Terpenoid Accumulation Links Plant Health and Flammability in the Cypress-Bark Canker Pathosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up: Plant Selection, Growth Conditions and Artificial Inoculation
2.2. Fuel Moisture and Biomass Determination
2.3. Sample Splitting for the Determination of Terpenoids and Flammability Tests
2.4. Terpenoids Extraction, Identification and Quantification
2.5. Flammability Test at MLC
2.6. Statistical Analysis
3. Results
3.1. Clone and Infection Effects on Terpenoids Concentration
3.2. Clone and Infection Effects on Flammability
3.3. Linking Disease and Flammability
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, G.; He, Y.; De Santis, A.; Li, G.; Cobb, R.; Meentemeyer, R.K. Assessing the impact of emerging forest disease on wildfire using Landsat and KOMPSAT-2 data. Remote. Sens. Environ. 2017, 195, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Metz, M.; Varner, J.M.; Frangioso, K.M.; Meentemeyer, R.K.; Rizzo, D.M. Unexpected redwood mortality from synergies between wildfire and an emerging infectious disease. Ecology 2013, 94, 2152–2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Killi, D.; Bussotti, F.; Gottardini, E.; Pollastrini, M.; Mori, J.; Tani, C.; Papini, A.; Ferrini, F.; Fini, A. Photosynthetic and morphological responses of oak species to temperature and [CO2] increased to levels predicted for 2050. Urban For. Urban Green. 2018, 31, 26–37. [Google Scholar] [CrossRef]
- Metz, M.; Varner, J.M.; Simler-Williamson, A.; Frangioso, K.M.; Rizzo, D.M. Implications of sudden oak death for wildland fire management. For. Phytophthoras 2017, 7, 30–44. [Google Scholar] [CrossRef]
- Boyd, I.L.; Freer-Smith, P.H.; Gilligan, C.A.; Godfray, H.C.J. The Consequence of Tree Pests and Diseases for Ecosystem Services. Science 2013, 342, 1235773. [Google Scholar] [CrossRef] [PubMed]
- Stephens, S.L.; Agee, J.K.; Fulé, P.Z.; North, M.P.; Romme, W.H.; Swetnam, T.W.; Turner, M.G. Managing Forests and Fire in Changing Climates. Science 2013, 342, 41–42. [Google Scholar] [CrossRef]
- Ruffault, J.; Curt, T.; Martin-StPaul, N.K.; Moron, V.; Trigo, R.M. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean. Nat. Hazards Earth Syst. Sci. 2018, 18, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wu, S.; Kaplan, J. Sensitivity of global wildfire occurrences to various factors in the context of global change. Atmos. Environ. 2015, 121, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Ramsfield, T.; Bentz, B.; Faccoli, M.; Jactel, H.; Brockerhoff, E.G. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts. Forestry 2016, 89, 245–252. [Google Scholar] [CrossRef]
- Loehman, R.; Keane, R.; Holsinger, L.M.; Wu, Z. Interactions of landscape disturbances and climate change dictate ecological pattern and process: Spatial modeling of wildfire, insect, and disease dynamics under future climates. Landsc. Ecol. 2016, 32, 1447–1459. [Google Scholar] [CrossRef]
- Pautasso, M.; Schlegel, M.; Holdenrieder, O. Forest Health in a Changing World. Microb. Ecol. 2014, 69, 826–842. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.; Veneklaas, E.J.; Hardy, G.E.S.J.; Poot, P. Tree host–pathogen interactions as influenced by drought timing: Linking physiological performance, biochemical defence and disease severity. Tree Physiol. 2018, 39, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Metz, M.; Frangioso, K.M.; Meentemeyer, R.K.; Rizzo, D.M. Interacting disturbances: Wildfire severity affected by stage of forest disease invasion. Ecol. Appl. 2011, 21, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meentemeyer, R.K.; Rank, N.E.; Shoemaker, D.A.; Oneal, C.B.; Wickland, A.C.; Frangioso, K.M.; Rizzo, D.M. Impact of sudden oak death on tree mortality in the Big Sur ecoregion of California. Boil. Invasions 2007, 10, 1243–1255. [Google Scholar] [CrossRef]
- Cobb, R.C.; Filipe, J.A.N.; Meentemeyer, R.K.; Gilligan, C.A.; Rizzo, D.M. Ecosystem transformation by emerging infectious disease: Loss of large tanoak from California forests. J. Ecol. 2012, 100, 712–722. [Google Scholar] [CrossRef]
- Cobb, R.C.; Rizzo, D.M. Decomposition and N cycling changes in redwood forests caused by sudden oak death. In Proceedings of the Coast Redwood Forests in a Changing California: A Symposium for Scientists and Managers, Albany, CA, USA, 21–23 June 2011; 2012; pp. 357–362. [Google Scholar]
- Varner, J.M.; Kuljian, H.G.; Kreye, J.K. Fires without tanoak: The effects of a non-native disease on future community flammability. Boil. Invasions 2017, 19, 2307–2317. [Google Scholar] [CrossRef] [Green Version]
- Forrestel, A.B.; Ramage, B.; Moody, T.; Moritz, M.A.; Stephens, S.L. Disease, fuels and potential fire behavior: Impacts of Sudden Oak Death in two coastal California forest types. For. Ecol. Manag. 2015, 348, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Trapp, S.; Croteau, R. Defensive resin biosynthesis in conifers. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 689–724. [Google Scholar] [CrossRef]
- Franceschi, V.R.; Krokene, P.; Christiansen, E.; Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 2005, 167, 353–376. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Boulogne, I.; Petit, P.; Ozier-Lafontaine, H.; Desfontaines, L.; Loranger-Merciris, G. Insecticidal and antifungal chemicals produced by plants: A review. Environ. Chem. Lett. 2012, 10, 325–347. [Google Scholar] [CrossRef] [Green Version]
- Chetehouna, K.; Barboni, T.; Zarguili, I.; Leoni, E.; Simeoni, A.; Fernandez-Pello, A.C. Investigation on the Emission of Volatile Organic Compounds from Heated Vegetation and Their Potential to Cause an Accelerating Forest Fire. Combust. Sci. Technol. 2009, 181, 1273–1288. [Google Scholar] [CrossRef] [Green Version]
- Chetehouna, K.; Courty, L.; Garo, J.P.; Viegas, D.; Fernandez-Pello, C. Flammability limits of biogenic volatile organic compounds emitted by fire-heated vegetation (Rosmarinus officinalis) and their potential link with accelerating forest fires in canyons: A Froude-scaling approach. J. Fire Sci. 2013, 32, 316–327. [Google Scholar] [CrossRef]
- Courty, L.; Chetehouna, K.; Lemee, L.; Mounaïm-Rousselle, C.; Halter, F.; Garo, J. Pinus pinea emissions and combustion characteristics of limonene potentially involved in accelerating forest fires. Int. J. Therm. Sci. 2012, 57, 92–97. [Google Scholar] [CrossRef]
- Pausas, J.G.; Alessio, G.A.; Moreira, B.; Segarra-Moragues, J.G. Secondary compounds enhance flammability in a Mediterranean plant. Oecologia 2015, 180, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Rocca, G.; Madrigal, J.; Marchi, E.; Michelozzi, M.; Moya, B.; Danti, R. Relevance of terpenoids on flammability of Mediterranean species: An experimental approach at a low radiant heat flux. iFor. Biogeosci. For. 2017, 10, 766–775. [Google Scholar] [CrossRef] [Green Version]
- Fares, S.; Bajocco, S.; Salvati, L.; Camarretta, N.; Dupuy, J.-L.; Xanthopoulos, G.; Guijarro, M.; Madrigal, J.; Hernando, C.; Corona, P. Characterizing potential wildland fire fuel in live vegetation in the Mediterranean region. Ann. For. Sci. 2017, 74, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Achotegui-Castells, A.; Della Rocca, G.; Llusià, J.; Danti, R.; Barberini, S.; Bouneb, M.; Simoni, S.; Michelozzi, M.; Penuelas, J. Terpene arms race in the Seiridium cardinale—Cupressus sempervirens pathosystem. Sci. Rep. 2016, 6, 18954. [Google Scholar] [CrossRef] [Green Version]
- Graniti, A. CYPRESS CANKER: A Pandemic in Progress. Annu. Rev. Phytopathol. 1998, 36, 91–114. [Google Scholar] [CrossRef]
- Della Rocca, G.; Osmundson, T.; Danti, R.; Doulis, A.G.; Pecchioli, A.; Donnarumma, F.; Casalone, E.; Garbelotto, M. AFLP analyses of California and Mediterranean populations ofSeiridium cardinaleprovide insights on its origin, biology and spread pathways. For. Pathol. 2013, 43, 211–221. [Google Scholar] [CrossRef]
- Danti, R.; Della Rocca, G. Epidemiological History of Cypress Canker Disease in Source and Invasion Sites. Forests 2017, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Danti, R.; Della Rocca, G.; Panconesi, A. Chapter 17 Cypress canker. In Infectious Forest Disease; Nicolotti, G., Gonthier, P., Eds.; CAB International: Wallingford, UK; Boston, MA, USA, 2013; pp. 358–371. [Google Scholar]
- Ponchet, J.; Andreoli, C. Histopathologie du cancre du cyprès à Seiridium cardinale. Eur. J. For. Path. 1989, 19, 212–221. [Google Scholar]
- Spanos, B.K.A.; Pirrie, A.; Woodward, S.; Xenopoulos, S. Responses in the bark of Cupressus sempervirens clones artificially inoculated with Seiridium cardinale under field conditions. Eur. J. For. Pathol. 1999, 29, 135–142. [Google Scholar] [CrossRef]
- Papini, A.; Moricca, S.; Danti, R.; Tani, C.; Posarelli, I.; Falsini, S.; Della Rocca, G. Ultrastructure of traumatic resin duct formation in Cupressus sempervirens L. in response to the attack of the fungus Seiridium cardinale (Wag.) Sutton & Gibson. In Proceedings of the 14th Multinational Congress on Microscopy, Belgrade, Serbia, 15–20 September 2019; pp. 310–311. [Google Scholar]
- Raddi, P.; Panconesi, A. Pathogenicity of some isolates of Seiridium (Coryneum) cardinale, agent of cypress canker disease. For. Pathol. 1984, 14, 348–354. [Google Scholar] [CrossRef]
- Santini, A.; Donardo, V. Genetic variability of the ‘bark canker resistance’ character in several natural provenances of Cupressus sempervirens. For. Pathol. 2000, 30, 87–96. [Google Scholar] [CrossRef]
- Danti, R.; Panconesi, A.; Di Lonardo, V.; Della Rocca, G.; Raddi, P. Italico’and Mediterraneo’: Two Seiridium cardinale Canker-Resistant Cypress Cultivars of Cupressus sempervirens. Am. Soc. Hort. Sci. 2006, 41, 1357–1359. [Google Scholar] [CrossRef] [Green Version]
- Danti, R.; Di Lonardo, V.; Pecchioli, A.; Della Rocca, G. ‘Le Crete 1’ and ‘Le Crete 2’: Two newly patentedSeiridium cardinalecanker-resistant cultivars ofCupressus sempervirens. For. Pathol. 2012, 43, 204–210. [Google Scholar] [CrossRef]
- Danti, R.; Rotordam, M.G.; Emiliani, G.; Giovannelli, A.; Papini, A.; Tani, C.; Barberini, S.; Della Rocca, G. Different clonal responses to cypress canker disease based on transcription of suberin-related genes and bark carbohydrates’ content. Trees 2018, 32, 1707–1722. [Google Scholar] [CrossRef]
- Valette, J.-C. Inflammabilités des espèces forestières méditerranéennes. Conséquences sur la combustibilité des formations forestières. Rev. For. Française 1990, 42, 76–92. [Google Scholar] [CrossRef] [Green Version]
- Dimitrakopoulos, A.; Papaioannou, K.K. Flammability Assessment of Mediterranean Forest Fuels. Fire Technol. 2001, 37, 143–152. [Google Scholar] [CrossRef]
- Liodakis, S.; Bakirtzis, D.; Lois, E. TG and autoignition studies on forest fuels. J. Therm. Anal. Calorim 2002, 69, 519–528. [Google Scholar] [CrossRef]
- Neyisci, T.; Intini, M. The use of cypress barriers for limiting fires in Mediterranean countries. In Proceedings of the Il Cipresso e Gli Incendi, Valencia, Spain, 14–16 June 2006; Arsia Toscana: Firenze, Italy, 2006; pp. 3–18. [Google Scholar]
- Ganteaume, A.; Jappiot, M.; Lampin, C.; Guijarro, M.; Hernando, C. Flammability of Some Ornamental Species in Wildland–Urban Interfaces in Southeastern France: Laboratory Assessment at Particle Level. Environ. Manag. 2013, 52, 467–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Rocca, G.; Hernando, C.; Madrigal, J.; Danti, R.; Moya, J.; Guijarro, M.; Pecchioli, A.; Moya, B. Possible land management uses of common cypress to reduce wildfire initiation risk: A laboratory study. J. Environ. Manag. 2015, 159, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Danti, R.; Barberini, S.; Pecchioli, A.; Di Lonardo, V.; Della Rocca, G. The Epidemic Spread of Seiridium cardinaleon Leyland Cypress Severely Limits Its Use in the Mediterranean. Plant Dis. 2014, 98, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Madrigal, J.; Hernando, C.; Guijarro, M.; Díez, C.; Marino, E.; De Castro, A.J. Evaluation of Forest Fuel Flammability and Combustion Properties with an Adapted Mass Loss Calorimeter Device. J. Fire Sci. 2009, 27, 323–342. [Google Scholar] [CrossRef]
- Madrigal, J.; Hernando, C.; Guijarro, M. A new bench-scale methodology for evaluating the flammability of live forest fuels. J. Fire Sci. 2012, 31, 131–142. [Google Scholar] [CrossRef]
- Della Rocca, G.; Danti, R.; Hernando, C.; Guijarro, M.; Madrigal, J. Flammability of Two Mediterranean Mixed Forests: Study of the Non-additive Effect of Fuel Mixtures in Laboratory. Front. Plant Sci. 2018, 9, 825. [Google Scholar] [CrossRef]
- White, R.H.; Zipperer, W.C. Testing and classification of individual plants for fire behaviour: Plant selection for the wildland—urban interface. Int. J. Wildland Fire 2010, 19, 213–227. [Google Scholar] [CrossRef]
- Cruz, M.G.; Butler, B.W.; Viegas, D.; Palheiro, P. Characterization of flame radiosity in shrubland fires. Combust. Flame 2011, 158, 1970–1976. [Google Scholar] [CrossRef]
- Tholl, D. Biosynthesis and Biological Functions of Terpenoids in Plants. Plant Cells 2015, 148, 63–106. [Google Scholar] [CrossRef]
- Yazaki, K.; Arimura, G.; Ohnishi, T. ‘Hidden’ Terpenoids in Plants: Their Biosynthesis, Localization and Ecological Roles. Plant Cell Physiol. 2017, 58, 1615–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, K. An Overview of Plant Defenses against Pathogens and Herbivores. Plant Heal. Instr. 2008, 149. [Google Scholar] [CrossRef] [Green Version]
- Selim, S.A.; E Adam, M.E.; Hassan, S.M.; AlBalawi, A.R. Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the Mediterranean cypress (Cupressus sempervirens L.). BMC Complement. Altern. Med. 2014, 14, 179. [Google Scholar] [CrossRef] [PubMed]
- Zulak, K.G.; Bohlmann, J. Terpenoid Biosynthesis and Specialized Vascular Cells of Conifer Defense. J. Integr. Plant Boil. 2010, 52, 86–97. [Google Scholar] [CrossRef]
- Celedon, J.M.; Bohlmann, J. Oleoresin defenses in conifers: Chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. New Phytol. 2019, 224, 1444–1463. [Google Scholar] [CrossRef] [Green Version]
- Krokene, P.; Nagy, N.E.; Krekling, T. Chapter 7 Traumatic resin ducts and polyphenolic parenchyma cells in conifers. In Induced Plant Resistance to Herbivory; Springer: Berlin/Heidelberg, Germany, 2008; pp. 147–169. [Google Scholar]
- Bonello, P.; Capretti, P.; Luchi, N.; Martini, V.; Michelozzi, M. Systemic effects of Heterobasidion annosum s.s. infection on severity of Diplodia pinea tip blight and terpenoid metabolism in Italian stone pine (Pinus pinea). Tree Physiol. 2008, 28, 1653–1660. [Google Scholar] [CrossRef] [Green Version]
- Pepori, A.L.; Michelozzi, M.; Santini, A.; Cencetti, G.; Bonello, P.; Gonthier, P.; Sebastiani, F.; Luchi, N. Comparative transcriptional and metabolic responses of Pinus pinea to a native and a non-native Heterobasidion species. Tree Physiol. 2018, 39, 31–44. [Google Scholar] [CrossRef]
- Whitehill, J.; Yuen, M.M.S.; Henderson, H.; Madilao, L.L.; Kshatriya, K.; Bryan, J.; Jaquish, B.; Bohlmann, J. Functions of stone cells and oleoresin terpenes in the conifer defense syndrome. New Phytol. 2018, 221, 1503–1517. [Google Scholar] [CrossRef] [Green Version]
- Ormeño, E.; Céspedes, B.; Sánchez, I.A.; García, A.V.; Moreno, J.M.; Fernandez, C.; Baldy, V. The relationship between terpenes and flammability of leaf litter. For. Ecol. Manag. 2009, 257, 471–482. [Google Scholar] [CrossRef]
- Raddi, P.; Panconesi, A.; Xenopoulos, S.; Ferrandes, P.; Andreoli, C. Genetic improvement for resistance to cypress canker. In Agrimed Reserach Programme, Progress in EEC Research on Cypress Disease; Ponchet, J., Ed.; Report EU 12493 EN; Commission of the European Communities: Brussels, Belgium; Luxembourg, 1990; pp. 127–134. [Google Scholar]
- Danti, R.; Della Rocca, G.; Di Lonardo, V.; Pecchioli, A.; Raddi, P. Genetic improvement program of cypress: Results and outlook. In Status of the Experimental Network of Mediterranean Forest Genetic Resources; Besacier, C., Ducci, F., Malagnoux, M., Souvannavong, O., Eds.; CRA SAL, Arezzo and FAO Silva Mediterranea: Rome, Italy, 2011; pp. 88–96. [Google Scholar]
- Panconesi, A.; Danti, R. Esperienze técnico-scientifiche nella bonifica del cipresso. In Proceedings of the Il Recupero Del Cipresso Nel Paesaggio E Nel Giardino Storico’ Collodi, Pistoia, Italy, 15 March 1995; Regione Toscana Giunta Regionale Dipartimento Agricoltura e Foreste: Florence, Italy, 1995; pp. 9–21. [Google Scholar]
Treatment | Clone | MT | MTox | ST | STox | TOTterp | FMC (%) |
---|---|---|---|---|---|---|---|
C | R | 3093 (450) | 156 (35) | 2129 (400) | 1352 (183) | 6730 (894) | 149 (9) |
S | 4319 (818) | 221 (46) | 1617 (362) | 1357 (199) | 7514 (1147) | 147 (24) | |
p-value | Clone | <0.001 | <0.001 | <0.001 | 0.019 | <0.001 | |
FMC | 0.205 | 0.019 | 0.002 | 0.009 | 0.005 | ||
I | R | 2894 (656) | 158 (44) | 2231 (514) | 1204 (207) | 6487 (1303) | 133 (17) |
S | 3134 (944) | 239 (118) | 1529 (535) | 1100 (293) | 6003 (1301) | 103 (76) | |
p-value | Clone | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
FMC | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
S (live) | 3671 (740) | 287 (124) | 1240 (448) | 1172 (333) | 6370 (1500) | 164 (19) | |
p-value | Clone | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
FMC | 0.003 | 0.025 | 0.030 | 0.010 | 0.009 |
Treatment | Clone | MT | MTox | ST | STox | TOTterp |
---|---|---|---|---|---|---|
C | R | 549 (360) | 32 (13) | 746 (266) | 401 (174) | 1727 (753) |
S | 604 (464) | 42 (18) | 424 (135) | 226 (72) | 1295 (650) | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
I | R | 5926 (3711) | 489 (561) | 2623 (2034) | 3504 (2508) | 12,542 (8541) |
S | 2190 (2225) | 380 (590) | 1450 (1962) | 1741 (1834) | 5760 (6338) | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Clone | Treatment | MT | MTox | ST | STox | TOTterp |
---|---|---|---|---|---|---|
R | C | 3093 (450) | 156 (35) | 2129 (400) | 1352 (183) | 6730 (894) |
I | 2894 (656) | 158 (44) | 2231 (514) | 1204 (207) | 6487 (1303) | |
p-value | Treatment | 0.224 | 0.999 | 0.993 | 0.026 | 0.439 |
FMC | 0.052 | 0.122 | 0.588 | 0.033 | 0.159 | |
S | C | 4319 (818) | 221 (46) | 1617 (362) | 1357 (199) | 7514 (1147) |
I | 3134 (944) | 239 (118) | 1529 (535) | 1100 (293) | 6003 (1301) | |
p-value | Treatment | 0.017 | 0.118 | 0.275 | 0.129 | 0.025 |
FMC | 0.003 | 0.011 | 0.789 | 0.000 | 0.004 | |
S * (vs. C) p-value | I | 3671 (740) | 287 (124) | 1240 (448) | 1172 (333) | 6370 (1500) |
Treatment | 0.999 | 0.999 | 0.045 | 0.999 | 0.08 | |
FMC | 0.998 | 0.025 | 0.456 | 0.036 | 0.117 |
Clone | Treatment | MT | MTox | ST_c | STox_c | TOT_terp_c |
---|---|---|---|---|---|---|
R | C | 549 (360) | 32 (13) | 746 (266) | 401 (174) | 1727 (753) |
I | 5926 (3711) | 489 (561) | 2623 (2034) | 3504 (2508) | 12,542 (8541) | |
p-value | Treatment | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
S | C | 604 (464) | 42 (18) | 424 (135) | 226 (72) | 1295 (650) |
I | 2190 (2225) | 380 (590) | 1450 (1962) | 1741 (1834) | 5760 (6338) | |
p-value | Treatment | 0.007 | 0.001 | 0.017 | <0.001 | 0.002 |
Treatment | Clone | TTI | PHRR | AEHC | PML |
---|---|---|---|---|---|
R | 141 (79) | 65 (37) | 5.54 (4.46) | 22.90 (25.57) | |
C | S | 122 (77) | 96 (29) | 5.07 (1.63) | 19.00 (6.58) |
p-value | Treatment | <0.001 | <0.001 | <0.001 | <0.001 |
FMC | <0.001 | 0.003 | 0.955 | <0.001 | |
R | 116 (73) | 69 (32) | 4.93 (2.95) | 21.67 (17.83) | |
I | S | 73(51) | 143 (106) | 8.10 (5.65) | 47.50 (36.10) |
S * | 109 (27) | 64 (27) | 3.94 (2.15) | 23.75 (25.54) | |
p-value | Treatment | <0.001 | <0.001 | 0.038 | <0.001 |
FMC | <0.001 | <0.001 | <0.001 | <0.001 | |
SC vs. SI (live) | Treatment | <0.001 | 0.332 | 0.925 | 0.168 |
FMC | <0.001 | <0.001 | 0.267 | 0.139 |
Clone | Treatment | TTI | PHRR | AEHC | PML |
---|---|---|---|---|---|
R | C | 141 (79) | 65 (37) | 5.54 (4.46) | 77.10 (25.57) |
I | 116 (73) | 69 (32) | 4.93 (2.95) | 78.33 (17.83) | |
p-value | Treatment | <0.001 | 0.459 | 0.177 | 0.413 |
FMC | <0.001 | <0.001 | 0.387 | 0.958 | |
S | C | 122 (77) | 96 (29) | 5.07 (1.63) | 81.00 (6.58) |
I | 73 (51) | 143 (106) | 8.10 (5.65) | 87.50 (36.10) | |
I * | 109 (27) | 94 (27) | 3.94 (2.15) | 76.25 (25.54) | |
p-value | Treatment | 0.002 | <0.001 | 0.005 | <0.001 |
FMC | <0.001 | <0.001 | <0.001 | <0.001 | |
RI vs. SI (live) | Treatment | 0.001 | 0.657 | 0.170 | 0.257 |
FMC | <0.001 | 0.241 | 0.962 | 0.513 |
PLS Model | R2X | R2X (Cumul.) | Eigenvalues | R2Y | R2Y (Cumul.) | Q2 | Q2 (Cumul.) | R2Y for TTI | R2Y for PHRR | R2Y for AEHC | R2Y for PML |
---|---|---|---|---|---|---|---|---|---|---|---|
Component1 | 0.31 | 0.31 | 3.624263 | 0.53 | 0.53 | 0.462919 | 0.462919 | 0.23 | 0.68 | 0.41 | 0.64 |
Component2 | 0.16 | 0.47 | 1.616667 | 0.03 | 0.56 | −0.24175 | 0.333077 | 0.24 | 0.77 | 0.53 | 0.66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Della Rocca, G.; Danti, R.; Hernando, C.; Guijarro, M.; Michelozzi, M.; Carrillo, C.; Madrigal, J. Terpenoid Accumulation Links Plant Health and Flammability in the Cypress-Bark Canker Pathosystem. Forests 2020, 11, 651. https://doi.org/10.3390/f11060651
Della Rocca G, Danti R, Hernando C, Guijarro M, Michelozzi M, Carrillo C, Madrigal J. Terpenoid Accumulation Links Plant Health and Flammability in the Cypress-Bark Canker Pathosystem. Forests. 2020; 11(6):651. https://doi.org/10.3390/f11060651
Chicago/Turabian StyleDella Rocca, Gianni, Roberto Danti, Carmen Hernando, Mercedes Guijarro, Marco Michelozzi, Cristina Carrillo, and Javier Madrigal. 2020. "Terpenoid Accumulation Links Plant Health and Flammability in the Cypress-Bark Canker Pathosystem" Forests 11, no. 6: 651. https://doi.org/10.3390/f11060651
APA StyleDella Rocca, G., Danti, R., Hernando, C., Guijarro, M., Michelozzi, M., Carrillo, C., & Madrigal, J. (2020). Terpenoid Accumulation Links Plant Health and Flammability in the Cypress-Bark Canker Pathosystem. Forests, 11(6), 651. https://doi.org/10.3390/f11060651