Interannual Variation of Transpiration and Its Modeling of a Larch Plantation in Semiarid Northwest China
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Plot Setup
2.3. LAI and Sapwood Area Measurement
2.4. Weather Parameter Measurements
2.5. Soil Moisture Measurements
2.6. Sap Flow Measurements and T Calculations
2.7. Derivation of the Daily T Model
2.8. Uncertainy and Sensitivity Analysis
2.9. Assessment of the Individual Factor Effects on Daily T
3. Results
3.1. Environmental Conditions
3.2. Variation in the LAI
3.3. Variation in Daily T
3.4. T Response to Each Individual Factor
3.5. T Response to Multiple Factors
3.6. Model Validation
3.7. Sensitivity Analyses of the T Model
3.8. The Effects of Individual Factors on T
4. Discussion
4.1. Behavior of T Response to Individual Factors
4.2. Daily T Model Coupling the Effects of Individual Factors
4.3. Amplitude of Individual Factor Effect on T
4.4. Limitations of This Study and Suggestions for Further Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PET | Potential evapotranspiration |
REW | Relative extractable soil water content |
LAI | Leaf area index |
T | Transpiration |
AS | Sapwood area |
Sap flow density | |
P | Precipitation |
Ta | Air temperature |
RH | Relative air humidity |
Rs | Solar radiation |
U | Wind speed |
ψ | Soil water potential |
SWC | Volumetric soil water content |
DOY | Day of year |
VPD | Vapor pressure deficit |
p | Statistical significance level |
References
- Farley, K.A.; Jobbagy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Jackson, R.B.; Sperry, J.S.; Dawson, T.E. Root water uptake and transport: Using physiological processes in global predictions. Trends Plant Sci. 2000, 5, 482–488. [Google Scholar] [CrossRef]
- Wang, Y.H.; Xiong, W.; Yu, P.T.; Shen, Z.X.; Guo, M.C.; Guan, W.; Ma, C.M.; Ye, B.; Guo, H. Study on the evapotranspiration of forest and vegetation in dryland. Sci. Soil Water Conserv. 2006, 4, 19–25. (In Chinese) [Google Scholar] [CrossRef]
- Ren, Z.; Li, Z.; Liu, X.; Li, P.; Cheng, S.; Xu, G. Comparing watershed afforestation and natural revegetation impacts on soil moisture in the semiarid Loess Plateau of China. Sci. Rep. 2018, 8, 2972. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xiao, Q.; Sun, X. Ecological Risks Arising from the Impact of Large-scale Afforestation on the Regional Water Supply Balance in Southwest China. Sci. Rep. 2020, 10, 4150. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, B.; Li, X.; Zhao, Y.; Ci, Y.; Jiang, B.; Hu, W.; Cheng, J.; Shao, M. Effects of deep soil desiccation on artificial forestlands in different vegetation zones on the Loess Plateau of China. Acta Ecol. Sin. 2008, 28, 1429–1445. [Google Scholar] [CrossRef]
- Huang, M.; Gallichand, J.; Zhang, P. Runoff and Sediment Responses to Conservation practices: Loess Plateau of China. JAWRA J. Am. Water Resour. Assoc. 2003, 39, 1197–1207. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, L.; Gallichand, J. Runoff responses to afforestation in a watershed of the Loess Plateau, China. Hydrol. Process. 2003, 17, 2599–2609. [Google Scholar] [CrossRef]
- Zhang, X.P.; Zhang, L.; McVicar, T.R.; Vanniel, T.; Li, L.T.; Li, R.; Yang, Q.; Wei, L. Modelling the impact of afforestation on average annual streamflow in the Loess Plateau, China. Hydrol. Process. 2008, 22, 1996–2004. [Google Scholar] [CrossRef]
- Zhang, X.P.; Zhang, L.; Mu, X.M.; Li, R. The mean annual water balance in the Hekou-Longmen Section of the middle Yellow River: Testing of the regional scale water balance model and its calibration. Acta Geogr. Sin. 2007, 62, 753–763. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Yu, P.; Xiong, W.; Shen, Z.; Guo, M.; Shi, Z.; Du, A.; Wang, L. Water-yield reduction after afforestation and related processes in the semiarid Liupan Mountains, Northwest China1. J. Am. Water Resour. Assoc. 2008, 44, 1086–1097. [Google Scholar] [CrossRef]
- Yu, P.; Krysanova, V.; Wang, Y.; Xiong, W.; Mo, F.; Shi, Z.; Liu, H.; Vetter, T.; Huang, S. Quantitative estimate of water yield reduction caused by forestation in a water-limited area in northwest China. Geophys. Res. Lett. 2009, 36, 02406. [Google Scholar] [CrossRef]
- Su, J.P.; Kang, B.W. Research proceeding of trees transpiration in China. Res. Soil Water Conserv. 2004, 11, 177–179. (In Chinese) [Google Scholar]
- Nemani, R.R.; White, M.A.; Thornton, P.; Nishida, K.; Reddy, S.; Jenkins, J.; Running, S. Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States. Geophys. Res. Lett. 2002, 29, 1468. [Google Scholar] [CrossRef]
- Christensen, L.; Tague, C.L.; Baron, J.S. Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem. Hydrol. Process. 2008, 22, 3576–3588. [Google Scholar] [CrossRef]
- Pradhan, R.; Singh, N.; Singh, R.P. Onset of summer monsoon in Northeast India is preceded by enhanced transpiration. Sci. Rep. 2019, 9, 18646. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Acosta, J.L.; Lubczynski, M.W. Mapping dry-season tree transpiration of an oak woodland at the catchment scale, using object-attributes derived from satellite imagery and sap flow measurements. Agric. For. Meteorol. 2013, 174, 184–201. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. Evaporation from Amazonian rainforest. Proc. R. Soc. London. Ser. B Boil. Sci. 1988, 233, 321–346. [Google Scholar] [CrossRef]
- McJannet, D.L.; Wallace, J.; Fitch, P.; Disher, M.; Reddell, P. Water balance of tropical rainforest canopies in north Queensland, Australia. Hydrol. Process. 2007, 21, 3473–3484. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, B.; Chang, X.; Yang, Q.; Yang, Y.; Liu, Z.; Cleverly, J.; Eamus, D. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China. J. Hydrol. 2016, 538, 374–386. [Google Scholar] [CrossRef]
- Lubczynski, M.W.; Gurwin, J. Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes—Sardon study case, Spain. J. Hydrol. 2005, 306, 71–96. [Google Scholar] [CrossRef]
- Lubczynski, M.W. The hydrogeological role of trees in water-limited environments. Hydrogeol. J. 2009, 17, 247–259. [Google Scholar] [CrossRef]
- Gash, J.; Shuttleworth, W.; Lloyd, C.; André, J.-C.; Goutorbe, J.-P.; Gelpe, J. Micrometeorological measurements in Les Landes Forest during HAPEX-MOBILHY. Agric. For. Meteorol. 1989, 46, 131–147. [Google Scholar] [CrossRef]
- Granier, A.; Huc, R.; Barigah, S. Transpiration of natural rain forest and its dependence on climatic factors. Agric. For. Meteorol. 1996, 78, 19–29. [Google Scholar] [CrossRef]
- Wu, Y.-Z.; Huang, M.-B.; Warrington, D.N. Black Locust Transpiration Responses to Soil water availability as affected by meteorological factors and soil texture. Pedosphere 2015, 25, 57–71. [Google Scholar] [CrossRef]
- Wullschleger, S.D.; Hanson, P.J. Sensitivity of canopy transpiration to altered precipitation in an upland oak forest: Evidence from a long-term field manipulation study. Glob. Chang. Biol. 2006, 12, 97–109. [Google Scholar] [CrossRef]
- Breda, N.; Cochard, H.; Dreyer, E.; Granier, A. Water transfer in a mature oak stand (Quercuspetraea): Seasonal evolution and effects of a severe drought. Can. J. For. Res. 1993, 23, 1136–1143. [Google Scholar] [CrossRef]
- Ungar, E.D.; Rotenberg, E.; Raz-Yaseef, N.; Cohen, S.; Yakir, D.; Schiller, G. Transpiration and annual water balance of Aleppo pine in a semiarid region: Implications for forest management. For. Ecol. Manag. 2013, 298, 39–51. [Google Scholar] [CrossRef]
- Bosch, D.D.; Marshall, L.K.; Teskey, R. Forest transpiration from sap flux density measurements in a Southeastern Coastal Plain riparian buffer system. Agric. For. Meteorol. 2014, 187, 72–82. [Google Scholar] [CrossRef]
- Irvine, J.; Perks, M.P.; Magnani, F.; Grace, J. The response of Pinus sylvestris to drought: Stomatal control of transpiration and hydraulic conductance. Tree Physiol. 1998, 18, 393–402. [Google Scholar] [CrossRef]
- Granier, A.; Biron, P.; Lemoine, D. Water balance, transpiration and canopy conductance in two beech stands. Agric. For. Meteorol. 2000, 100, 291–308. [Google Scholar] [CrossRef]
- Lagergren, F.; Lindroth, A. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agric. For. Meteorol. 2002, 112, 67–85. [Google Scholar] [CrossRef]
- Bernier, P.; Breda, N.; Granier, A.; Raulier, F.; Mathieu, F. Validation of a canopy gas exchange model and derivation of a soil water modifier for transpiration for sugar maple (Acer saccharum Marsh.) using sap flow density measurements. For. Ecol. Manag. 2002, 163, 185–196. [Google Scholar] [CrossRef]
- Bernier, P.; Bartlett, P.; Black, T.; Barr, A.; Kljun, N.; McCaughey, J. Drought constraints on transpiration and canopy conductance in mature aspen and jack pine stands. Agric. For. Meteorol. 2006, 140, 64–78. [Google Scholar] [CrossRef]
- Li, Z.; Yu, P.; Wang, Y.; Webb, A.A.; He, C.; Wang, Y.; Yang, L. A model coupling the effects of soil moisture and potential evaporation on the tree transpiration of a semi-arid larch plantation. Ecohydrology 2016, 10, e1764. [Google Scholar] [CrossRef]
- Ford, C.R.; Goranson, C.E.; Mitchell, R.J.; Will, R.E.; Teskey, R.O. Modeling canopy transpiration using time series analysis: A case study illustrating the effect of soil moisture deficit on Pinus taeda. Agric. For. Meteorol. 2005, 130, 163–175. [Google Scholar] [CrossRef]
- Feng, Y.J.; Ma, C.M.; Wang, Y.H.; Du, A.P. Relationship between the characteristics of transpiration of Larix principi-rupprechtii forest and soil water potential. Sci. Soil Water Conserv. 2010, 8, 93–98. (In Chinese) [Google Scholar] [CrossRef]
- Oren, R.; Pataki, D.E. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia 2001, 127, 549–559. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Zhang, Z.; He, C.; Zhao, P.; You, Y.; Mo, L. Seasonal changes in Cyclobalanopsis glauca transpiration and canopy stomatal conductance and their dependence on subterranean water and climatic factors in rocky karst terrain. J. Hydrol. 2011, 402, 135–143. [Google Scholar] [CrossRef]
- Vertessy, R.A.; Benyon, R.G.; O’Sullivan, S.K.; Gribben, P.R. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiol. 1995, 15, 559–567. [Google Scholar] [CrossRef]
- Zimmermann, R.; Schulze, E.-D.; Wirth, C.; McDonald, K.C.; Vygodskaya, N.N.; Ziegler, W. Canopy transpiration in a chronosequence of Central Siberian pine forests. Glob. Chang. Biol. 2000, 6, 25–37. [Google Scholar] [CrossRef]
- Forrester, D.I.; Collopy, J.J.; Beadle, C.L.; Warren, C.R.; Baker, T.G. Effect of thinning, pruning and nitrogen fertiliser application on transpiration, photosynthesis and water-use efficiency in a young Eucalyptus nitens plantation. For. Ecol. Manag. 2012, 266, 286–300. [Google Scholar] [CrossRef]
- Loustau, D.; Granier, A.; Bréda, N. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann. For. Sci. 2000, 57, 755–765. [Google Scholar] [CrossRef]
- Jarvis, P.G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. B Biol. Sci. 1976, 273, 593–610. [Google Scholar] [CrossRef]
- Stewart, J. Modelling surface conductance of pine forest. Agric. For. Meteorol. 1988, 43, 19–35. [Google Scholar] [CrossRef]
- Dolman, A.J.; Burg, G.V.D. Stomatal behaviour in an oak canopy. Agric. For. Meteorol. 1988, 43, 99–108. [Google Scholar] [CrossRef]
- Ogink-Hendriks, M. Modelling surface conductance and transpiration of an oak forest in The Netherlands. Agric. For. Meteorol. 1995, 74, 99–118. [Google Scholar] [CrossRef]
- Granier, A.; Loustau, D. Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data. Agric. For. Meteorol. 1994, 71, 61–81. [Google Scholar] [CrossRef]
- Sang, G.S. Vegetation variation of Loess Plateau during human history. J. Arid Land Res. Environ. 2005, 19, 54–58. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.H.; Bonell, M.; Feger, K.H.; Yu, P.T.; Xiong, W.; Xu, L.H. Changing forestry policy by integrating water aspects into forest/vegetation restoration in dryland areas in China. Bull. Chin. Acad. Sci. 2012, 26, 59–67. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, Y.H.; Yu, P.T.; Liu, H.L.; Xu, L.H.; Shi, Z.J.; Mo, F. Variation of sap flow among individual trees and scaling-up for estimation of transpiration of Larix principis-rupprechtii stand. Sci. Silvae Sin. 2008, 44, 34–40. (In Chinese) [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1998; Volume 56, pp. 1–15. [Google Scholar]
- Liu, J.L. A Study on the Hillslope Ecohydrological Processes and Vegetation Carrying Capacity in the Small Catchment of Diediegou, Liupan Mountains. Ph.D. Thesis, The Chinese Academy of Forestry, Beijing, China, 2008. [Google Scholar]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Du, A.P. The Hillslope Hydrological Effect of Vegetation and Simulation in the Small Watershed of Diediegou, Liupan Mountains. Ph.D. Thesis, The Chinese Academy of Forestry, Beijing, China, 2009. [Google Scholar]
- Tian, A.; Wang, Y.; Webb, A.A.; Liu, Z.; Yu, P.; Xiong, W.; Wang, X. Partitioning the causes of spatiotemporal variation in the sunny day sap flux density of a larch plantation on a hillslope in northwest China. J. Hydrol. 2019, 571, 503–515. [Google Scholar] [CrossRef]
- Katul, G.; Leuning, R.; Oren, R. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant Cell Environ. 2003, 26, 339–350. [Google Scholar] [CrossRef]
- Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 1995, 18, 339–355. [Google Scholar] [CrossRef]
- Jackson, R.B.; Jobbágy, E.G.; Avissar, R.; Roy, S.B.; Barrett, D.J.; Cook, C.W.; Farley, K.A.; Le Maitre, D.C.; McCarl, B.A.; Murray, B.C. Trading water for carbon with biological carbon sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef]
- Schmidt, U.; Thöni, H.; Kaupenjohann, M. Using a boundary line approach to analyze N2O flux data from agricultural soils. Nutr. Cycl. Agroecosyst. 2000, 57, 119–129. [Google Scholar] [CrossRef]
- McCuen, R.H.; Knight, Z.; Cutter, A.G. Evaluation of the Nash–Sutcliffe Efficiency Index. J. Hydrol. Eng. 2006, 11, 597–602. [Google Scholar] [CrossRef]
- Jiménez-Martínez, J.; Candela, L.; Molinero, J.; Tamoh, K. Groundwater recharge in irrigated semi-arid areas: Quantitative hydrological modelling and sensitivity analysis. Hydrogeol. J. 2010, 18, 1811–1824. [Google Scholar] [CrossRef]
- Granier, A.; Huc, R.; Colin, F. Transpiration and stomatal conductance of two rain forest species growing in plantations (Simarouba amara and Goupia glabra) in French Guyana. Ann. Sci. For. 1992, 49, 17–24. [Google Scholar] [CrossRef]
- Granier, A.; Bobay, V.; Gash, J.; Gelpe, J.; Saugier, B.; Shuttleworth, W. Vapour flux density and transpiration rate comparisons in a stand of Maritime pine (Pinus pinaster Ait.) in Les Landes forest. Agric. For. Meteorol. 1990, 51, 309–319. [Google Scholar] [CrossRef]
- Stolte, J. Manual for Soil Physical Measurements; Version 3, Technical Document 37; Wageningen Agricultural University Press: Wageningen, The Netherlands, 1997. [Google Scholar]
- Wahbi, A.; Sinclair, T.R. Transpiration response of Arabidopsis, maize, and soybean to drying of artificial and mineral soil. Environ. Exp. Bot. 2007, 59, 188–192. [Google Scholar] [CrossRef]
- Sadras, V.; Milroy, S. Soil-water thresholds for the responses of leaf expansion and gas exchange: A review. Field Crop. Res. 1996, 47, 253–266. [Google Scholar] [CrossRef]
- Granier, A.; Bréda, N.; Biron, P.; Villette, S. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol. Model. 1999, 116, 269–283. [Google Scholar] [CrossRef]
- Bucci, S.J.; Scholz, F.G.; Goldstein, G.; Hoffmann, W.A.; Meinzer, F.C.; Franco, A.C.; Giambelluca, T.W.; Miralles-Wilhelm, F. Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna. Agric. For. Meteorol. 2008, 148, 839–849. [Google Scholar] [CrossRef]
- Linderson, M.-L.; Iritz, Z.; Lindroth, A. The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones. Biomass Bioenergy 2007, 31, 460–468. [Google Scholar] [CrossRef]
- Bréda, N.; Granier, A. Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Ann. Sci. For. 1996, 53, 521–536. [Google Scholar] [CrossRef]
- Zhao, P.Z.; Rao, X.Q.; Ma, L.; Cai, X.A.; Zeng, X.P. Responses of canopy stomatal conductance of Acacia mangium forest to environmental driving factors. J. Appl. Ecol. 2006, 17, 1149–1156. (In Chinese) [Google Scholar] [CrossRef]
- Čermák, J.; Cienciala, E.; Kucera, J.; Lindroth, A.; Bednárová, E. Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: A pilot study at the central NOPEX site. J. Hydrol. 1995, 168, 17–27. [Google Scholar] [CrossRef]
- Limousin, J.M.; Rambal, S.; Ourcival, J.M.; Rocheteau, A.; Joffre, R.; Rodriguezcortina, R. Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob. Chang. Biol. 2009, 15, 2163–2175. [Google Scholar] [CrossRef]
- Da Costa, A.C.L.; Rowland, L.; Oliveira, R.S.; Oliveira, A.A.R.; Binks, O.J.; Salmon, Y.; Vasconcelos, S.S.; Junior, J.A.S.; Ferreira, L.V.; Poyatos, R.; et al. Stand dynamics modulate water cycling and mortality risk in droughted tropical forest. Glob. Chang. Biol. 2017, 24, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Cienciala, E.; Kucera, J.; Ryan, M.G.; Lindroth, A. Water flux in boreal forest during two hydrologically contrasting years; species specific regulation of canopy conductance and transpiration. Ann. Sci. For. 1998, 55, 47–61. [Google Scholar] [CrossRef]
- Li, X.Y. The phenology of Larix principis-rupprechtii and its relation with temperature. J. Inn. Mong. For. Sci. Technol. 1991, 2, 44–47. (In Chinese) [Google Scholar]
- Luo, Y.X.; Yu, H.L. The life history of Adelges laricis all. and its prevention experiment in Liupan Mountains. Ningxia J. Agric. For. Sci. Technol. 1988, 4, 23–24. (In Chinese) [Google Scholar]
Year | Tree Density (Trees·ha−1) | Canopy Density | Mean Tree Height (m) | Mean Tree DBH (cm) | Total Sapwood Area (cm2) | Measured LAImax | Mean LAI |
---|---|---|---|---|---|---|---|
2010 | 1975 | 0.80 | 9.41 | 10.13 | 8480 | 4.92 | 4.05 |
2012 | 1840 | 0.83 | 9.91 | 10.52 | 9200 | 5.10 | 4.09 |
2014 | 1766 | 0.85 | 10.65 | 11.02 | 9910 | 5.63 | 4.80 |
Year | Tree No. | Height (m) | DBH (m) | Clean Bole Length (m) | Canopy Diameter (m) | Sapwood Area (cm2) |
---|---|---|---|---|---|---|
2010 | 18 | 14.9 | 19.1 | 3.7 | 7.12 × 7.42 | 161.25 |
28 | 12.8 | 12.8 | 2.5 | 4.44 × 4.98 | 82.65 | |
48 | 13.5 | 13.3 | 3.1 | 4.06 × 4.04 | 88.11 | |
82 | 12.7 | 14.6 | 2.4 | 4.80 × 5.50 | 102.96 | |
2012 | 2 | 13.9 | 16.9 | 2.5 | 4.05 × 4.70 | 129.79 |
18 | 15.8 | 20.6 | 3.7 | 7.12 × 7.42 | 180.48 | |
46 | 12.8 | 16.5 | 3.4 | 4.96 × 4.97 | 124.71 | |
58 | 13.6 | 15.0 | 4.3 | 3.53 × 5.20 | 106.41 | |
2014 | 4 | 13.2 | 14.65 | 3.2 | 4.89 × 3.99 | 102.30 |
8 | 13.0 | 16.35 | 3.0 | 3.40 × 4.70 | 122.83 | |
47 | 13.9 | 12.71 | 4.5 | 3.61 × 3.06 | 80.75 | |
151 | 14.2 | 18.51 | 2.3 | 5.22 × 6.43 | 151.03 | |
221 | 15.6 | 21.97 | 3.9 | 7.33 × 8.13 | 200.91 |
Month | 2010 | 2012 | ||||||
---|---|---|---|---|---|---|---|---|
Valid Days | Sum of Difference (mm) | Percentage of the Difference | Mean Daily Difference (mm) | Valid Days | Sum of Difference (mm) | Percentage of the Difference | Mean Daily Difference (mm) | |
May | 13 | 0.76 | 0.53% | 0.06 | 17 | −1.16 | 0.38% | −0.07 |
June | 29 | −1.4 | 0.15% | −0.05 | 18 | −1.02 | 0.27% | −0.06 |
July | 28 | 0.73 | 0.10% | 0.03 | 28 | 0.2 | 0.03% | 0.01 |
August | 27 | 0.63 | 0.08% | 0.02 | 21 | −1.98 | 0.40% | −0.09 |
September | 27 | 1.68 | 0.43% | 0.06 | 15 | −2.23 | 2.65% | −0.15 |
Total | 124 | 2.40 | 2.09% | 0.02 | 99 | −6.19 | 5.96% | −0.06 |
Variables | CP (%) | Dry Year 2010 | Normal Year 2012 | Wet Year 2014 | Mean | ||||
---|---|---|---|---|---|---|---|---|---|
AS (%) | AS/CP | AS (%) | AS/CP | AS (%) | AS/CP | AS (%) | AS/CP | ||
PET | +10 | 4.19 | 0.42 | 12.46 | 1.25 | 22.11 | 2.21 | 12.92 | 1.29 |
−10 | 9.00 | 0.90 | 1.29 | 0.13 | 7.80 | 0.78 | 6.03 | 0.60 | |
REW | +10 | 0.72 | 0.07 | 6.65 | 0.66 | 15.78 | 1.58 | 7.72 | 0.77 |
−10 | 3.84 | 0.38 | 5.01 | 0.50 | 14.80 | 1.48 | 7.88 | 0.79 | |
LAI | +10 | 3.48 | 0.35 | 11.58 | 1.16 | 21.45 | 2.15 | 12.17 | 1.22 |
−10 | 8.21 | 0.82 | 0.29 | 0.03 | 8.65 | 0.86 | 5.72 | 0.57 |
Year | Item | May | June | July | August | September | Total | |
---|---|---|---|---|---|---|---|---|
2010 | T (mm) | 24.8 | 33.6 | 33.6 | 29.7 | 13.5 | 135.3 | |
2012 | 34.7 | 38.6 | 36.6 | 34.1 | 19.7 | 163.6 | ||
2014 | 39.9 | 36.2 | 42.6 | 36.6 | 23.9 | 178.4 | ||
2010 | T (PET2010) | (mm) | 31.1 | 36.7 | 36.5 | 34.7 | 20.9 | 159.9 |
∆T (PET2010) | (mm) (%) | −8.7 | 0.9 | −6.0 | −1.8 | −2.9 | −18.5 | |
−21.93 | 2.60 | −14.05 | −4.92 | −12.18 | −10.37 | |||
T (REW2010) | (mm) | 38.9 | 35.5 | 41.7 | 32.5 | 18.2 | 166.9 | |
∆T (REW2010) | (mm) | −0.9 | −0.3 | −0.8 | −4.0 | −5.6 | −11.5 | |
(%) | −2.24 | −0.74 | −1.83 | −10.94 | −23.30 | −6.45 | ||
T (LAI2010) | (mm) | 32.7 | 33.0 | 40.3 | 34.0 | 20.5 | 160.6 | |
∆T (LAI2010) | (mm) | −7.1 | −2.8 | −2.2 | −2.5 | −3.2 | −17.8 | |
(%) | −17.75 | −7.64 | −5.11 | −6.89 | −13.62 | −9.97 | ||
2012 | T (PET2012) | (mm) | 35.0 | 42.0 | 39.0 | 39.4 | 25.1 | 180.6 |
∆T (PET2012) | (mm) | −4.9 | 5.8 | −3.6 | 2.8 | 1.3 | 1.4 | |
(%) | −12.35 | 16.14 | −8.35 | 7.65 | 5.37 | 0.80 | ||
T (REW2012) | (mm) | 39.7 | 33.6 | 42.4 | 35.4 | 23.8 | 175.0 | |
∆T (REW2012) | (mm) | −0.2 | −2.5 | −0.2 | −1.2 | −0.1 | −4.2 | |
(%) | −0.49 | −7.03 | −0.42 | −3.26 | −0.27 | −2.34 | ||
T (LAI2012) | (mm) | 39.6 | 34.9 | 40.0 | 32.2 | 18.1 | 164.8 | |
∆T (LAI2012) | (mm) | −0.3 | −1.2 | −2.6 | −4.5 | −5.7 | −14.3 | |
(%) | −0.75 | −3.34 | −6.13 | −12.23 | −23.97 | −8.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, Y.; Li, Z.; Yu, P.; Han, X. Interannual Variation of Transpiration and Its Modeling of a Larch Plantation in Semiarid Northwest China. Forests 2020, 11, 1303. https://doi.org/10.3390/f11121303
Wang Y, Wang Y, Li Z, Yu P, Han X. Interannual Variation of Transpiration and Its Modeling of a Larch Plantation in Semiarid Northwest China. Forests. 2020; 11(12):1303. https://doi.org/10.3390/f11121303
Chicago/Turabian StyleWang, Yanbing, Yanhui Wang, Zhenhua Li, Pengtao Yu, and Xinsheng Han. 2020. "Interannual Variation of Transpiration and Its Modeling of a Larch Plantation in Semiarid Northwest China" Forests 11, no. 12: 1303. https://doi.org/10.3390/f11121303
APA StyleWang, Y., Wang, Y., Li, Z., Yu, P., & Han, X. (2020). Interannual Variation of Transpiration and Its Modeling of a Larch Plantation in Semiarid Northwest China. Forests, 11(12), 1303. https://doi.org/10.3390/f11121303