | 14 | 14 | 14 | |
I | 0 | 0 | 0 | 4 | 2 | 5 | 9 | 9 | 9 | 11 | 11 | 11 | |
ETP = SE + TRAN + I | 14 | 14 | 14 | 19 | 20 | 19 | 26 | 26 | 26 | 26 | 25 | 26 | |
Dry (2003, 2011) | DF | 77 | 75 | 79 | 70 | 70 | 71 | 66 | 63 | 69 | 67 | 65 | 69 |
SE | 13 | 11 | 15 | 3 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | |
TRAN | 10 | 10 | 10 | 22 | 21 | 22 | 21 | 18 | 25 | 19 | 16 | 21 | |
I | 0 | 0 | 0 | 4 | 6 | 3 | 10 | 10 | 11 | 12 | 12 | 13 | |
ETP = SE + TRAN + I | 25 | 21 | 21 | 29 | 29 | 30 | 34 | 31 | 37 | 33 | 31 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilhar, U. Water Regulation Ecosystem Services Following Gap Formation in Fir-Beech Forests in the Dinaric Karst. Forests 2021, 12, 224. https://doi.org/10.3390/f12020224
Vilhar U. Water Regulation Ecosystem Services Following Gap Formation in Fir-Beech Forests in the Dinaric Karst. Forests. 2021; 12(2):224. https://doi.org/10.3390/f12020224
Chicago/Turabian StyleVilhar, Urša. 2021. "Water Regulation Ecosystem Services Following Gap Formation in Fir-Beech Forests in the Dinaric Karst" Forests 12, no. 2: 224. https://doi.org/10.3390/f12020224
APA StyleVilhar, U. (2021). Water Regulation Ecosystem Services Following Gap Formation in Fir-Beech Forests in the Dinaric Karst. Forests, 12(2), 224. https://doi.org/10.3390/f12020224