Carbon Stock and Sequestration Potential of an Agroforestry System in Sabah, Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Aboveground Carbon Stock Estimation (Living Tree)
2.3. Allometric Equations
2.4. Organic and Shrub Layer Carbon Estimation
2.5. Soil Carbon Estimation
2.6. Statistical Analysis
3. Results
3.1. Total Tree per Hectare
3.2. Total Aboveground Carbon Stock
3.3. Soil Carbon Stock
3.4. Total Ecosystem Carbon Stock
4. Discussion
4.1. Tree per Hectare of the Different Land Use
4.2. Total Aboveground Carbon Stock
4.3. Soil Carbon Stock
4.4. Total Ecosystem Carbon Stock
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, A.; Stolbovoy, V.; Tarnocai, C.; Broll, G.; Spaargaren, O.; Montanarella, L. Soil Atlas of the Northern Circumpolar Region; European Commission, Office for Official Publications of the European Communities: Luxembourg, Belgium, 2010; p. 119. [Google Scholar]
- Jacobson, M.; Charlson, R.J.; Rodhe, H.; Orians, G.H. Earth System Science: From Biogeochemical Cycles to Global Changes; Academic Press: Cambridge, MA, USA, 2000; Volume 72. [Google Scholar]
- Ismail, M.S. Forest management systems in Southeast Asia. In Advances in Asian Human-Environmental Research; Springer International Publishing: New York City, NY, USA, 2011; Volume 2, pp. 1–20. [Google Scholar]
- Islam, R.; Siwar, C.; Ismail, M.S. Impacts on tropical timber market developments in Malaysia. J. Appl. Sci. Res. 2010, 6, 324–330. [Google Scholar]
- Houghton, R.A. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 2007, 35, 313–347. [Google Scholar] [CrossRef] [Green Version]
- The Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014. Summary for Policymakers; Synthesis Report; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2014. [Google Scholar]
- Raihan, A.; Said, M.N.M.; Abdullaha, S.M.S. Climate change mitigation options in the Forestry Sector of Malaysia. J. Kejuruter. 2018, 1, 89–98. [Google Scholar] [CrossRef]
- Union of Concerned Scientist (UCS). Why does CO2 get most of the attention when there are so many other heat-trapping gases? USA. 2017. Available online: http://www.ucsusa.org/global_warming/science_and_impacts/science/CO2-and-global-warming-faq.html (accessed on 10 March 2017).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis; Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Lasco, R.D. Forest carbon budgets in Southeast Asia following harvesting and land cover change. Sci. China Ser. C Life Sci. Engl. Ed. 2002, 45, 55–66. [Google Scholar]
- Laporte, N.T.; Stabach, J.A.; Grosch, R.; Lin, T.S.; Goetz, S.J. Expansion of industrial logging in Central Africa. Science 2007, 316, 1451. [Google Scholar]
- Koh, L.P.; Wilcove, D.S. Is oil palm agriculture really destroying tropical biodiversity? Conserv. Lett. 2008, 1, 60–64. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Available online: http://faostat.fao.org (accessed on 27 February 2018).
- Agus, F.; Henson, I.E.; Sahardjo, B.H.; Harris, N.; Van Noordwijk, M.; Killeen, T.J. Review of Emission Factors for Assessment of CO2 Emission from Land Use Change to Oil Palm in Southeast Asia; Reports from the Technical Panels of the second Greenhouse gas Working Group; Roundable on sustainable Palm Oil (RSPO): Kuala Lumpur, Malaysia, 2013; pp. 7–27. [Google Scholar]
- Consultancy, B. Greenhouse Gas Emissions from Palm Oil Production. In Literature Review and Proposals from the RSPO Working Group on Greenhouse Gases; Roundable on sustainable Palm Oil (RSPO): Kuala Lumpur, Malaysia, 2009; p. 57. [Google Scholar]
- Hashim, Z.; Subramaniam, V.; Harun, M.H.; Kamarudin, N. Carbon footprint of oil palm planted on peat in Malaysia. Int. J. Life Cycle Assess. 2018, 23, 1201–1217. [Google Scholar] [CrossRef]
- United Stated Department of Agriculture (USDA). Oilseeds: World Markets and Trades; Foreign Agricultural Service, United Stated Department of Agriculture (USDA): Washington, DC, USA, 2015; p. 16.
- Othman, J.; Alias, M.H.; Jusoh, M. Sustainability of growth in the Malaysian oil palm farm subsector. J. Int. Food Agribus. Mark. 2004, 16, 85–101. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Phelps, J.; Yuen, J.Q.; Webb, E.L.; Lawrence, D.; Fox, J.M.; Bruun, T.B.; Leisz, S.J.; Ryan, C.M.; Dressler, W.; et al. Carbon outcomes of major land-cover transitions in SE Asia: Great uncertainties and REDD+ policy implications. Glob. Chang. Biol. 2012, 18, 3087–3099. [Google Scholar] [CrossRef]
- Chinade, A.A.; Siwar, C.; Ismail, S.M.; Isahak, A. A Review on carbon sequestration in Malaysian forest soils: Opportunities and barriers. Int. J. Soil Sci. 2015, 10, 17–27. [Google Scholar] [CrossRef]
- Chinade, A.A.; Ismail, S.M.; Siwar, C.; Isahak, A. Leveraging the potentials of soil carbon sequestration in sustaining forest ecosystems in Malaysia. Malays. For. 2014, 77, 91–100. [Google Scholar]
- Takimoto, A.; Nair, P.R.; Nair, V.D. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric. Ecosyst. Environ. 2008, 125, 159–166. [Google Scholar] [CrossRef]
- SiwSiwar, C.; Chinade, A.A.; Mohamad, S.; Isahak, A. Economic valuation of soil carbon sequestration services in Malaysia’s forest sector: A review of possible approaches. J. Sustain. Sci. Manag. 2016, 11, 14–28. [Google Scholar]
- Udawatta, R.P.; Jose, S. Agroforestry strategies to sequester carbon in temperate North America. Agrofor. Syst. 2012, 86, 225–242. [Google Scholar] [CrossRef]
- Montagnini, F.; Nair, P.K.R. Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agrofor. Syst. 2004, 61, 281–295. [Google Scholar]
- Van Houten, H. Annual Report, 1996; International Centre for Research in Agroforestry (ICRAF): Nairobi, Kenya, 1997. [Google Scholar]
- Lal, R.; Kimble, J.M. Conservation tillage for carbon sequestration. Nutr. Cycl. Agroecosyst. 1997, 49, 243–253. [Google Scholar] [CrossRef]
- Mohamed, A.H.; Ibrahim, N.I.; Ghani, A.N.A. Agroforestry education and professional level links in Peninsular Malaysia. J. Sustain. Sci. Manag. 2013, 8, 161–170. [Google Scholar]
- Najib, L.A.; Mahmud, A.W. Agroforestry: An alternative approach towards timber and non-timber production. In Proceedings of the AIM Seminar on Maximizing Land Use Through Integrated Farming, Kuala Lumpur, Malaysia, 13 April 1999. [Google Scholar]
- Rochmayanto, Y. Enhancing carbon stock and economic potency of REDD+ activity on Oil Palm-Eaglewood Agroforestry Systems. In Proceedings of the First International Conference of Indonesian Forestry Researchers (INAFOR), Forestry Research Institute of Kuok, Indonesia, 5–7 December 2011. [Google Scholar]
- Benites, J.; Dudal, R.; Koohafkan, P. Land, the Platform for Local Food Security and Global Environmental Protection. In Prevention of Land Degradation, Enhancement of Carbon Sequestration and Conservation of Biodiversity Through Land Use Change and Sustainable Land Management with a Focus on Latin America and the Caribbean; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1999; pp. 37–42. [Google Scholar]
- Soehady, H.F.W.; Musta, B. Effect of micro-fabrics on uniaxial strength of weathered volcanic rocks from Tawau, Sabah. Borneo Sci. 2012, 30, 14–23. [Google Scholar]
- Huaimei, Y.; Wong, A.; Zakaria, M.A.B. Diversity of Frogs in Tawau Hills Park, Sabah, Malaysia. J. Trop. Biol. Conserv. 2019, 16, 229–251. [Google Scholar]
- Khalid, H.; Zin, Z.; Anderson, J.M. Quantification of oil palm biomass and nutrient value in a mature plantation: Above ground biomass. J. Oil Palm Res. 1999, 2, 23–32. [Google Scholar]
- Hairiah, K.; Rahayu, S. Pengukuran Karbon Tersimpan di Berbagai Macam Penggunaan Lahan; World Agroforestry Centre-ICRAF, SEA Regional Office: Bogor, Indonesia; University of Brawijaya: Unibraw, Indonesia, 2007. [Google Scholar]
- Basuki, T.M.; Van Laake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar]
- Houghton, R.A.; Hackler, J.L. Changes in terrestrial carbon storage in the United States. 1: The roles of agriculture and forestry. Glob. Ecol. Biogeogr. 2000, 9, 125–144. [Google Scholar]
- Darus, A.; Guerrero, H.C.; Paez, L.E.N.; Garcia, A.A.; Alvarez, F.A.; Toquica, S.M. Spread of Ganoderma Boninense and Vegetative Compatibility Studies of a Single Field Palm Isolates; Palm Oil Research Institute of Malaysia: Kuala Lumpur, Malaysia, 1996. [Google Scholar]
- Turner, P.D. Oil Palm Diseases and Disorders; The Incorporated Society of Planters: Kuala Lumpur, Malaysia; Oxford University Press: Oxford, UK, 1981; p. 280. [Google Scholar]
- Asner, G.P.; Brodrick, P.G.; Philipson, C.; Vaughn, N.R.; Martin, R.E.; Knapp, D.E.; Heckler, J.; Evans, L.J.; Jucker, T.; Goossens, B.; et al. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biol. Conserv. 2018, 217, 289–310. [Google Scholar]
- Zarin, D.J.; Harris, N.L.; Baccini, A.; Aksenov, D.; Hansen, M.C.; Azevedo-Ramos, C.; Azevedo, T.; Margono, B.A.; Alencar, A.C.; Gabris, C.; et al. Can carbon emissions from tropical deforestation drop by 50% in 5 years? Glob. Chang. Biol. 2016, 4, 1336–1347. [Google Scholar]
- World Resources Institute (WRI). By the Numbers: The Value of Tropical Forests in the Climate Change Equation; World Resources Institute: Washington, DC, USA, 2018; Available online: https://www.wri.org/blog/2018/10/numbers-value-tropical-forests-climate-change-equation (accessed on 10 January 2019).
- Roshetko, J.M.; Lasco, R.D.; Angeles, M.S.D. Smallholder agroforestry systems for carbon storage. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 219–242. [Google Scholar]
- Foreign Agricultural Service of United States Department of Agriculture (USDA). Malaysia: Stagnating Palm Oil Yields Impede Growth; Foreign Agricultural Service of United States Department of Agriculture (USDA): Washington, DC, USA, 2012.
- Lawrence, D. Regional-Scale variation in litter production and seasonality in tropical dry forests of southern Mexico. Biotropica 2008, 37, 561–570. [Google Scholar]
- International Atomic Energy Agency (IAEA). Management of Agroforestry Systems for Enhancing Resource Use Efficiency and Crop Productivity; Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture; International Atomic Energy Agency (IAEA): Vienna, Austria, 2008. [Google Scholar]
- Campbell, C.A.; Selles, F.; Lafond, G.P.; Zentner, R.P. Adopting zero tillage management: Impact on soil C and N under long-term crop rotations in a thin Black Chernozem. Can. J. Soil Sci. 2001, 81, 139–148. [Google Scholar]
- Reddy, K.S.; Singh, M.; Tripathi, A.K.; Singh, M.; Saha, M.N. Changes in amount of organic and inorganic fractions of nitrogen in an Eutrochrept soil after long-term cropping with different fertilizer and organic manure inputs. J. Plant Nutr. Soil Sci. 2003, 166, 232–238. [Google Scholar]
- Dixon, R.K.; Brown, S.; Houghton, R.A.; Solomon, A.M.; Trexler, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar]
- Don, A.; Schumacher, J.; Greibauer, A. Impact of tropical land-use change on soil organic carbon stocks—A meta-analysis. Glob. Chang. Biol. 2011, 17, 1658–1670. [Google Scholar]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta-analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar]
- Murty, D.; Kirschbaum, M.U.F.; McMurtrie, R.E.; McGilvray, A. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob. Chang. Biol. 2002, 8, 105–123. [Google Scholar]
- Bruun, T.B.; Mertz, O.; Elberling, B. Linking yields of upland rice in shifting cultivation to fallow length and soil properties. Agric. Ecosyst. Environ. 2006, 113, 139–149. [Google Scholar] [CrossRef]
- Neto, V.; Ainuddin, N.A.; Wong, M.Y.; Ting, H.L. Contributions of forest biomass and organic matter to above-and belowground carbon contents at Ayer Hitam Forest Reserve, Malaysia. J. Trop. For. Sci. 2012, 24, 217–230. [Google Scholar]
- The High Carbon Stock Science Study. TFA2020. Geneva, Switzerland. 2015. Available online: https://www.tfa2020.org/en/publication/high-carbon-stock-science-study/ (accessed on 15 February 2018).
- Thangata, P.H.; Hildebrand, P.E. Carbon stock and sequestration potential of agroforestry systems in smallholder agroecosystems of sub-Saharan Africa: Mechanisms for ‘reducing emissions from deforestation and forest degradation’ (REDD+). Agric. Ecosyst. Environ. 2012, 158, 172–183. [Google Scholar] [CrossRef]
- Hamdan, O. Remote sensing for tropical forest biomass in Malaysia. In Proceedings of the Workshop on New Approaches for Measuring and Monitoring Carbon Stock and Forest Cover in the Tropics, Cat Tien National Park, Vietnam, 9–12 November 2009; Forest Research Institute Malaysia (FRIM): Kuala Lumpur, Malaysia, 2009. [Google Scholar]
- Saner, P.; Loh, Y.Y.; Ong, R.C.; Hector, A. Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo. PLoS ONE 2012, 7, 29642. [Google Scholar] [CrossRef] [Green Version]
Tree Species | Allometric Equation | Source |
---|---|---|
Forest Stand | w = exp (−1.935 + (1.981 × ln DBH) + (0.541 × ln h)) | [36] |
Oil Palm | w = (725 + 197h) × 0.2 | [34] |
Agarwood | w = 0.1043 × DBH2.6 | [35] |
Land Use | Living Tree Carbon Stock (Mg C ha−1) | Shrub Layer Carbon Stock (Mg C ha−1) | Organic Layer Carbon Stock (Mg C ha−1) | |||
---|---|---|---|---|---|---|
Oil Palm | Agarwood | Forest Stand | Total | |||
Oil Palm (27 yrs); Agarwood (7 yrs) | 35.04 ± 1.90 a | 2.84 ± 1.32 a | - | 37.88 ± 3.20 a | 0.05 ± 0.01 a | 0.14 ± 0.02 a |
Oil Palm (20 yrs); Agarwood (7 yrs) | 35.43 ± 1.79 a | 0.08 ± 0.03 a | - | 35.51 ± 1.78 a | 0.04 ± 0.005 a | 0.10 ± 0.02 a |
Oil Palm (17 yrs); Agarwood (5 yrs) | 38.94 ± 2.41 a | 0.07 ± 0.04 a | - | 39.01 ± 2.42 a | 0.03 ± 0.002 a | 0.12 ± 0.04 a |
Oil Palm (16 yrs) | 33.19 ± 1.40 a | - | - | 33.19 ± 1.40 a | 0.09 ± 0.01 ab | 0.07 ± 0.01 a |
Oil Palm (6 yrs) | 14.35 ± 1.38 b | - | - | 14.35 ± 1.38 a | 0.14 ± 0.05 b | 0.34 ± 0.05 a |
Natural Tropical Forest | - | - | 249.90 ± 61.44 | 249.90 ± 61.44 b | 0.07 ± 0.01 a | 1.02 ± 0.25 b |
p-value | p = 0.003 | p = 0.068 | - | p < 0.001 | p = 0.006 | p < 0.001 |
Land Use | Soil Carbon Stock (Mg C ha−1) | |||
---|---|---|---|---|
0–5 cm | 5–10 cm | 10–30 cm | Total Soil Carbon (0–30 cm) | |
Oil Palm (27 yrs); Agarwood (7 yrs) | 9.97 ± 1.08 a | 7.41 ± 0.89 a | 23.68 ± 1.36 a | 41.06 ± 2.82 a |
Oil Palm (20 yrs); Agarwood (7 yrs) | 11.32 ± 1.20 a | 10.35 ± 0.76 a | 28.08 ± 1.03 a | 49.75 ± 2.33 a |
Oil Palm (17 yrs); Agarwood (5 yrs) | 9.65 ± 1.73 a | 7.43 ± 0.97 a | 22.04 ± 1.87 a | 39.12 ± 3.99 a |
Oil Palm (16 yrs) | 10.28 ± 1.63 a | 10.75 ± 1.07 a | 22.06 ± 1.89 a | 43.09 ± 2.02 a |
Oil Palm (6 yrs) | 9.68 ± 0.76 a | 11.34 ± 3.41 a | 24.44 ± 6.99 a | 45.46 ± 9.64 a |
Natural Tropical Forest | 12.60 ± 2.32 a | 7.06 ± 1.28 a | 16.64 ± 1.75 a | 36.30 ± 4.74 a |
p-value | p = 0.727 | p = 0.244 | p = 0.082 | p = 0.562 |
Land Use | Carbon Stock (Mg C ha−1) | Total Ecosystem Carbon Stock (Mg C ha−1) | |||
---|---|---|---|---|---|
Living Tree | Shrub Layer | Organic Layer | Soil | ||
Oil Palm (27 yrs); Agarwood (7 yrs) | 37.88 (48%) | 0.05 (<1%) | 0.14 (<1%) | 41.06 (52%) | 79.13 ± 3.18 a |
Oil Palm (20 yrs); Agarwood (7 yrs) | 35.51 (42%) | 0.04 (<1%) | 0.10 (<1%) | 49.75 (58%) | 85.40 ± 1.79 a |
Oil Palm (17 yrs); Agarwood (5 yrs) | 39.01 (50%) | 0.03 (<1%) | 0.12 (<1%) | 39.12 (50%) | 78.28 ± 2.39 a |
Oil Palm (16 yrs) | 33.19 (43%) | 0.09 (<1%) | 0.07 (<1%) | 43.09 (56%) | 76.44 ± 4.40 a |
Oil Palm (6 yrs) | 14.35 (24%) | 0.14 (<1%) | 0.34 (1%) | 45.46 (75%) | 60.29 ± 1.38 a |
Natural Tropical Forest | 249.90 (87%) | 0.07 (<1%) | 1.02 (<1%) | 36.30 (13%) | 287.29 ± 61.21 b |
p-value | - | - | - | - | p < 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besar, N.A.; Suardi, H.; Phua, M.-H.; James, D.; Mokhtar, M.B.; Ahmed, M.F. Carbon Stock and Sequestration Potential of an Agroforestry System in Sabah, Malaysia. Forests 2020, 11, 210. https://doi.org/10.3390/f11020210
Besar NA, Suardi H, Phua M-H, James D, Mokhtar MB, Ahmed MF. Carbon Stock and Sequestration Potential of an Agroforestry System in Sabah, Malaysia. Forests. 2020; 11(2):210. https://doi.org/10.3390/f11020210
Chicago/Turabian StyleBesar, Normah Awang, Herawandi Suardi, Mui-How Phua, Daniel James, Mazlin Bin Mokhtar, and Minhaz Farid Ahmed. 2020. "Carbon Stock and Sequestration Potential of an Agroforestry System in Sabah, Malaysia" Forests 11, no. 2: 210. https://doi.org/10.3390/f11020210
APA StyleBesar, N. A., Suardi, H., Phua, M.-H., James, D., Mokhtar, M. B., & Ahmed, M. F. (2020). Carbon Stock and Sequestration Potential of an Agroforestry System in Sabah, Malaysia. Forests, 11(2), 210. https://doi.org/10.3390/f11020210