Soil Nitrogen and Sulfur Leaching in a Subtropical Forest at a Transition State under Decreasing Atmospheric Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling and Chemical Analysis
2.3. Data Processing
3. Results and Discussion
3.1. Seasonal DIN and S Concentrations and Fluxes
3.2. Decreasing Trend of Atmospheric DIN and S Depositions
3.3. Net N Retention and Excess S Export in Soil under Declining Depositions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Vuorenmaa, J.; Augustaitis, A.; Beudert, B.; Bochenek, W.; Clarke, N.; de Wit, H.A.; Dirnboeck, T.; Frey, J.; Hakola, H.; Kleemola, S.; et al. Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Sci. Total Environ. 2018, 625, 1129–1145. [Google Scholar] [CrossRef] [Green Version]
- Vuorenmaa, J.; Augustaitis, A.; Beudert, B.; Clarke, N.; Wit, H.A.d.; Dirnböck, T.; Frey, J.; Forsius, M.; Indriksone, I.; Kleemola, S.; et al. Long-term sulphate and inorganic nitrogen mass balance budgets in European ICP Integrated Monitoring catchments (1990–2012). Ecol. Indic. 2017, 76, 15–29. [Google Scholar] [CrossRef]
- Kopacek, J.; Kana, J.; Porcal, P.; Stuchlik, E. Diverse effects of accelerating climate change on chemical recovery of alpine lakes from acidic deposition in soil-rich versus scree-rich catchments. Environ. Pollut. 2021, 284, 117522. [Google Scholar] [CrossRef]
- Duan, L.; Yu, Q.; Zhang, Q.; Wang, Z.; Pan, Y.P.; Larssen, T.; Tang, J.; Mulder, J. Acid deposition in Asia: Emissions, deposition, and ecosystem effects. Atmos. Environ. 2016, 146, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Aber, J.; McDowell, W.; Nadelhoffer, K.; Magill, A.; Berntson, G.; Kamakea, M.; McNulty, S.; Currie, W.; Rustad, L.; Fernandez, I. Nitrogen saturation in temperate forest ecosystems—Hypotheses revisited. Bioscience 1998, 48, 921–934. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, Y.; Ma, M.; Chang, M.; Duan, L. Long-term variability in base cation, sulfur and nitrogen deposition and critical load exceedance of terrestrial ecosystems in China. Environ. Pollut. 2021, 289, 117974. [Google Scholar] [CrossRef]
- Zhao, Y.; Duan, L.; Xing, J.; Larssen, T.; Nielsen, C.P.; Hao, J. Soil Acidification in China: Is Controlling SO2 Emissions Enough? Environ. Sci. Technol. 2009, 43, 8021–8026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.; Zhang, T.; Ma, X.; Kang, R.; Mulder, J.; Larssen, T.; Duan, L. Monitoring Effect of SO2 Emission Abatement on Recovery of Acidified Soil and Streamwater in Southwest China. Environ. Sci. Technol. 2017, 51, 9498–9506. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.P.; Geng, G.N.; Li, H.Y.; Li, X.; Peng, L.Q.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.; Xu, W.; Li, Q.; Han, M.; Tang, A.; Zhang, Y.; Luo, X.; Shen, J.; Wang, W.; Li, K.; et al. Changes of nitrogen deposition in China from 1980 to 2018. Environ. Int. 2020, 144, 106022. [Google Scholar] [CrossRef]
- Yu, G.R.; Jia, Y.L.; He, N.P.; Zhu, J.X.; Chen, Z.; Wang, Q.F.; Piao, S.L.; Liu, X.J.; He, H.L.; Guo, X.B.; et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 2019, 12, 424–429. [Google Scholar] [CrossRef]
- Lu, X.; Vitousek, P.M.; Mao, Q.; Gilliam, F.S.; Luo, Y.; Zhou, G.; Zou, X.; Bai, E.; Scanlon, T.M.; Hou, E.; et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proc. Natl. Acad. Sci. USA 2018, 115, 5187–5192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, D.; Duan, L.; Si, G.; Liu, W.; Zhang, T.; Mulder, J. Long-Term N-15 Balance After Single-Dose Input of N-15-Labeled NH4+ and NO3- in a Subtropical Forest Under Reducing N Deposition. Glob. Biogeochem. Cycle 2021, 35, e2021GB006959. [Google Scholar] [CrossRef]
- Koopmans, C.J.; Lubrecht, W.C.; Tietema, A. Nitrogen transformations in two nitrogen saturated forest ecosystems subjected to an experimental decrease in nitrogen deposition. Plant Soil 1995, 175, 205–218. [Google Scholar] [CrossRef]
- Gilliam, F.S.; Burns, D.A.; Driscoll, C.T.; Frey, S.D.; Lovett, G.M.; Watmough, S.A. Decreased atmospheric nitrogen deposition in eastern North America: Predicted responses of forest ecosystems. Environ. Pollut. 2019, 244, 560–574. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.N.; Zhang, T.; Yu, Q.; Huang, Y.M.; Mulder, J.; Duan, L. A Sharp Decline in Nitrogen Input in a N-Saturated Subtropical Forest Causes an Instantaneous Reduction in Nitrogen Leaching. J. Geophys. Res. Biogeosci. 2018, 123, 3320–3330. [Google Scholar] [CrossRef]
- Huang, Y.; Kang, R.; Mulder, J.; Zhang, T.; Duan, L. Nitrogen saturation, soil acidification, and ecological effects in a subtropical pine forest on acid soil in southwest China. J. Geophys. Res.-Biogeosci. 2015, 120, 2457–2472. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.J.; Driscoll, C.T.; McHale, P.J.; Roy, K.M.; Dong, Z. Lake/watershed sulfur budgets and their response to decreases in atmospheric sulfur deposition: Watershed and climate controls. Hydrol. Process. 2013, 27, 710–720. [Google Scholar] [CrossRef]
- Prechtel, A.; Alewell, C.; Armbruster, M.; Bittersohl, J.; Cullen, J.M.; Evans, C.D.; Helliwell, R.; Kopácek, J.; Marchetto, A.; Matzner, E.; et al. Response of sulphur dynamics in European catchments to decreasing sulphate deposition. Hydrol. Earth Syst. Sci. 2001, 5, 311–326. [Google Scholar] [CrossRef]
- Marty, C.; Duchesne, L.; Couture, S.; Gagnon, C.; Houle, D. Effects of climate and atmospheric deposition on a boreal lake chemistry: A synthesis of 36 years of monitoring data. Sci. Total Environ. 2021, 758, 143639. [Google Scholar] [CrossRef]
- Larssen, T.; Duan, L.; Mulder, J. Deposition and Leaching of Sulfur, Nitrogen and Calcium in Four Forested Catchments in China: Implications for Acidification. Environ. Sci. Technol. 2011, 45, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Hao, Z.; Han, N.; Yang, J.; Tian, J.; Song, X.; Wen, X.; He, N. Tracking the fate of deposited nitrogen and its redistribution in a subtropical watershed in China. Ecohydrology 2019, 12, e2094. [Google Scholar] [CrossRef]
- Wen, X.F.; Wang, H.M.; Wang, J.L.; Yu, G.R.; Sun, X.M. Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003–2007. Biogeosciences 2010, 7, 357–369. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.G.; Liu, Y.F.; Cui, Y.G.; Pei, Z.Y. Litter decomposition in a subtropical plantation in Qianyanzhou, China. J. Forest Res. 2011, 16, 8–15. [Google Scholar] [CrossRef]
- Cheng, Z.; Luo, Y.; Zhang, T.; Duan, L. Deposition of sulfur, nitrogen and mercury in two typical forest ecosystems in southern China. Huanjing Kexue 2017, 38, 5004–5011. [Google Scholar] [CrossRef]
- Ke, P.; Yu, Q.; Luo, Y.; Kang, R.; Duan, L. Fluxes of nitrogen oxides above a subtropical forest canopy in China. Sci. Total Environ. 2020, 715, 136993. [Google Scholar] [CrossRef]
- Yu, Q.; Luo, Y.; Wang, S.x.; Wang, Z.q.; Hao, J.M.; Duan, L. Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China. Atmos. Chem. Phys. 2018, 18, 495–509. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, H.; Xu, M.; Ma, Z.; Wang, Z.-L. Soil organic carbon stocks and CO2 effluxes of native and exotic pine plantations in subtropical China. Catena 2015, 128, 167–173. [Google Scholar] [CrossRef]
- Fu, X.; Wang, J.; Wang, H.; Dai, X.; Yang, F.; Zhao, M. Response of the fine root production, phenology, and turnover rate of six shrub species from a subtropical forest to a soil moisture gradient and shading. Plant Soil 2016, 399, 135–146. [Google Scholar] [CrossRef]
- Mo, X.; Dai, X.; Wang, H.; Fu, X.; Kou, L. Rhizosphere effects of overstory tree and understory shrub species in central subtropical plantations-A case study at Qianyanzhou, Taihe, Jiangxi, China. Chin. J. Plant Ecol. 2018, 42, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Du, E. A database of annual atmospheric acid and nutrient deposition to China’s forests. Sci. Data 2018, 5, 180223. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Duan, L.; Hao, J. Acid deposition in China: Sources, effects and control. Acta Sci. Circumstantiae 2021, 41, 731–746. [Google Scholar]
- Yu, Q.; Duan, L.; Yu, L.; Chen, X.; Si, G.; Ke, P.; Ye, Z.; Mulder, J. Threshold and multiple indicators for nitrogen saturation in subtropical forests. Environ. Pollut. 2018, 241, 664–673. [Google Scholar] [CrossRef]
- Lin, Y. Water cycling model for ganjiang watershed. Resour. Sci. 1998, 20, 17–23. [Google Scholar]
- Fenn, M.E.; Ross, C.S.; Schilling, S.L.; Baccus, W.D.; Larrabee, M.A.; Lofgren, R.A. Atmospheric deposition of nitrogen and sulfur and preferential canopy consumption of nitrate in forests of the Pacific Northwest, USA. Forest Ecol. Manag. 2013, 302, 240–253. [Google Scholar] [CrossRef]
- Hao, Z.; Gao, Y.; Zhang, J.-z.; Yu, G.-r. Chemical Characteristics of Atmospheric Wet Deposition in Winter and Its Forestry Canopy Interception Mechanism in Red Soil Hilly Area. Huanjing Kexue 2015, 36, 4403–4413. [Google Scholar]
- Vanbreemen, N.; Driscoll, C.T.; Mulder, J. Acidic deposition and internal proton sources in acidification of soils and waters. Nature 1984, 307, 599–604. [Google Scholar] [CrossRef]
- Xu, W.; Luo, X.S.; Pan, Y.P.; Zhang, L.; Tang, A.H.; Shen, J.L.; Zhang, Y.; Li, K.H.; Wu, Q.H.; Yang, D.W.; et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmos. Chem. Phys. 2015, 15, 12345–12360. [Google Scholar] [CrossRef] [Green Version]
- Xing, J.; Lu, X.; Wang, S.; Wang, T.; Ding, D.; Yu, S.; Shindell, D.; Ou, Y.; Morawska, L.; Li, S.; et al. The quest for improved air quality may push China to continue its CO2 reduction beyond the Paris Commitment. Proc. Natl. Acad. Sci. USA 2020, 117, 29535–29542. [Google Scholar] [CrossRef]
- Forsius, M.; Posch, M.; Holmberg, M.; Vuorenmaa, J.; Kleemola, S.; Augustaitis, A.; Beudert, B.; Bochenek, W.; Clarke, N.; de Wit, H.A.; et al. Assessing critical load exceedances and ecosystem impacts of anthropogenic nitrogen and sulphur deposition at unmanaged forested catchments in Europe. Sci. Total Environ. 2021, 753, 141791. [Google Scholar] [CrossRef]
- Lawrence, G.B.; Scanga, S.E.; Sabo, R.D. Recovery of Soils from Acidic Deposition May Exacerbate Nitrogen Export from Forested Watersheds. J. Geophys. Res.-Biogeosci. 2020, 125, e2019JG005036. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, Y.; Lin, Y.; Li, J.; Zhang, H. Hydrological process and nutrient dynamics of schima superba stand in qianyanzhou experimental areas, jiangxi province. Sci. Silvae Sin. 2003, 39, 145–150. [Google Scholar]
- National Bureau of Statistics of China. Available online: http://data.stats.gov.cn/ (accessed on 16 August 2021).
- Ministry of Ecology and Environment of the People’s Republic of China. Available online: http://www.mee.gov.cn/ (accessed on 16 August 2021).
- Corre, M.D.; Lamersdorf, N.P. Reversal of nitrogen saturation after long-term deposition reduction: Impact on soil nitrogen cycling. Ecology 2004, 85, 3090–3104. [Google Scholar] [CrossRef]
- Niu, S.; Classen, A.T.; Dukes, J.S.; Kardol, P.; Liu, L.; Luo, Y.; Rustad, L.; Sun, J.; Tang, J.; Templer, P.H.; et al. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecol. Lett. 2016, 19, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Gao, W.; Kou, L.; Yang, H.; Zhang, J.; Mueller, C.; Li, S. Are nitrate production and retention processes in subtropical acidic forest soils responsive to ammonium deposition? Soil Biol. Biochem. 2016, 100, 102–109. [Google Scholar] [CrossRef]
- Liu, W.; Yu, L.; Zhang, T.; Kang, R.; Zhu, J.; Mulder, J.; Huang, Y.; Duan, L. In situ 15N labeling experiment reveals different long-term responses to ammonium and nitrate inputs in N-saturated subtropical forest. J. Geophys. Res. Biogeosci. 2017, 122, 2251–2264. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.C.; Zhang, J.B.; Meng, T.Z.; Zhu, T.B.; Muller, C.; Cai, Z.C. Heterotrophic nitrification is the predominant NO3− production pathway in acid coniferous forest soil in subtropical China. Biol. Fertil. Soils 2013, 49, 955–957. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, Y.; Liu, M.; Chen, Z.; Su, W.; He, H.; Zhu, Z.; Sun, X.; Wang, Y.; Zhou, G.; et al. Carbon and water fluxes observed by the Chinese Flux Observation and Research Network (2003–2005). China Sci. Data 2019, 4, 18–34. [Google Scholar]
- Sase, H.; Saito, T.; Takahashi, M.; Morohashi, M.; Yamashita, N.; Inomata, Y.; Ohizumi, T.; Nakata, M. Transboundary air pollution reduction rapidly reflected in stream water chemistry in forested catchment on the sea of Japan coast in central Japan. Atmos. Environ. 2021, 248, 118223. [Google Scholar] [CrossRef]
- Sase, H.; Takahashi, M.; Matsuda, K.; Sato, K.; Tanikawa, T.; Yamashita, N.; Ohizumi, T.; Ishida, T.; Kamisako, M.; Kobayashi, R.; et al. Response of river water chemistry to changing atmospheric environment and sulfur dynamics in a forested catchment in central Japan. Biogeochemistry 2019, 142, 357–374. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhang, Y.; Wang, Z.; Mulder, J. Accumulation of different sulfur fractions in Chinese forest soil under acid deposition. J. Environ. Monit. 2011, 13, 2463–2470. [Google Scholar] [CrossRef]
- Johnson, D.W. Sulfur cycling in forests. Biogeochemistry 1984, 1, 29–43. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.-Q.; Wang, Z.-L.; Zhang, L.-L.; Luo, X.-Q. Speciation and Isotopic Composition of Sulfur in Limestone Soil and Yellow Soil in Karst Areas of Southwest China: Implications of Different Responses to Acid Deposition. J. Environ. Qual. 2014, 43, 809–819. [Google Scholar] [CrossRef]
- Gustafsson, J.P.; Akram, M.; Tiberg, C. Predicting sulphate adsorption/desorption in forest soils: Evaluation of an extended Freundlich equation. Chemosphere 2015, 119, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houle, D.; Carignan, R.; Ouimet, R. Soil organic sulfur dynamics in a coniferous forest. Biogeochemistry 2001, 53, 105–124. [Google Scholar] [CrossRef]
- Shi, S. Eeo-Chemistry of Sulufr under Imapct by Acid Depoistion—A Case Study of Forest Ecosystem ay Mt.Lushan. Ph.D. Thesis, Nanjing Argricutural University, Nanjing, China, 2000. [Google Scholar]
- Yu, Q. Fate of Deposited Sulfur and Nitrogen in Typical Subtropical Forest Ecosystems, Southern China. Ph.D. Thesis, Tsinghua University, Beijing, China, 2019. [Google Scholar]
- Houle, D.; Marty, C.; Duchesne, L.; Gagnon, C. Humus layer is the main locus of secondary SO4 production in boreal forests. Geochim. Cosmochim. Acta 2014, 126, 18–29. [Google Scholar] [CrossRef]
- Mayer, B.; Feger, K.H.; Giesemann, A.; Jager, H.J. Interpretation of sulfur cycling in 2 catchments in the black-forest (germany) using stable sulfur and oxygen-isotope data. Biogeochemistry 1995, 30, 31–58. [Google Scholar] [CrossRef]
- Mayer, B.; Prietzel, J.; Krouse, H.R. The influence of sulfur deposition rates on sulfate retention patterns and mechanisms in aerated forest soils. Appl. Geochem. 2001, 16, 1003–1019. [Google Scholar] [CrossRef]
- Yu, Q.; Si, G.; Zong, T.; Mulder, J.; Duan, L. High hydrogen sulfide emissions from subtropical forest soils based on field measurements in south China. Sci. Total Environ. 2019, 651, 1302–1309. [Google Scholar] [CrossRef]
Season | Layer of Soil 2 | Soil Water Flux (mm) | Excess S Output (kg S/ha) | Excess N Output (kg N/ha) | H+prod, N (kmol/ha) |
---|---|---|---|---|---|
Spring | 0–5 cm | 308 | 1.87 ± 0.85 | 2.19 ± 0.41 | 3.60 ± 0.41 |
5–15 cm | 178 | 2.12 ± 2.36 | −0.40 ± 0.71 | 0.02 ± 0.71 | |
15–30 cm | 190 | −0.46 ± 2.22 | −1.37 ± 0.65 | −0.86 ± 0.65 | |
Summer | 0–5 cm | 316 | 3.62 ± 0.67 | 1.23 ± 0.66 | 6.08 ± 0.66 |
5–15 cm | 255 | 3.40 ± 1.65 | 2.52 ± 1.15 | 2.58 ± 1.15 | |
15–30 cm | 240 | −2.77 ± 1.51 | −2.59 ± 1.00 | −2.83 ± 1.00 | |
Autumn | 0–5 cm | 130 | 1.06 ± 0.91 | 0.08 ± 0.56 | 2.87 ± 0.56 |
5–15 cm | 115 | −0.52 ± 1.38 | 0.68 ± 1.00 | 1.12 ± 1.00 | |
15–30 cm | 58 | −1.23 ± 1.07 | −1.7 ± 0.94 | −1.85 ± 0.94 | |
Winter | 0–5 cm | 202 | 4.32 ± 0.71 | 1.18 ± 0.49 | 3.71 ± 0.49 |
5–15 cm | 149 | −1.16 ± 1.5 | −0.62 ± 0.85 | 0.12 ± 0.85 | |
15–30 cm | 138 | −1.93 ± 1.34 | −2.63 ± 0.78 | −2.11 ± 0.78 | |
Annual | 0–5 cm | 957 | 10.87 ± 1.58 | 4.68 ± 1.08 | 16.26 ± 1.08 |
5–15 cm | 697 | 3.83 ± 3.53 | 2.18 ± 1.88 | 3.85 ± 1.88 | |
15–30 cm | 626 | −6.37 ± 3.18 | −8.29 ± 1.71 | −7.65 ± 1.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, P.; Si, G.; Luo, Y.; Cheng, Z.; Yu, Q.; Duan, L. Soil Nitrogen and Sulfur Leaching in a Subtropical Forest at a Transition State under Decreasing Atmospheric Deposition. Forests 2021, 12, 1798. https://doi.org/10.3390/f12121798
Ke P, Si G, Luo Y, Cheng Z, Yu Q, Duan L. Soil Nitrogen and Sulfur Leaching in a Subtropical Forest at a Transition State under Decreasing Atmospheric Deposition. Forests. 2021; 12(12):1798. https://doi.org/10.3390/f12121798
Chicago/Turabian StyleKe, Piaopiao, Gaoyue Si, Yao Luo, Zhenglin Cheng, Qian Yu, and Lei Duan. 2021. "Soil Nitrogen and Sulfur Leaching in a Subtropical Forest at a Transition State under Decreasing Atmospheric Deposition" Forests 12, no. 12: 1798. https://doi.org/10.3390/f12121798
APA StyleKe, P., Si, G., Luo, Y., Cheng, Z., Yu, Q., & Duan, L. (2021). Soil Nitrogen and Sulfur Leaching in a Subtropical Forest at a Transition State under Decreasing Atmospheric Deposition. Forests, 12(12), 1798. https://doi.org/10.3390/f12121798