Douglas-Fir Biomass Allocation and Net Nutrient Pools 15–20 Years after Organic Matter Removal and Vegetation Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Treatments
2.2. Competing Vegetation, Forest Floor, and Soil Sampling
2.3. Douglas-Fir Biomass Sampling
2.4. Douglas-Fir Biomass Allocation Equations
2.5. Aboveground and Belowground Nutrients
2.6. Statistical Analyses
3. Results
3.1. Douglas-Fir Individual-Tree Biomass Allocation Equations
3.2. Plot-Level Douglas-Fir Biomass
3.3. Douglas-Fir Nutrient Concentrations
3.4. Plot-Level above- and Belowground Nutrient Pools
4. Discussion
4.1. Douglas-Fir Biomass Allocation Equations
4.2. Aboveground Biomass
4.3. Organic Matter Removal Effects on Net Nutrient Biomass
4.4. Vegetation Control Effects on Net Nutrient Biomass
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Fall River | Matlock | Molalla | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nutrient Pool | Treatment | DF | CVUS | FF | Soil | Total | DF | CVUS | CVOS | FF | Soil | Total | DF | CVUS | CVOS | FF | Soil | Total |
C (Mg ha−1) | BO | 90.5 b | 0.0015 | 10.6 | 77.0 | 178.1 | 15.8 b | 1.6 b | 0.7 a | 9.4 | 44.9 a | 72.3 | 32.1 b | 0.6 | 3.1 | 6.5 a | 57.6 | 100.0 |
WT | 87.0 a | 0.0006 | 11.0 | 85.1 | 183.1 | 12.6 a | 0.9 a | 3.3 b | 8.5 | 53.7 b | 78.5 | 27.7 a | 0.5 | 4.5 | 8.5 b | 53.8 | 95.0 | |
WT+ | 90.2 b | 0.0000 | 7.4 | 86.8 | 184.4 | |||||||||||||
IVC | 88.9 a | 0.0021 a | 12.0 | 81.8 | 182.8 | 9.5 a | 1.3 | 2.0 | 9.2 | 52.5 | 74.5 | 27.6 a | 0.6 | 5.3 | 7.3 | 56.9 | 97.6 | |
AVC | 89.8 b | 0.0005 b | 9.2 | 81.4 | 180.3 | 18.9 b | 1.1 | 2.4 | 8.7 | 46.0 | 76.3 | 32.2 b | 0.5 | 2.4 | 7.7 | 54.6 | 97.5 | |
N (kg ha−1) | BO | 341 | 0.0776 | 314 b | 2650 | 3304 | 124 | 34 b | 18 a | 275 | 1753 | 2204 | 205 b | 13 | 48 | 212 a | 1922 | 2399 |
WT | 308 | 0.0270 | 297 b | 2582 | 3187 | 108 | 18 a | 70 b | 268 | 1943 | 2407 | 167 a | 12 | 57 | 274 b | 1974 | 2484 | |
WT+ | 325 | 0.0003 | 188 a | 2836 | 3350 | |||||||||||||
IVC | 333 | 0.10 | 372 b | 2734 | 3439 | 88 a | 30 | 61 b | 309 | 1963 | 2451 | 176 | 13 | 73 | 234 | 2095 | 2591 | |
AVC | 327 | 0.03 | 247 a | 2661 | 3235 | 144 b | 22 | 27 a | 233 | 1733 | 2160 | 195 | 12 | 32 | 252 | 1802 | 2292 | |
P (kg ha−1) | BO | 49.0 | 0.013 | 31.7 | 13.4 | 94.0 | 24.0 b | 5.1 | 1.1 a | 24.6 | 25.9 | 80.8 | 33.0 b | 1.8 | 7.5 | 18.5 a | 7.2 | 68.0 |
WT | 46.6 | 0.004 | 30.5 | 14.3 | 91.5 | 19.0 a | 2.5 | 5.9 b | 27.4 | 27.1 | 81.8 | 25.5 a | 1.4 | 9.2 | 22.8 b | 6.7 | 65.6 | |
WT+ | 52.8 | 0.000 | 22.0 | 13.5 | 88.4 | |||||||||||||
IVC | 46.5 | 0.017 b | 35.6 b | 12.5 | 94.6 | 15.4 a | 4.5 | 4.4 | 30.7 | 27.0 | 81.9 | 27.7 a | 1.7 | 11.9 | 19.3 | 5.8 | 66.3 | |
AVC | 50.3 | 0.004 a | 26.8 a | 14.0 | 91.1 | 27.6 b | 3.0 | 2.6 | 21.3 | 26.0 | 80.6 | 30.8 b | 1.5 | 4.8 | 22.0 | 8.1 | 67.2 |
Appendix B
Fall River | Matlock | Molalla | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nutrient Pool | Treatment | DF | CVUS | FF | Soil | Total | DF | CVUS | CVOS | FF | Soil | Total | DF | CVUS | CVOS | FF | Soil | Total |
Ca (kg ha−1) | BO | 248 | 0.018 | 78 b | 318 | 644 | 113 | 27 b | 4 | 79 | 533 | 757 | 190 b | 11 | 53 | 83 a | 1290 | 1626 |
WT | 271 | 0.008 | 77 b | 220 | 569 | 88 | 14 a | 32 | 73 | 414 | 621 | 160 a | 9 | 70 | 104 b | 1167 | 1510 | |
WT+ | 288 | 0.000 | 44 a | 160 | 492 | |||||||||||||
IVC | 263 | 0.022 | 99 b | 405 b | 767 b | 61 a | 22 | 23 | 85 | 505 | 695 | 157 a | 9 | 86 | 95 | 1304 | 1652 | |
AVC | 264 | 0.007 | 60 a | 204 a | 528 a | 141 b | 19 | 14 | 67 | 443 | 683 | 193 b | 11 | 37 | 91 | 1152 | 1484 | |
K (kg ha−1) | BO | 187 | 0.09 | 14 b | 139 | 340 | 65 b | 24 b | 5 a | 24 | 66 | 340 | 162 b | 15 | 49 | 15 a | 331 | 573 |
WT | 207 | 0.03 | 13 b | 102 | 322 | 48 a | 14 a | 25 b | 30 | 54 | 322 | 123 a | 13 | 54 | 20 b | 317 | 526 | |
WT+ | 215 | 0.00 | 9 a | 95 | 319 | |||||||||||||
IVC | 173 | 0.012 a | 17 b | 150 | 340 | 41 a | 20 | 19 | 30 | 60 | 171 | 139 | 15 | 76 b | 17 | 371 b | 617 b | |
AVC | 208 | 0.031 b | 11 a | 108 | 327 | 71 b | 18 | 10 | 25 | 59 | 183 | 146 | 13 | 27 a | 18 | 277 a | 481 a | |
Mg (kg ha−1) | BO | 66 | 0.014 | 18 b | 69 | 154 | 17 | 8 b | 2 a | 18 | 46 | 91 | 28 | 3 | 10 | 18 a | 195 | 255 |
WT | 68 | 0.005 | 17 b | 54 | 139 | 14 | 4 a | 8 b | 20 | 46 | 92 | 26 | 3 | 12 | 24 b | 177 | 241 | |
WT+ | 73 | 0.000 | 10 a | 42 | 125 | |||||||||||||
IVC | 65 | 0.018 | 23 b | 89 b | 177 b | 11 a | 7 | 7 | 22 | 49 | 95 | 25 | 3 | 16 | 22 | 216 b | 282 b | |
AVC | 69 | 0.005 | 14 a | 48 a | 131 a | 20 b | 6 | 3 | 16 | 43 | 88 | 29 | 3 | 7 | 20 | 155 a | 213 a | |
Al (kg ha−1) | BO | 11.5 | 1.2 × 10−3 | 2.1 | 205.0 | 218.6 | 5.4 | 0.3 | 0.1 | 1.0 | 33.9 a | 40.7 a | 7.7 | 0.3 | 0.3 | 0.6 a | 20.8 | 29.8 |
WT | 18.1 | 5.9 × 10−4 | 2.0 | 234.7 | 254.8 | 4.5 | 0.2 | 1.5 | 1.0 | 54.4 b | 61.5 b | 8.2 | 0.2 | 0.2 | 0.8 b | 25.2 | 34.6 | |
WT+ | 20.6 | 3.9 × 10−6 | 2.9 | 268.4 | 292.0 | |||||||||||||
IVC | 10.4 | 1.3 × 10−3 | 1.6 | 194.6 | 206.7 | 3.8 a | 0.3 | 0.8 | 0.9 | 40.3 | 46.2 a | 7.0 a | 0.4 | 0.3 | 0.7 | 24.7 | 33.2 | |
AVC | 17.1 | 6.0 × 10−4 | 2.5 | 239.5 | 259.1 | 6.1 b | 0.3 | 0.8 | 1.0 | 47.9 | 56.0 b | 9.0 b | 0.1 | 0.2 | 0.7 | 21.2 | 31.2 |
References
- Powers, R.F. Long-Term Soil Productivity: Genesis of the concept and principles behind the program. Can. J. For. Res. 2006, 36, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Farve, R.; Napper, C. Biomass Fuels & Whole Tree Harvesting Impacts on Soil Productivity—Review of Literature; USDA Forest Service, National Technology and Development Program: San Dimas, CA, USA, 2009; 60p. [Google Scholar]
- Powers, R.F.; Scott, D.A.; Sanchez, F.G.; Voldseth, R.A.; Page-Dumroese, D.; Elioff, J.D.; Stone, D.M. The North American long-term soil productivity experiment: Findings from the first decade of research. For. Ecol. Manag. 2005, 220, 31–50. [Google Scholar] [CrossRef]
- Thiffault, E.; Hannam, K.D.; Paré, D.; Titus, B.D.; Hazlett, P.W.; Maynard, D.G.; Brais, S. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review. Environ. Rev. Vol. 2011, 19, 278–309. [Google Scholar] [CrossRef]
- Fleming, R.L.; Powers, R.F.; Foster, N.W.; Kranabetter, J.M.; Scott, D.A.; Ponder, F., Jr.; Berch, S.; Chapman, W.K.; Kabzems, R.D.; Ludovici, K.H.; et al. Effects of organic matter removal, soil compaction, and vegetation control on 5-year seedling performance: A regional comparison of Long-Term Soil Productivity sites. Can. J. For. Res. 2006, 36, 529–550. [Google Scholar] [CrossRef] [Green Version]
- Ponder, F.; Fleming, R.L.; Berch, S.; Busse, M.D.; Elioff, J.D.; Hazlett, P.W.; Kabzems, R.D.; Kranabetter, J.M.; Morris, D.M.; Page-Dumroese, D.; et al. Effects of organic matter removal, soil compaction and vegetation control on 10th year biomass and foliar nutrition: LTSP continent-wide comparisons. For. Ecol. Manag. 2012, 278, 35–54. [Google Scholar] [CrossRef]
- Harrington, T.B.; Schoenholtz, S.H. Effects of logging debris treatments on five-year development of competing vegetation and planted Douglas-fir. Can. J. For. Res. 2010, 40, 500–510. [Google Scholar] [CrossRef]
- Harrington, T.B.; Slesak, R.A.; Dollins, J.P.; Schoenholtz, S.H.; Peter, D.H. Logging-debris and vegetation-control treatments influence competitive relationships to limit 15-year productivity of coast Douglas-fir in western Washington and Oregon. For. Ecol. Manag. 2020, 473. in press. [Google Scholar] [CrossRef]
- Shepard, J.P.; Creighton, J.; Duzan, H. Forestry herbicides in the United States: An overview. Wildl. Soc. Bull. 2004, 32, 1020–1027. [Google Scholar] [CrossRef]
- Ares, A.; Terry, T.A.; Piatek, K.B.; Harrison, R.B.; Miller, R.E.; Flaming, B.L.; Licata, C.W.; Strahm, B.; Harrington, C.A.; Meade, R.; et al. The Fall River Long-Term Site Productivity Study in Coastal Washington: Site Characteristics, Experimental Design, and Biomass, Carbon and Nitrogen Stores before and after Harvest; USDA Forest Service, National Technology and Development Program: Olympia, WA, USA, 2007; p. 85. [Google Scholar]
- Roberts, S.D.; Harrington, C.A.; Terry, T.A. Harvest residue and competing vegetation affect soil moisture, soil temperature, N availability, and Douglas-fir seedling growth. For. Ecol. Manag. 2005, 205, 333–350. [Google Scholar] [CrossRef]
- Slesak, R.A.; Schoenholtz, S.H.; Harrington, T.B.; Strahm, B.D. Dissolved carbon and nitrogen leaching following variable logging-debris retention and competing-vegetation control in Douglas-fir plantations of western Oregon and Washington. Can. J. For. Res. 2009, 39, 1484–1497. [Google Scholar] [CrossRef]
- Littke, K.M.; Harrington, T.B.; Slesak, R.A.; Holub, S.M.; Hatten, J.A.; Gallo, A.C.; Littke, W.R.; Harrison, R.B.; Turnblom, E.C. Impacts of organic matter removal and vegetation control on nutrition and growth of Douglas-fir at three Pacific Northwestern Long-Term Soil Productivity sites. For. Ecol. Manag. 2020, 468. [Google Scholar] [CrossRef]
- Zhang, J.; Busse, M.D.; Young, D.H.; Fiddler, G.O.; Sherlock, J.W.; TenPas, J.D. Aboveground biomass responses to organic matter removal, soil compaction, and competing vegetation control on 20-year mixed conifer plantations in California. For. Ecol. Manag. 2017, 401, 341–353. [Google Scholar] [CrossRef]
- Steinbrenner, E. Forest soil productivity relationships. In Forest Soils of the Douglas-Fir Region; Heilman, P., Anderson, H., Barmgartner, D., Eds.; Washington State University Cooperative Ext. Service: Pullman, WA, USA, 1979. [Google Scholar]
- Littke, K.M.; Harrison, R.B.; Zabowski, D. Determining the effects of biogeoclimatic properties on different site index systems of Douglas-fir in the coastal Pacific Northwest. For. Sci. 2016, 62, 503–512. [Google Scholar] [CrossRef]
- Kimmins, J.P. Evaluation of the consequences for future tree productivity of the loss of nutrients in whole-tree harvesting. For. Ecol. Manag. 1977, 1, 169–183. [Google Scholar] [CrossRef]
- Devine, W.D.; Harrington, T.B.; Terry, T.A.; Harrison, R.B.; Slesak, R.A.; Peter, D.H.; Harrington, C.A.; Shilling, C.J.; Schoenholtz, S.H. Five-year vegetation control effects on aboveground biomass and nitrogen content and allocation in Douglas-fir plantations on three contrasting sites. For. Ecol. Manag. 2011, 262, 2187–2198. [Google Scholar] [CrossRef]
- Devine, W.D.; Footen, P.W.; Harrison, R.B.; Terry, T.A.; Harrington, C.A.; Holub, S.M.; Gould, P.J. Estimating Tree Biomass, Carbon, and Nitrogen in Two Vegetation Control Treatments in An 11-Year-Old Douglas-Fir Plantation on a Highly Productive Site; Res. Pap. PNW-RP-591; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2013; 29p.
- Harrison, R.B.; Terry, T.; Licata, C.; Flaming, B.; Meade, R.; Guerrini, I.; Strahm, B.; Xue, D.; Lolley, M.; Sidell, A. Biomass and stand characteristics of a highly productive mixed Douglas-fir and western hemlock plantation in coastal Washington. West. J. Appl. For. 2009, 24, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions. Available online: https://soilseries.sc.egov.usda.gov/osdname.aspx (accessed on 27 September 2019).
- Kruckeberg, A. The Natural History of Puget Sound Countr; The University of Washington Press: Seattle, WA, USA, 1991. [Google Scholar]
- Slesak, R.A.; Schoenholtz, S.H.; Harrington, T.B. Soil C and nutrient pools of Douglas-fir plantations five years after manipulating biomass and competing vegetation in the Pacific Northwest. For. Ecol. Manag. 2011, 262, 1722–1728. [Google Scholar] [CrossRef]
- Wang, T.; Hamann, A.; Spittlehouse, D.L.; Murdock, T.Q. ClimateWNA- high-resolution spatial climate data for Western North America. J. Appl. Meteor. Climatol. 2012, 51, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Slesak, R.A.; Harrington, T.B.; Peter, D.H.; DeBruler, D.G.; Schoenholtz, S.H.; Strahm, B.D. Effects of intensive management practices on 10-year Douglas-fir growth, soil nutrient pools, and vegetation communities in the Pacific Northwest, USA. For. Ecol. Manag. 2016, 365, 22–33. [Google Scholar] [CrossRef] [Green Version]
- King, J. Site Index Curves for Douglas-fir in the Pacific Northwest; Weyerhaeuser Forestry; Weyerhaeuser Company, Forestry Research Center: Centralia, WA, USA, 1966; p. 8. [Google Scholar]
- Swan, R.J. Prediction of Aboveground Component Biomass for Coastal Douglas-fir (Pseudotsuga menziesii var. menziesii). Master’s Thesis, School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA, 2019. [Google Scholar]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 2nd ed.; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- U.S. EPA. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils. Revision 2; U.S. EPA: Washington, DC, USA, 1996.
- Fox, J.; Weisberg, S. car: Companion to Applied Regression. Available online: https://cran.r-project.org/web/packages/car/index.html (accessed on 16 April 2018).
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Statist. 1979, 6, 65–70. [Google Scholar]
- Putney, J.D.; Maguire, D.A. Shifts in foliage biomass and its vertical distribution in response to operational nitrogen fertilization of Douglas-fir in western Oregon. Forests 2020, 11, 511. [Google Scholar] [CrossRef]
- Devine, W.D.; Harrington, C.A. Influence of harvest residues and vegetation on microsite soil and air temperatures in a young conifer plantation. Agric. For. Meteor. 2007, 145, 125–138. [Google Scholar] [CrossRef]
- Flamenco, H.N.; Gonzalez-Benecke, C.A.; Wightman, M.G. Long-term effects of vegetation management on biomass stock of four coniferous species in the Pacific Northwest United States. For. Ecol. Manag. 2019, 432, 276–285. [Google Scholar] [CrossRef]
- Sanchez, F.G.; Scott, D.A.; Ludovici, K.H. Negligible effects of severe organic matter removal and soil compaction on loblolly pine growth over 10 years. For. Ecol. Manag. 2006, 227, 145–154. [Google Scholar] [CrossRef]
- Johnson, D.W.; Todd, D.E. Harvesting effects on long-term changes in nutrient pools of mixed oak forest. Soil Sci. Soc. Am. J. 1998, 62, 1725–1735. [Google Scholar] [CrossRef]
- Knight, E.J. Harvest Intensity and Competing Vegetation Control Have Little Effect on Soil Carbon and Nitrogen Pools in a Pacific Northwest Douglas-Fir Plantation. Master’s Thesis, School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA, 2013. [Google Scholar]
- Dietzen, C.A.; Marques, E.R.G.; James, J.N.; Bernardi, R.H.A.; Holub, S.M.; Harrison, R.B. Response of deep soil carbon pools to forest management in a highly productive Andisol. Soil Sci. Soc. Am. J. 2017, 81, 970–978. [Google Scholar] [CrossRef]
- Himes, A.J.; Turnblom, E.C.; Harrison, R.B.; Littke, K.M.; Devine, W.D.; Zabowski, D.; Briggs, D.G. Predicting risk of long-term nitrogen depletion under whole-tree harvesting in the coastal Pacific Northwest. For. Sci. 2013, 60, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Root, A.M. The Effects of Biomass Removal and Competing Vegetation Control on Douglas-fir Foliar Nutrition in the Pacific Northwest, USA. Master’s Thesis, School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA, 2017. [Google Scholar]
- Keyes, M.R.; Grier, C.C. Above- and belowground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can. J. For. Res. 1981, 11, 599–605. [Google Scholar] [CrossRef]
- Duchesne, L.; Houle, D. Impact of nutrient removal through harvesting on the sustainability of the boreal forest. Ecol. Appl. 2008, 18, 1642–1651. [Google Scholar] [CrossRef]
- Thiffault, E.; Pare, D.; Belanger, N.; Munson, A.; Marquis, F. Harvesting intensity at clear-felling in the boreal forest: Impact on soil and foliar nutrient status. Soil Sci. Soc. Am. J. 2006, 70, 691–701. [Google Scholar] [CrossRef]
- Achat, D.L.; Deleuze, C.; Landmann, G.; Pousse, N.; Ranger, J.; Augusto, L. Quantifying consequences of removing harvesting residues on forest soils and tree growth—A meta-analysis. For. Ecol. Manag. 2015, 348, 124–141. [Google Scholar] [CrossRef]
- Perakis, S.S.; Maguire, D.A.; Bullen, T.D.; Cromack, K.; Waring, R.; Boyle, J.R. Coupled nitrogen and calcium cycles in forests of the Oregon Coast Range. Ecosystems 2006, 9, 63–74. [Google Scholar] [CrossRef]
- Devine, W.D.; Footen, P.W.; Strahm, B.D.; Harrison, R.B.; Terry, T.A.; Harrington, T.B. Nitrogen leaching following whole-tree and bole-only harvests on two contrasting Pacific Northwest sites. For. Ecol. Manag. 2012, 267, 7–17. [Google Scholar] [CrossRef]
Variable | Unit | Fall River | Matlock | Molalla |
---|---|---|---|---|
Plot Size | ha | 0.1 | 0.09 | 0.09 |
Latitude | degrees | 46.721 | 47.206 | 45.196 |
Longitude | degrees | −123.410 | −123.442 | −122.285 |
Elevation | m | 334 | 35 | 549 |
Mean Annual Temperature a | °C | 9.6 | 10.7 | 9.8 |
Mean Annual Precipitation a | mm | 2300 | 2000 | 1800 |
Soil Water Holding Capacity b | cm | 18.3 | 6.5 | 19.3 |
Soil Total N Content | kg ha−1 | 13,010 c | 4498 d | 9844 d |
Soil Exchangeable Ca Content | kg ha−1 | 803 c | 744 d | 9930 d |
Soil Exchangeable Mg Content | kg ha−1 | 349 c | 358 d | 4024 d |
Soil Exchangeable K Content | kg ha−1 | 511 c | 188 d | 2496 d |
Soil Extractable P Content | kg ha−1 | 38 c | 59 d | 26 d |
Previous Stand King’s Site Index (Current Stand e) | m at 50 years | 42 (46) | 36 (26) | 36 (34) |
Site | Age | n | Mean DBH (Range) | Mean HT (Range) | Mean CR (Range) | Reference |
---|---|---|---|---|---|---|
(yr) | (cm) | (m) | (m/m) | |||
Fall River | 5 | 46 | 4.3 (2–7) | 3.6 (2.2–5.3) | 0.89 (0.77–0.98) | [18] |
Fall River | 11 | 26 | 13.3 (3.8–17.6) | 9.3 (7.3–11.9) | 0.86 (0.73–0.95) | [19] |
Fall River | 20 | 17 | 19.4 (18.9–19.9) | 18.6 (17.5–20.5) | 0.51 (0.45–0.56) | this study |
Fall River | 47 | 31 | 47.1 (14.9–79.9) | 34.8 (22.7–39.7) | 0.41 (0.22–0.55) | [20] |
Matlock | 5 | 22 | 2.1 (0.4–4.7) | 2.2 (1.3–3.4) | 0.92 (0.74–0.99) | [18] |
Matlock | 15 | 16 | 11.7 (8.5–15) | 8 (6.2–11.6) | 0.95 (0.90–0.98) | this study |
Molalla | 5 | 43 | 2.6 (0.4–5.7) | 2.6 (1.3–4) | 0.91 (0.49–0.98) | [19] |
Molalla | 15 | 16 | 14.4 (11.9–16.9) | 11.8 (9.8–13.2) | 0.91 (0.83–0.98) | this study |
Biomass Component | Equation | s | n | R2 |
---|---|---|---|---|
Foliage | 4.63 | 200 | 0.82 | |
Branch | 20.83 | 200 | 0.93 | |
Stem | 45.16 | 185 | 0.99 |
Site | Component | Nutrient | ANOVA Model | OM Treatments | V Treatments | ||||
---|---|---|---|---|---|---|---|---|---|
OM | V | BO | WT | WT+ | IVC | AVC | |||
p-Value | p-Value | Mean | Mean | Mean | Mean | Mean | |||
Fall River | Foliar | N | 0.03 | 0.08 | 1.32 b | 1.22 a | 1.29 ab | 1.28 a | 1.29 b |
Foliar | P | 0.24 | 0.04 | 0.173 | 0.168 | 0.175 | 0.155 a | 0.178 b | |
Matlock | Foliar | N | 0.10 | 0.09 | 1.13 a | 1.22 b | 1.22 b | 1.13 a | |
Foliar | Ca | 0.19 | <0.01 | 0.66 | 0.59 | 0.55 a | 0.71 b | ||
Branch | N | 0.49 | 0.06 | 0.35 | 0.37 | 0.38 b | 0.33 a | ||
Branch | K | 0.05 | 0.14 | 0.20 b | 0.17 a | 0.20 | 0.18 | ||
Stem | P | 0.07 | 0.07 | 0.014 a | 0.019 b | 0.019 b | 0.014 a | ||
Stem | Ca | 0.01 | 0.34 | 0.09 a | 0.11 b | 0.10 | 0.09 | ||
Stem | Mg | 0.03 | 0.03 | 0.011 a | 0.016 b | 0.016 b | 0.011 a | ||
Stem | Al | 0.42 | 0.06 | 0.0036 | 0.0045 | 0.0052 b | 0.0029 a | ||
Molalla | Foliar | N | 0.05 | 0.18 | 1.17 b | 1.10 a | 1.16 | 1.11 | |
Foliar | K | 0.04 | 0.10 | 0.82 b | 0.70 a | 0.81 b | 0.72 a | ||
Branch | Al | 0.32 | 0.09 | 0.019 | 0.021 | 0.018 a | 0.022 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Littke, K.M.; Harrington, T.B.; Holub, S.M.; Littke, W.R.; Harrison, R.B.; Turnblom, E.C. Douglas-Fir Biomass Allocation and Net Nutrient Pools 15–20 Years after Organic Matter Removal and Vegetation Control. Forests 2020, 11, 1022. https://doi.org/10.3390/f11091022
Littke KM, Harrington TB, Holub SM, Littke WR, Harrison RB, Turnblom EC. Douglas-Fir Biomass Allocation and Net Nutrient Pools 15–20 Years after Organic Matter Removal and Vegetation Control. Forests. 2020; 11(9):1022. https://doi.org/10.3390/f11091022
Chicago/Turabian StyleLittke, K. M., T. B. Harrington, S. M. Holub, W. R. Littke, R. B. Harrison, and E. C. Turnblom. 2020. "Douglas-Fir Biomass Allocation and Net Nutrient Pools 15–20 Years after Organic Matter Removal and Vegetation Control" Forests 11, no. 9: 1022. https://doi.org/10.3390/f11091022
APA StyleLittke, K. M., Harrington, T. B., Holub, S. M., Littke, W. R., Harrison, R. B., & Turnblom, E. C. (2020). Douglas-Fir Biomass Allocation and Net Nutrient Pools 15–20 Years after Organic Matter Removal and Vegetation Control. Forests, 11(9), 1022. https://doi.org/10.3390/f11091022