Linking Hydromorphological Degradation with Environmental Status of Riparian Ecosystems: A Case Study in the Stropnice River Basin, Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources for Floodplain and Riparian Area Delineation
2.3. Approaches Used
2.3.1. Determining the Hydromorphological Status
2.3.2. Evaluating the Landscape Environmental Status
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Raven, P.J.; Holmes, N.T.H.; Charrier, P.; Dawson, F.H.; Naura, M.; Boon, P.J. Towards a harmonized approach for hydromorphological assessment of rivers in Europe: A qualitative comparison of three survey methods. Aquat. Conserv. Mar. Freshw. Ecosyst. 2002, 12, 405–424. [Google Scholar] [CrossRef]
- Haidvogl, G. Historic Milestones of Human River Uses and Ecological Impacts. In Riverine Ecosystem Management, Aquatic Ecology Series; Schmutz, S., Sendzimir, J., Eds.; Springer: Cham, Switzerland, 2018; Volume 8, pp. 19–39. [Google Scholar] [CrossRef] [Green Version]
- Just, T.; Matoušek, V.; Dušek, M.; Fischer, D.; Karlík, P. Vodohospodářské revitalizace a jejich uplatnění v ochraně před povodněmi, 1st ed.; AOPK ČR, MŽP: Praha, Czech Republic, 2005; 359p. (in Czech) [Google Scholar]
- Nachtnebel, H.P. Environmentally and Socially Sound Utilization of Flood-Plains; Some Austrian Experiences. In Defence from Floods and Floodplain Management; Gardiner, J., Starosolszky, Ö., Yevjevich, V., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 539–554. [Google Scholar]
- Klimo, E.; Hager, H. (Eds.) The floodplain forests in Europe: Current Situations and Perspectives; Koninklijke Brill NV: Leiden, The Netherlands, 2001; Volume 10. [Google Scholar]
- Hein, T.; Schwarz, U.; Habersack, H.; Nichersu, I.; Preiner, S.; Willby, N.; Weigelhofer, G. Current status and restoration options for floodplains along the Danube River. Sci. Total Environ. 2016, 543, 778–790. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindler, S.; O’Neill, F.H.; Biró, M.; Damm, C.; Gasso, V.; Kanka, R.; van der Sluis, T.; Krug, A.; Lauwaars, S.G.; Sebesvari, Z.; et al. Multifunctional floodplain management and biodiversity effects: A knowledge synthesis for six European countries. Biodivers Conserv. 2016, 25, 1349–1382. [Google Scholar] [CrossRef]
- EU WFD. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Parliament: Brussels, Belgium, 2000; 72p. [Google Scholar]
- Brierley, G.; Fryirs, K.; Cullum, C.; Tadaki, M.; Huang, H.Q.; Blue, B. Reading the landscape: Integrating the theory and practice of geomorphology to develop place-based understandings of river systems. Prog. Phys. Geogr. 2013, 37, 601–621. [Google Scholar] [CrossRef]
- Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; Alexander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.N.; Follstad Shah, J.; et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Dufour, S.; Piégay, H. From the myth of a lost paradise to targeted river restoration: Forget natural references and focus on human benefits. River Res. Appl. 2009, 25, 568–581. [Google Scholar] [CrossRef]
- Burchsted, D.; Daniels, M.; Thorson, R.; Vokoun, J. The river discontinuum: Applying beaver modifications to baseline conditions for restoration of forested headwaters. BioScience 2010, 60, 908–922. [Google Scholar] [CrossRef] [Green Version]
- Comiti, F. How natural are Alpine mountain rivers? Evidence from the Italian Alps. Earth Surf. Process. Landf. 2012, 37, 693–707. [Google Scholar] [CrossRef]
- Montgomery, D.R. Dreams of natural streams. Science 2008, 319, 291–292. [Google Scholar] [CrossRef]
- Piégay, H.; Hupp, C.R.; Citterio, A.; Dufour, S.; Moulin, B.; Walling, D.E. Spatial and temporal variability in sedimentation rates associated with cutoff channel infill deposits: Ain River, France. Water Resour. Res. 2008, 44, 18. [Google Scholar] [CrossRef]
- Wyżga, B.; Zawiejska, J.; Radecki-Pawlik, A.; Hajdukiewicz, H. Environmental change, hydromorphological reference conditions and the restoration of Polish Carpathian rivers. Earth Surf. Process. Landf. 2012, 37, 1213–1226. [Google Scholar] [CrossRef]
- Boon, P.J.; Holmes, N.T.H.; Raven, P.J. Developing standard approaches for recording and assessing river hydromorphology: The role of the European Committee for Standardization (CEN). Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 55–61. [Google Scholar] [CrossRef]
- Vaughan, I.P.; Diamond, M.; Gurnell, A.M.; Hall, K.A.; Jenkins, A.; Milner, N.J.; Naylor, L.A.; Sear, D.A.; Woodward, G.; Ormerod, S.J. Integrating ecology with hydromorphology: A priority for river science and management. Aquatic. Conserv. Mar. Freshw. Ecosyst. 2009, 19, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Elosegi, A.; Sabater, S. Effects of hydromorphological impacts on river ecosystem functioning: A review and suggestions for assessing ecological impacts. Hydrobiologia 2013, 712, 129–143. [Google Scholar] [CrossRef]
- Grabowski, R.C.; Gurnell, A.M. Hydrogeomorphology—Ecology Interactions in River Systems. River Res. Applic. 2016, 32, 139–141. [Google Scholar] [CrossRef] [Green Version]
- Jakubínský, J.; Cudlín, P. Impact of Hydromorphological Features of Small Watercourses on the Quality of Ecosystem Services. In Proceedings of the 4th International Conference on Water Resources and Wetlands, Tulcea, Romania, 5–9 September 2018; pp. 26–33. [Google Scholar]
- Zalewski, M.; Naiman, R. The regulation of riverine fish communities by a continuation of abiotic-biotic factors. In Habitat Modification and Freshwater Fisheries; Alabaster, J.S., Ed.; Butterworths Scientific: Oxford, UK, 1985; pp. 3–9. [Google Scholar]
- Wassen, M.J.; Grootjans, A.P. Ecohydrology: An interdisciplinary approach for wetland management and restoration. Vegetatio 1996, 126, 1–4. [Google Scholar]
- Clarke, S.J.; Bruce-Burgess, L.; Wharton, G. Linking form and function: Towards an eco-hydromorphic approach to sustainable river restoration. Aquat. Conserv. Mar. Freshw. Ecosyst. 2003, 13, 439–450. [Google Scholar] [CrossRef]
- Jackson, R.B.; Carpenter, S.R.; Dahm, C.N.; McKnight, D.M.; Naiman, R.J.; Postel, S.L.; Running, S.W. Water in a changing world. Ecol. Appl. 2001, 11, 1027–1045. [Google Scholar] [CrossRef]
- Durance, I.; Ormerod, S.J. Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob. Chang. Biol. 2007, 13, 942–957. [Google Scholar] [CrossRef]
- Hupp, C.R.; Pierce, A.R.; Noe, G.B. Floodplain geomorphic processes and environmental impacts of human alteration along coastal plain rivers, USA. Wetlands 2009, 29, 413–429. [Google Scholar] [CrossRef]
- Arif, M.; Zhang, S.; Jie, Z.; Charles, W.; Sanelisiwe Mzondi, P.; Li, C. Evaluating the Effects of Pressure Indicators on Riparian Zone Health Conditions in the Three Gorges Dam Reservoir, China. Forests 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Hudson, P.F.; Middelkoop, H.; Stouthamer, E. Flood management along the Lower Mississippi and Rhine Rivers (The Netherlands) and the continuum of geomorphic adjustment. Geomorphology 2008, 101, 209–236. [Google Scholar] [CrossRef]
- Jakubínský, J.; Báčová, R.; Svobodová, E.; Kubíček, P.; Herber, V. Small watershed management as a tool of flood risk prevention. Proc. Int. Assoc. Hydrol. Sci. 2014, 364, 243–248. [Google Scholar] [CrossRef]
- Elosegi, A.; Díez, J.; Mutz, M. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 2009, 215, 199–215. [Google Scholar] [CrossRef]
- Schumm, S.A. River Variability and Complexity; Cambridge University Press: New York, NY, USA, 2005; 232p. [Google Scholar]
- Makkaveev, N.I. River Channel and Erosion in It’s Basin. USSR Academy of Sciences Press: Moscow, Russia, 1955; 346p. (In Russian) [Google Scholar]
- Latapie, A.; Camenen, B.; Rodrigues, S.; Paquier, A.; Bouchard, J.P.; Moatar, F. Assessing channel response of a long river influenced by human disturbance. Catena 2014, 121, 1–12. [Google Scholar] [CrossRef]
- Brunsden, D.; Thornes, J.B. Landscape sensitivity and change. Trans. Inst. Br. Geogr. 1979, 4, 463–484. [Google Scholar] [CrossRef] [Green Version]
- Groffman, P.M.; Baron, J.S.; Blett, T.; Gold, A.J.; Goodman, I.; Gunderson, L.H.; Levinson, B.M.; Palmer, M.A.; Paerl, H.W.; Peterson, G.D.; et al. Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems 2006, 9, 1–13. [Google Scholar] [CrossRef]
- Soil maps of the Czech Republic. Czech Geological Society. Available online: https://mapy.geology.cz/pudy/ (accessed on 10 November 2019).
- Jakubínský, J.; Herber, V.; Cudlín, P. A comparison of four approaches to river landscape delineation: The case of small watercourses in the Czech Republic. Morav. Geogr. Rep. 2019, 27, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Swanson, F.J.; Gregory, S.V.; Sedell, J.R.; Campbell, A.G. Land-Water Interactions: The Riparian Zone; USDA Forest Service: Washington, DC, USA, 1982; pp. 267–291. [Google Scholar]
- Naiman, R.J.; Decamps, H. The ecology of interfaces: Riparian zones. Annu. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef] [Green Version]
- Ledesma, J.L.; Futter, M.N.; Blackburn, M.; Lidman, F.; Grabs, T.; Sponseller, R.A.; Laudon, H.; Bishop, K.H.; Köhler, S.J. Towards an improved conceptualization of riparian zones in boreal forest headwaters. Ecosystems 2018, 21, 297–315. [Google Scholar] [CrossRef] [Green Version]
- Bohl, M. Zur Notwendigkeit von Uferstreifen. Natur. Landsch. 1986, 61, 134–136. [Google Scholar]
- Niehoff, N. Ökologische Bewertung von Fliessgewässerlandschaften. Grundlage für Renaturierung und Sanierung; Springer: Berlin/Heidelberg, Germany, 1996; 300p. (In German) [Google Scholar]
- ERFTVERBAND. Konzept zur Ökologischen Verbesserung der Fließgewässer des Erftverbandes; ERFTVERBAND: Bergheim, Germany, 1989; 48p. [Google Scholar]
- Matoušková, M. (Ed.) Ekohydrologický Monitoring Vodních Toků v Kontextu Evropské Rámcové Směrnice o Vodní Politice 2000/60/ES; Univerzita Karlova v Praze: Praha, Czech Republicch, 2008; p. 209. (In Czech) [Google Scholar]
- Seják, J.; Dejmal, I.; Petříček, V.; Cudlín, P.; Míchal, I.; Černý, K.; Kučera, T.; Vyskot, I.; Strejček, J.; Cudlínová, E.; et al. Habitat Evaluation in the Czech Republic; Ministry of the Environment of the Czech Republic: Praha, Czech Republicch, 2003; 429p. (In Czech) [Google Scholar]
- Buček, A.; Lacina, J. Geobiocoenology II: Geobiocoenological typology of the Czech Republic, 2nd ed.; Mendel University: Brno, Czech Republic, 2007; 251p. (In Czech) [Google Scholar]
- Digital Database of Water Management Information. Available online: http://www.dibavod.cz/ (accessed on 31 May 2019).
- Langhammer, J. HEM—Hydroecological Monitoring. Methodology for Monitoring of Hydromorphological Parameters of the Ecological Quality of the Watercourses; Charles University in Prague: Prague, Czech Republic, 2014. (In Czech) [Google Scholar]
- Restoring Rivers for Effective Catchment Management (REFORM). Available online: http://wiki.reformrivers.eu/ (accessed on 9 April 2020).
- Raven, P.J.; Fox, P.; Everard, M.; Holmes, N.T.H.; Dawson, F.H. River Habitat Survey: A new system for classifying rivers according to their habitat quality. In Freshwater quality: Defining the indefinable; Boon, P.J., Howell, D.L., Eds.; The Stationery Office: Edinburgh, UK, 1997; pp. 215–234. [Google Scholar]
- Barbour, M.T.; Gerritsen, J.; Snyder, B.D.; Stribling, J.B. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, 2nd ed.; EPA: Washington, DC, USA, 1999. [Google Scholar]
- González Del Tánago, M.; García De Jalón, D. Riparian Quality Index (RQI): A methodology for characterizing and assessing environmental conditions of riparian zones. Limnetica 2011, 30, 235–254. [Google Scholar]
- ISPRA. Implementazione della Direttiva 2000/60/CE. Analisi e Valutazione Degli Aspetti Idromorfologici. Versione 1.1; Istituto Superiore per la Protezione e la Ricerca Ambientale: Roma, Italy, 2011; 85p. [Google Scholar]
- Zitek, A.; Haidvogl, G.; Jungwirth, M.; Pavlas, P.; Schmutz, S. An Ecologically-based Strategic Guideline for Restoring the Longitudinal Connectivity for Fish in Running Waters of Austria. In Proceedings of the 4th ECCR International Conference on River Restoration, Venice, Italy, 16–21 June 2008; European Centre for River Restoration (ECRR): Venice, Italy, 2008. [Google Scholar]
- Kampa, E.; Bussettini, M. River Hydromorphological Assessment and Monitoring Methodologies–FINAL REPORT. Part 1–Summary of European Country Questionnaires; REFORM project; REstoring rivers FOR effective catchment Management; Deltares: Delft, the Netherlands, 2018; 126p. [Google Scholar]
- Langhammer, J. Identification of floodplain elements suitable for use in integrated flood protection using hydromorphological mapping. Case study: Upper Opava river basin. Morav. Geogr. Rep. 2008, 16, 36–46. [Google Scholar]
- Chytrý, M.; Kučera, T.; Kočí, M. (Eds.) Catalogue of Habitats of the Czech Republic, 1st ed.; Agentura ochrany přírody a krajiny ČR, Katedra botaniky PřF MU v Brně, Botanický ústav AV ČR: Praha-Brno, Czech Republic, 2001; p. 307. (In Czech) [Google Scholar]
- De Groot, R.S. Functions of Nature: Evaluation of Nature in Environmental Planning, Management and Decision Making. Wolters-Noordhoff: Groningen, The Netherlands, 1992; 345p. [Google Scholar]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A Typology for the Classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Seják, J.; Cudlín, P. On measuring the natural and environmental resource value and damages. Studia Oecol. 2010, 2, 53–68. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Míchal, I. Ekologická Stabilita; Veronica: Brno, Czech Republic, 1994; 275p. (In Czech) [Google Scholar]
- Datry, T.; Bonada, N.; Boulton, A.; : (Eds.) Intermittent Rivers and Ephemeral Streams—Ecology and Management, 1st ed.; Academic Press: Cambridge, MA, USA; Elsevier Inc.: Amsterdam, The Netherlands, 2017; 597p. [Google Scholar]
- Stubbington, R.; Chadd, R.; Cid, N.; Csabai, Z.; Miliša, M.; Morais, M.; Munné, A.; Pařil, P.; Pešić, V.; Tziortzis, I.; et al. Biomonitoring of intermittent rivers and ephemeral streams in Europe: Current practice and priorities to enhance ecological status assessments. Sci. Total Environ. 2018, 618, 1096–1113. [Google Scholar] [CrossRef]
- Straka, M.; Polášek, M.; Syrovátka, V.; Stubbington, R.; Zahrádková, S.; Němejcová, D.; Šikulová, L.; Řezníčková, P.; Opatřilová, L.; Datry, T.; et al. Recognition of stream drying based on benthic macroinvertebrates: A new tool in Central Europe. Ecol. Indic. 2019, 106, 1–11. [Google Scholar] [CrossRef]
- Pařil, P.; Leigh, C.; Polášek, M.; Sarremejane, R.; Řezníková, P.; Dostálová, A.; Stubbington, R. Short-term streambed drying events alter amphipod population structure in a central European stream. Fundam. Appl. Limnol. Arch. Für Hydrobiol. 2019, 193, 51–64. [Google Scholar] [CrossRef]
Segment Number | Stream Name | Length (m) | Fluvial Process Zone |
---|---|---|---|
1 | Stropnice River | 598 | Source |
2 | 678 | Source | |
3 | 840 | Source | |
4 | 647 | Transfer | |
5 | 599 | Transfer | |
6 | 321 | Transfer | |
7 | 383 | Transfer | |
8 | 324 | Accumulation | |
9 | 503 | Accumulation | |
10 | 1425 | Accumulation | |
11 | 347 | Accumulation | |
12 | 793 | Accumulation | |
13 | 671 | Accumulation | |
14 | Janovský Stream | 386 | Transfer |
15 | Bedřichovský Stream | 678 | Accumulation |
16 | 880 | Transfer | |
17 | Pasecký Stream | 1011 | Source |
18 | 689 | Transfer | |
19 | Dvorský Stream | 577 | Accumulation |
20 | Veveřský Stream | 205 | Accumulation |
21 | 433 | Accumulation | |
22 | 1582 | Source | |
23 | Váčkový Stream | 695 | Accumulation |
24 | Nameless stream (near Světví Village) | 459 | Accumulation |
25 | Millrace from Janovský Stream | 212 | Accumulation |
26 | Nameless stream (left-bank tributary) | 473 | Transfer |
Indicator Used | WFD Hydromorphological Quality Component |
---|---|
Nature of flow (NTF) | Hydrological regime |
Influence of hydrological regime (IHR) | |
Longitudinal profile capacity (LPC) | River continuity |
Throughput of the inundation area (TIN) | |
Channel pattern adjustment (CHA) | Hydromorphological features |
Channel width variability (CHV) | |
Longitudinal profile depth variability (LDV) | |
Cross section depth variability (CDV) | |
Riverbed modifications (RBM) | |
Large woody debris in the river (LWD) | |
Riverbed structures (RBS) | |
Riverbed material (RBL) | |
Bank modifications (BKM) | |
Bank (riparian zone) vegetation (BKV) | |
Usage of riparian zone (URZ) | |
Usage of the river floodplain (UFL) | |
Bank stability and lateral channel migration (BST) |
Score Value | Class | Hydromorphological Status |
---|---|---|
1.00–1.49 | 1 | Near to natural |
1.50–2.49 | 2 | Slightly modified |
2.50–3.49 | 3 | Moderately modified |
3.50–4.49 | 4 | Considerably modified |
4.50–5.00 | 5 | Heavily modified |
Ecological Characteristics | Scoring Principle |
---|---|
Habitat maturity (HM) | Phylogenetic age of plant species in plant community |
Habitat naturalness (HN) | 6 points to natural or semi-natural; 1 point to anthropogenic habitat |
Diversity of habitat spatial structure (DSS) | 6 points if all possible vegetation floors are present |
Diversity of habitat species (DTS) | Number of autochthonous plant species |
Rareness of habitat (RH) | Geographical and climatic uniqueness, scarcity, frequency and spatial extent |
Rarity of species of habitat (RS) | Number of rare and threatened plant species on the red list (IUCN Red List) |
Vulnerability of habitat (VH) | Rate of habitat endangerment through the change of habitat conditions due to land use change |
Threat to existence and quality of habitat (TQ) | Unfavorable tendency of development of the given habitat |
Category | Hydromorphological Status of Stream Segments |
1 | Minimally affected by human activities, in an almost natural status |
2 | Influenced by human activities but with preserved natural parameters (e.g., riverbed dredging) |
3 | Significantly influenced by man—unnatural (man-made) geometry of the channel and its pattern but with preserved connectivity of stream with its surrounding |
4 | Entirely degraded segment with unnatural (man-made) channel geometry and pattern, without connectivity with its surrounding (concreted or covered over channels) |
Category | Environmental Status of Floodplain |
A | Natural habitats |
B | Close-to-natural habitats |
C | Distant-from-natural habitats |
D | Alien-to-natural habitats (mostly man-made habitats performing some natural functions) |
E | Unnatural (man-made) habitats |
Segment Category | Hydro- Morphological Status * | Average Value (HEM) | Environmental Status of Floodplain ** | Average Value (BVM) | River/Floodplain Segments (No.) |
---|---|---|---|---|---|
A | 1 | 1.86 | 3 | 22.37 | 1, 2, 9, 14, 26, 25 |
B | 2 | 2.23 | 1 | 43.33 | 24, 13, 6, 10, 22 |
C | 1 | 1.55 | 2 | 32.52 | 4, 8, 20, 18, 21, 15, 3, 17, 5 |
D | 3 | 2.51 | 3 | 26.43 | 12, 16, 11, 23, 19, 7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubínský, J.; Pelíšek, I.; Cudlín, P. Linking Hydromorphological Degradation with Environmental Status of Riparian Ecosystems: A Case Study in the Stropnice River Basin, Czech Republic. Forests 2020, 11, 460. https://doi.org/10.3390/f11040460
Jakubínský J, Pelíšek I, Cudlín P. Linking Hydromorphological Degradation with Environmental Status of Riparian Ecosystems: A Case Study in the Stropnice River Basin, Czech Republic. Forests. 2020; 11(4):460. https://doi.org/10.3390/f11040460
Chicago/Turabian StyleJakubínský, Jiří, Igor Pelíšek, and Pavel Cudlín. 2020. "Linking Hydromorphological Degradation with Environmental Status of Riparian Ecosystems: A Case Study in the Stropnice River Basin, Czech Republic" Forests 11, no. 4: 460. https://doi.org/10.3390/f11040460
APA StyleJakubínský, J., Pelíšek, I., & Cudlín, P. (2020). Linking Hydromorphological Degradation with Environmental Status of Riparian Ecosystems: A Case Study in the Stropnice River Basin, Czech Republic. Forests, 11(4), 460. https://doi.org/10.3390/f11040460