Impact of Climate Change on the Distribution of Euscaphis japonica (Staphyleaceae) Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location Data for E. japonica
2.2. Environmental Parameters
2.3. Model Simulation and Evalution
2.4. Model Evalution
3. Results
3.1. Model Accuracy and Prediction of Potentially Suitable Areas
3.2. Variable Importance and Climatic Preference
3.3. Changes in Potential Distribution Area under Climate Change
4. Discussion
4.1. Predictive Capabilities of GARP and Maxent
4.2. Climate Preference of E. japonica
4.3. Impacts on E. japonica Forest Ecosystems and Implications for Biodiversity Conservation
4.4. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Poortinga, W.; Whitmarsh, L.; Steg, L.; Böhm, G.; Fisher, S. Climate change perceptions and their individual-level determinants: A cross-European analysis. Glob. Environ. Chang. 2019, 55, 25–35. [Google Scholar] [CrossRef]
- Hossain, M.S.; Arshad, M.; Qian, L.; Kächele, H.; Khan, I.; Islam, M.D.I.; Mahboob, M.G. Climate change impacts on farmland value in Bangladesh. Ecol. Indic. 2020, 112, 106181. [Google Scholar] [CrossRef]
- Pearson, R.G.; Stanton, J.C.; Shoemaker, K.T.; Aiello-Lammens, M.E.; Ersts, P.J.; Horning, N.; Fordham, D.A.; Raxworthy, C.J.; Ryu, H.Y.; McNees, J.; et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Chang. 2014, 4, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Román-Palacios, C.; Wiens, J.J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. USA 2020, 117, 4211–4217. [Google Scholar] [CrossRef] [PubMed]
- Timm, K.M.; Maibach, E.W.; Boykoff, M.; Myers, T.A.; Broeckelman-Post, M.A. The prevalence and rationale for presenting an opposing viewpoint in climate change Reporting: Findings from a US national survey of TV weathercasters. Weather Clim. Soc. 2020, 12, 103–115. [Google Scholar] [CrossRef]
- Yan, H.; Feng, L.; Zhao, Y.; Feng, L.; Wu, D.; Zhu, C. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Glob. Ecol. Conserv. 2020, 21, e00856. [Google Scholar] [CrossRef]
- Negrini, M.; Fidelis, E.G.; Picanço, M.C.; Ramos, R.S. Mapping of the Steneotarsonemus spinki invasion risk in suitable areas for rice (Oryza sativa) cultivation using MaxEnt. Exp. Appl. Acarol. 2020, 80, 445–461. [Google Scholar] [CrossRef]
- Gonzalez, P.; Kroll, B.; Vargas, C.R. Tropical rainforest biodiversity and aboveground carbon changes and uncertainties in the Selva Central, Peru. For. Ecol. Manag. 2014, 312, 78–91. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papes, M.; Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 2007, 30, 550–560. [Google Scholar] [CrossRef]
- Zhang, W.X.; Kou, Y.X.; Zhang, L.; Zeng, W.D.; Zhang, Z.Y. Suitable distribution of endangered species Pseudotaxus chienii (Cheng) Cheng (Taxaceae) in five periods using niche modeling. Chin. J. Ecol. 2020, 39, 600–613. [Google Scholar]
- Yi, F.; Wang, Z.; Baskin, C.C.; Baskin, J.M.; Ye, R.; Sun, H.; Zhang, Y.; Ye, X.; Liu, G.; Yang, X.; et al. Seed germination responses to seasonal temperature and drought stress are species-specific but not related to seed size in a desert steppe: Implications for effect of climate change on community structure. Ecol. Evol. 2019, 9, 2149–2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butt, N.; Seabrook, L.; Maron, M.; Law, B.S.; Dawson, T.P.; Syktus, J.I.; McAlpne, A. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Glob. Chang. Biol. 2015, 21, 3267–3277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Tang, Z.Y.; Yan, Y.J.; Wang, K.; Cai, L.; He, J.S.; Gu, S.; Yao, Y.J. Incorporating species distribution model into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis. Biodiver. Sci. 2020, 28, 99–106. [Google Scholar]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Rojas-Soto, O.R.; Martinez-Meyer, E.; Navarro-Siguenza, A.G.; de Ita, A.O.; de Silva, H.G.; Peterson, A.T. Modeling distributions of disjunct populations of the Sierra Madre Sparrow. J. Field Ornithol. 2008, 79, 245–253. [Google Scholar] [CrossRef]
- Carvalho, S.B.; Brito, J.C.; Crespo, E.G.; Watts, M.E.; Possingham, H.P. Conservation planning under climate change: Toward accounting for uncertainty in predicted species distributions to increase confidence in conservation investments in space and time. Biol. Conserv. 2011, 144, 2020–2030. [Google Scholar] [CrossRef]
- Bonizzoni, M.; Gasperi, G.; Chen, X.G.; James, A.A. The invasive mosquito species Aedes albopictus: Current knowledge and future perspectives. Trends Parasitol. 2013, 29, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Stockwell, D.; Noble, I. Induction of sets of rules from animal distribution data: A robust and informative method of data analysis. Math. Comput. Simulat. 1992, 33, 385–390. [Google Scholar] [CrossRef]
- Long, C.; Song, H. China Diesel Plant; Science Press: Beijing, China, 2012. [Google Scholar]
- Shao, X. Study on Reproductive Biology of Euscaphis konishlii. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2016. [Google Scholar]
- Cai, B.; Guo, H.; Zhang, X.; Chen, X.; Liu, S. Biodiversity of the excellent ornamental plant Euscaphis japonica. Acta. Hortic. 2017, 1185, 73–78. [Google Scholar] [CrossRef]
- Man, X.; Tan, Y.; Pei, G. Research progress on chemical constituents and pharmacological activities of Euscaphis plants from China. Nat. Prod. Res. Dev. 2019, 31, 723–730. [Google Scholar]
- Boitani, L.; Maiorano, L.; Baisero, D.; Falcucci, A.; Visconti, P.; Rondinini, C. What spatial data do we need to develop global mammal conservation strategies? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.J.; Cheng, X.; Yang, Z.F.; Zhang, S.H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [Google Scholar] [CrossRef]
- Murienne, J.; Guilbert, E.; Grandcolas, P. Species’ diversity in the New Caledonian endemic genera Cephalidiosus and Nobarnus (Insecta: Heteroptera: Tingidae), an approach using phylogeny and species’ distribution modelling. Biol. J. Soc. 2009, 97, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Song, L.; Li, W.; Wang, Z.; Zhang, H.; Xin, X.; Zhang, Y.; Zhang, L.; Li, J.; Wu, F.; et al. An overview of BCC climate system model development and application for climate change studies. J. Meteorol. Res. 2019, 28, 34–56. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Stockwell, D.; Peters, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 1999, 13, 143–158. [Google Scholar] [CrossRef]
- Anderson, R.P.; Lew, D.; Peterson, A.T. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol. Model. 2003, 162, 211–232. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.R.; Xie, H.M.; Luo, H.L.; Yang, B.Y.; Xiong, D.J. Impacts of climate change on the distribution of Cymbidium kanran and the simulation of distribution pattern. Chin. J. Appl. Ecol. 2019, 30, 3419–3425. [Google Scholar]
- Costa, G.C.; Nogueira, C.; Machado, R.B.; Colli, G.R. Sampling bias and the use of ecological niche modeling in conservation planning: A field evaluation in a biodiversity hotspot. Biodivers. Conserv. 2010, 19, 883–899. [Google Scholar] [CrossRef]
- Sánchez-Flores, E. GARP modeling of natural and human factors affecting the potential distribution of the invasives Schismus arabicus and Brassica tournefortii in ‘El Pinacate y Gran Desierto de Altar’ Biosphere Reserve. Ecol. Model. 2007, 204, 457–474. [Google Scholar] [CrossRef]
- Larcher, W. Physiological Plant Ecology, 3rd ed.; Springer: Berlin, Germany, 1995. [Google Scholar]
- Kang, W. Studies on seedling growth rhythm and physiological on cold resistance of families of Euscaphis konishii. Master’s Thesis, Jiangxi Agricultural University, Jiangxi, China, 2015. [Google Scholar]
- Zhi, L.; Wu, T.; Long, Y.; Yu, L.; You, Q.; Chen, F.; Hu, S. Leaf physiological characteristics of Euscaphis konishii seedlings in drought stress. J. Fujian Coll. For. 2008, 28, 190–192. [Google Scholar]
- Jia, X.; Ma, F.F.; Zhou, W.M.; Zhou, L.; Yu, D.P.; Qin, J.; Dai, L.M. Impacts of climate change on the potential geographical distribution of broadleaved Korean pine (Pinus koraiensis) forests. Acta Ecol. Sin. 2017, 37, 464–473. [Google Scholar]
- Hällfors, M.H.; Aikio, S.; Fronzek, S.; Hellmann, J.J.; Ryttäri, T.; Heikkinen, R.K. Assessing the need and potential of assisted migration using species distribution models. Biol. Conserv. 2016, 196, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wang, Y.K.; Peng, P.H.; Lu, Y.F.; Chen, Y.F.; Wang, S. Characteristics of distribution and migration of species in Sichuan under the climate change. Mount. Res. 2016, 34, 716–723. [Google Scholar]
- Yang, L.; Yang, L.; Li, J.X.; Zhang, C.; Huo, Z.M.; Luan, X.F. Potential distribution and conservation priority areas of five species in Northeast China. Acta Ecol. Sin. 2019, 39, 1082–1094. [Google Scholar]
- Wiens, J.A.; Stralberg, D.; Jongsomjit, D.; Howell, C.A.; Snyder, M.A. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. USA 2009, 106, 19729–19736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Code | Name | Unit | Contribution (%) |
---|---|---|---|
Bio 6 | min temperature of coldest month | °C | 25.2 |
Bio 2 | mean diurnal air temperature range | °C | 15.1 |
Bio 12 | annual precipitation | mm | 10.6 |
Bio 1 | annual mean air temperature | °C | 8.1 |
SD | sunshine duration | 6.1 | |
Bio 9 | mean temperature of driest quarter | °C | 5.9 |
Bio 18 | precipitation of warmest quarter | mm | 5.6 |
Bio 11 | mean temperature of coldest quarter | °C | 4.5 |
SpH | soil pH | 3.8 | |
SCl | soil class | 2.4 | |
Slo | slope | ° | 1.9 |
NDVI | normalized vegetation index | 1.9 | |
Bio 8 | mean temperature of wettest quarter | °C × 10 | 1.8 |
Alt | altitude | m | 1.8 |
Bio 15 | precipitation seasonality | mm | 1.2 |
Hum | humidity | % | 1.1 |
SOC | soil organic carbon | 1.1 | |
ASP | aspect | ° | 1.0 |
Bio 3 | isothermality | 1.0 |
Model | Area under the Curve (AUC) | Kappa | True Skill Statistic (TSS) |
---|---|---|---|
Maxent | 0.896 ± 0.036 | 0.888 ± 0.059 | 0.888 ± 0.059 |
GARP | 0.969 ± 0.006 | 0.929 ± 0.037 | 0.929 ± 0.037 |
p value | <0.05 | <0.05 | <0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Sun, L.; Tao, J. Impact of Climate Change on the Distribution of Euscaphis japonica (Staphyleaceae) Trees. Forests 2020, 11, 525. https://doi.org/10.3390/f11050525
Zhang K, Sun L, Tao J. Impact of Climate Change on the Distribution of Euscaphis japonica (Staphyleaceae) Trees. Forests. 2020; 11(5):525. https://doi.org/10.3390/f11050525
Chicago/Turabian StyleZhang, Keliang, Lanping Sun, and Jun Tao. 2020. "Impact of Climate Change on the Distribution of Euscaphis japonica (Staphyleaceae) Trees" Forests 11, no. 5: 525. https://doi.org/10.3390/f11050525
APA StyleZhang, K., Sun, L., & Tao, J. (2020). Impact of Climate Change on the Distribution of Euscaphis japonica (Staphyleaceae) Trees. Forests, 11(5), 525. https://doi.org/10.3390/f11050525