A Bayesian Approach to Estimating Seemingly Unrelated Regression for Tree Biomass Model Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Data Collection
2.2. Biomass Model
2.3. Classical Approach of SUR
2.4. Bayesian Approaches of SUR
- (1)
- Direct Monte Carlo simulation approach using Jeffreys invariant prior (namely DMC).
- (2)
- Gibbs sampler using Jeffreys invariant prior (namely Gs-J).
- (3)
- Gibbs sampler using a multivariate normal distribution with mean vector and variance defined as 0 and 1000 (the covariance is 0) as priors of model parameters, and a default inverted Wishart distribution [25] as the priors of variance–covariance matrix errors (namely Gs-MN), respectively, which was considered as a non-informative prior.
- (4)
- Gibbs sampler using a multivariate normal distribution prior, which consisted of parameters estimated by the FGLS method with subsamples (namely Gs-MN1). The percentages of the subsamples were 10%, 20%, 30%, …, and 90% of the 174 independent trees data, which were sampled without conducting any replacement. Each simulation was repeated 10,000 times.
- (5)
- Gibbs sampler using a prior of multivariate normal distribution, which consisted of the parameters estimated by using logarithmic functions of different biomass components for Larix spp. (namely Gs-MN2). The previous biomass model parameters in the same forms for Larix spp. were collected from a normalized tree biomass equation dataset in Luo et al. [10]. A default inverted Wishart distribution proposed by Rossi and Allenby was used as the prior of variance–covariance matrix errors [25]. Even though the biomass functions were sampled from different areas in China, the model parameters were well represented by a multivariate normal distribution with mean vector and variance–covariance matrix after a multivariate normal test (p > 0.05).
2.5. Model Evaluation and Validation
2.6. Anti-Logarithm Correction Factors
2.7. Stability Analysis for Classical and Bayesian Approaches
3. Results
3.1. Fitting the SUR Models
3.2. Model Evaluation and Validation
3.3. Comparison of Correction Factors on Anti-Log Transformation
3.4. Stability Analysis in Repeated Trials between Various Sizes of Data and Methods
4. Discussion
4.1. Biomass SUR Models
4.2. Non-Informative vs. Informative Priors in Bayesian Methods
4.3. Anti-Logarithm Correction Factor
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- A simple prior of and was expressed as follows:
- A non-informative prior that is widely used, namely Jeffreys invariant prior is expressed as follows:
- Step 1.
- Give the starting values of , namely , the starting values were obtained from prior distributions generally;
- Step 2.
- Draw from Equation (A7) or (A10);
- Step 3.
- Draw from Equation (A8) or (A11);
- Step 4.
- Repeat both step 2 and step 3 to draw and for N times, ,
- Step 1. Set to generate (), where N is the samples size. Draw from the Equation (A15).
- Step 2. is set as the increment, and then is drawn by using Equation (A16) to generate the in Equation (A15).
- Step 3. Repeat the step 2 sequentially until is reached.
- Step 4. Transform into to .
Appendix B
Model | Correlation Matrix | ||||
---|---|---|---|---|---|
SURM1 | |||||
1.0000 | −0.4292 | −0.2428 | 0.4487 | ||
−0.4292 | 1.0000 | 0.5836 | −0.2208 | ||
−0.2428 | 0.5836 | 1.0000 | −0.1062 | ||
0.4487 | −0.2208 | −0.1062 | 1.0000 | ||
SUMR2 | |||||
1.0000 | 0.0026 | 0.0084 | 0.2311 | ||
0.0026 | 1.0000 | 0.5342 | −0.0362 | ||
0.0084 | 0.5342 | 1.0000 | 0.0042 | ||
0.2311 | −0.0362 | 0.0042 | 1.0000 |
Methods | Components | Indices | Sample Sizes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 15 | 20 | 30 | 40 | 60 | 80 | 110 | 140 | 170 | |||
SUM1 | ||||||||||||
DMC | Wr | 4.89 | 4.62 | 4.50 | 4.42 | 4.38 | 4.37 | 4.37 | 4.36 | 4.36 | 4.37 | |
22.08 | 21.23 | 20.86 | 20.50 | 20.32 | 20.16 | 20.07 | 20.01 | 19.98 | 19.97 | |||
Ws | 19.36 | 18.48 | 18.14 | 17.80 | 17.63 | 17.47 | 17.39 | 17.31 | 17.28 | 17.27 | ||
21.16 | 20.41 | 20.09 | 19.79 | 19.64 | 19.50 | 19.43 | 19.38 | 19.36 | 19.34 | |||
Wb | 2.80 | 2.66 | 2.59 | 2.53 | 2.49 | 2.46 | 2.45 | 2.43 | 2.43 | 2.42 | ||
31.94 | 30.16 | 29.35 | 28.59 | 28.25 | 27.90 | 27.74 | 27.60 | 27.51 | 27.47 | |||
Wf | . | 0.81 | 0.77 | 0.76 | 0.75 | 0.74 | 0.73 | 0.73 | 0.73 | 0.72 | 0.72 | |
26.62 | 25.12 | 24.50 | 23.91 | 23.64 | 23.35 | 23.23 | 23.13 | 23.06 | 23.02 | |||
Gs-MN | Wr | 4.90 | 4.63 | 4.51 | 4.42 | 4.39 | 4.37 | 4.37 | 4.36 | 4.36 | 4.36 | |
22.09 | 21.24 | 20.87 | 20.50 | 20.33 | 20.15 | 20.08 | 20.02 | 19.98 | 19.97 | |||
Ws | 19.33 | 18.47 | 18.14 | 17.80 | 17.63 | 17.47 | 17.39 | 17.32 | 17.28 | 17.27 | ||
21.14 | 20.41 | 20.09 | 19.79 | 19.64 | 19.50 | 19.43 | 19.38 | 19.35 | 19.34 | |||
Wb | 2.80 | 2.66 | 2.59 | 2.53 | 2.49 | 2.46 | 2.45 | 2.43 | 2.43 | 2.42 | ||
31.97 | 30.18 | 29.36 | 28.59 | 28.25 | 27.89 | 27.73 | 27.59 | 27.52 | 27.47 | |||
Wf | 0.81 | 0.77 | 0.76 | 0.75 | 0.74 | 0.73 | 0.73 | 0.73 | 0.72 | 0.72 | ||
26.63 | 25.13 | 24.51 | 23.92 | 23.64 | 23.37 | 23.24 | 23.13 | 23.06 | 23.02 | |||
Gs-MN1 | Wr | 4.30 | 4.31 | 4.32 | 4.33 | 4.33 | 4.34 | 4.35 | 4.35 | 4.35 | 4.36 | |
19.89 | 19.92 | 19.95 | 19.97 | 19.98 | 19.97 | 19.96 | 19.95 | 19.95 | 19.95 | |||
Ws | 17.28 | 17.28 | 17.28 | 17.29 | 17.29 | 17.28 | 17.28 | 17.27 | 17.27 | 17.26 | ||
19.37 | 19.37 | 19.38 | 19.38 | 19.37 | 19.36 | 19.36 | 19.35 | 19.34 | 19.34 | |||
Wb | 2.43 | 2.43 | 2.43 | 2.43 | 2.43 | 2.43 | 2.43 | 2.42 | 2.42 | 2.42 | ||
27.65 | 27.65 | 27.65 | 27.62 | 27.61 | 27.59 | 27.57 | 27.53 | 27.49 | 27.47 | |||
Wf | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | ||
23.17 | 23.17 | 23.17 | 23.15 | 23.14 | 23.12 | 23.10 | 23.07 | 23.04 | 23.02 | |||
Gs-MN2 | Wr | 6.28 | 5.73 | 5.37 | 4.98 | 4.78 | 4.60 | 4.53 | 4.47 | 4.44 | 4.43 | |
22.72 | 22.10 | 21.66 | 21.10 | 20.79 | 20.46 | 20.29 | 20.17 | 20.10 | 20.07 | |||
Ws | 19.76 | 18.91 | 18.45 | 17.99 | 17.78 | 17.57 | 17.47 | 17.37 | 17.33 | 17.30 | ||
19.54 | 19.51 | 19.51 | 19.49 | 19.48 | 19.42 | 19.39 | 19.36 | 19.34 | 19.33 | |||
Wb | 3.60 | 3.19 | 2.96 | 2.73 | 2.62 | 2.53 | 2.49 | 2.46 | 2.45 | 2.44 | ||
34.22 | 31.79 | 30.50 | 29.18 | 28.58 | 28.05 | 27.82 | 27.64 | 27.53 | 27.48 | |||
Wf | 1.08 | 0.96 | 0.89 | 0.81 | 0.78 | 0.75 | 0.74 | 0.73 | 0.73 | 0.73 | ||
29.76 | 27.16 | 25.62 | 24.23 | 23.69 | 23.32 | 23.19 | 23.10 | 23.03 | 22.99 | |||
FGLS | Wr | 4.89 | 4.62 | 4.50 | 4.42 | 4.38 | 4.36 | 4.37 | 4.36 | 4.36 | 4.36 | |
22.08 | 21.23 | 20.86 | 20.50 | 20.32 | 20.15 | 20.08 | 20.02 | 19.98 | 19.97 | |||
Ws | 19.36 | 18.48 | 18.14 | 17.80 | 17.63 | 17.47 | 17.39 | 17.32 | 17.28 | 17.27 | ||
21.16 | 20.41 | 20.09 | 19.79 | 19.64 | 19.50 | 19.43 | 19.38 | 19.35 | 19.34 | |||
Wb | 2.80 | 2.66 | 2.59 | 2.53 | 2.49 | 2.46 | 2.45 | 2.43 | 2.43 | 2.42 | ||
31.94 | 30.16 | 29.35 | 28.59 | 28.25 | 27.89 | 27.73 | 27.59 | 27.52 | 27.47 | |||
Wf | 0.81 | 0.77 | 0.76 | 0.75 | 0.74 | 0.73 | 0.73 | 0.73 | 0.72 | 0.72 | ||
26.61 | 25.12 | 24.50 | 23.91 | 23.64 | 23.37 | 23.24 | 23.13 | 23.06 | 23.02 | |||
SURM2 | ||||||||||||
DMC | Wr | 5.18 | 4.76 | 4.61 | 4.46 | 4.40 | 4.34 | 4.31 | 4.28 | 4.27 | 4.27 | |
21.67 | 20.14 | 19.55 | 18.97 | 18.71 | 18.41 | 18.26 | 18.15 | 18.09 | 18.04 | |||
Ws | 9.49 | 8.88 | 8.60 | 8.33 | 8.20 | 8.08 | 8.02 | 7.96 | 7.93 | 7.91 | ||
10.05 | 9.39 | 9.10 | 8.83 | 8.70 | 8.57 | 8.50 | 8.45 | 8.41 | 8.38 | |||
Wb | 2.72 | 2.53 | 2.45 | 2.37 | 2.33 | 2.29 | 2.27 | 2.26 | 2.26 | 2.25 | ||
29.39 | 27.21 | 26.34 | 25.38 | 24.97 | 24.56 | 24.38 | 24.23 | 24.11 | 24.05 | |||
Wf | 0.86 | 0.80 | 0.78 | 0.76 | 0.75 | 0.74 | 0.74 | 0.73 | 0.73 | 0.73 | ||
27.61 | 25.49 | 24.63 | 23.80 | 23.47 | 23.15 | 23.02 | 22.94 | 22.88 | 22.86 | |||
Gs-MN | Wr | 5.16 | 4.76 | 4.61 | 4.46 | 4.40 | 4.34 | 4.31 | 4.28 | 4.27 | 4.27 | |
21.62 | 20.13 | 19.55 | 18.97 | 18.71 | 18.41 | 18.26 | 18.15 | 18.09 | 18.04 | |||
Ws | 9.49 | 8.88 | 8.60 | 8.33 | 8.20 | 8.08 | 8.02 | 7.96 | 7.93 | 7.91 | ||
10.05 | 9.39 | 9.11 | 8.83 | 8.70 | 8.57 | 8.51 | 8.45 | 8.41 | 8.38 | |||
Wb | 2.70 | 2.53 | 2.45 | 2.37 | 2.33 | 2.29 | 2.27 | 2.26 | 2.26 | 2.25 | ||
29.34 | 27.21 | 26.34 | 25.38 | 24.97 | 24.56 | 24.38 | 24.23 | 24.11 | 24.05 | |||
Wf | 0.85 | 0.80 | 0.78 | 0.76 | 0.75 | 0.74 | 0.74 | 0.73 | 0.73 | 0.73 | ||
27.57 | 25.49 | 24.63 | 23.80 | 23.47 | 23.15 | 23.02 | 22.94 | 22.88 | 22.86 | |||
Gs-MN1 | Wr | 4.24 | 4.25 | 4.25 | 4.26 | 4.26 | 4.26 | 4.26 | 4.26 | 4.26 | 4.26 | |
18.07 | 18.09 | 18.11 | 18.12 | 18.13 | 18.11 | 18.09 | 18.07 | 18.05 | 18.02 | |||
Ws | 7.96 | 7.96 | 7.96 | 7.96 | 7.96 | 7.95 | 7.94 | 7.93 | 7.92 | 7.91 | ||
8.44 | 8.45 | 8.45 | 8.45 | 8.45 | 8.44 | 8.43 | 8.41 | 8.40 | 8.38 | |||
Wb | 2.26 | 2.26 | 2.26 | 2.26 | 2.26 | 2.26 | 2.26 | 2.26 | 2.25 | 2.25 | ||
24.30 | 24.30 | 24.31 | 24.28 | 24.26 | 24.22 | 24.19 | 24.14 | 24.08 | 24.05 | |||
Wf | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | ||
22.98 | 22.98 | 22.98 | 22.97 | 22.96 | 22.94 | 22.92 | 22.90 | 22.88 | 22.87 | |||
Gs-MN2 | Wr | 6.45 | 6.04 | 5.67 | 5.18 | 4.92 | 4.67 | 4.55 | 4.47 | 4.41 | 4.38 | |
24.50 | 22.72 | 21.52 | 20.10 | 19.41 | 18.82 | 18.57 | 18.39 | 18.29 | 18.21 | |||
Ws | 13.68 | 12.59 | 11.71 | 10.59 | 10.02 | 9.48 | 9.17 | 8.85 | 8.62 | 8.46 | ||
14.08 | 12.97 | 12.14 | 11.15 | 10.69 | 10.25 | 9.98 | 9.65 | 9.38 | 9.17 | |||
Wb | 3.47 | 3.30 | 3.19 | 3.05 | 2.95 | 2.78 | 2.65 | 2.49 | 2.38 | 2.32 | ||
36.87 | 35.73 | 35.04 | 33.87 | 32.94 | 31.31 | 29.94 | 28.24 | 26.97 | 26.11 | |||
Wf | 1.08 | 0.97 | 0.91 | 0.85 | 0.82 | 0.78 | 0.76 | 0.75 | 0.73 | 0.72 | ||
30.93 | 28.73 | 27.60 | 26.49 | 25.86 | 25.04 | 24.47 | 23.84 | 23.40 | 23.10 | |||
FGLS | Wr | 5.18 | 4.76 | 4.61 | 4.46 | 4.40 | 4.34 | 4.31 | 4.28 | 4.27 | 4.27 | |
21.67 | 20.14 | 19.55 | 18.97 | 18.71 | 18.41 | 18.26 | 18.15 | 18.09 | 18.04 | |||
Ws | 9.49 | 8.88 | 8.60 | 8.33 | 8.20 | 8.08 | 8.02 | 7.96 | 7.93 | 7.91 | ||
10.05 | 9.39 | 9.10 | 8.83 | 8.70 | 8.57 | 8.50 | 8.45 | 8.41 | 8.38 | |||
Wb | 2.72 | 2.53 | 2.45 | 2.37 | 2.33 | 2.29 | 2.27 | 2.26 | 2.26 | 2.25 | ||
29.39 | 27.21 | 26.34 | 25.38 | 24.97 | 24.56 | 24.38 | 24.23 | 24.11 | 24.05 | |||
Wf | 0.86 | 0.80 | 0.78 | 0.76 | 0.75 | 0.74 | 0.74 | 0.73 | 0.73 | 0.73 | ||
27.61 | 25.49 | 24.63 | 23.80 | 23.47 | 23.15 | 23.02 | 22.94 | 22.88 | 22.86 |
Lag | DMC | Gs-J | Gs-MN | Gs-MN1 | Gs-MN2 |
---|---|---|---|---|---|
SURM1 | |||||
0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
1 | −0.0005 | 0.0120 | −0.0060 | 0.0033 | 0.0062 |
5 | −0.0108 | 0.0059 | 0.0296 | 0.0078 | 0.0002 |
10 | 0.0149 | −0.0011 | −0.0043 | −0.0180 | −0.0011 |
50 | −0.0020 | −0.0011 | 0.0075 | 0.0015 | 0.0160 |
SURM2 | |||||
0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
1 | 0.0022 | −0.0039 | 0.0051 | 0.0007 | −0.0040 |
5 | −0.0104 | 0.0001 | 0.0037 | −0.0048 | −0.0181 |
10 | 0.0033 | −0.0087 | −0.0048 | 0.0021 | −0.0057 |
50 | −0.0018 | 0.0014 | 0.0043 | −0.0108 | −0.0129 |
References
- Clark, J.; Murphy, G. Estimating forest biomass components with hemispherical photography for Douglas-fir stands in northwest Oregon. Can. J. For. Res. 2011, 41, 1060–1074. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, L.; Li, F. A compatible system of biomass equations for three conifer species in Northeast, China. For. Ecol. Manag. 2014, 329, 306–317. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; MacFarlane, D.W.; Radtke, P.J.; Affleck, D.L.; Hailemariam, T.; Woodall, C.W.; Westfall, J.A.; Coulston, J.W. A call to improve methods for estimating tree biomass for regional and national assessments. J. For. 2015, 113, 414–424. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Kane, M.; Markewitz, D.; Teskey, R.; Clutter, M. Additive tree biomass equations for midrotation Loblolly pine plantations. For. Sci. 2015, 61, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Ter-Mikaelian, M.T.; Korzukhin, M.D. Biomass equations for sixty-five north American tree species. For. Ecol. Manag. 1997, 97, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National-scale biomass estimators for united states tree species. For. Sci. 2003, 49, 12–35. [Google Scholar]
- Zianis, D.; Muukkonen, P.; Makipaa, R.; Mencuccini, M. Biomass and stem volume equations for tree species in Europe. Silva Fenn. Monogr. 2005, 4, 63. [Google Scholar]
- Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 2006, 222, 9–16. [Google Scholar] [CrossRef]
- Chave, J.; Rejoumechain, M.; Burquez, A.; Chidumayo, E.N.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Ouyang, Z.; Lu, F.; Feng, L.; Tao, J. A review of biomass equations for China’s tree species. Earth Syst. Sci. Data 2020, 12, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; Murphy, S.; Volkova, L.; Weston, C.J.; Fairman, T.A.; Li, Y.; Law, R.; Norris, J.; Lei, X.; Caccamo, G. Additive biomass equations based on complete weighing of sample trees for open eucalypt forest species in south-eastern Australia. For. Ecol. Manag. 2015, 349, 106–121. [Google Scholar] [CrossRef]
- Kralicek, K.; Huy, B.; Poudel, K.P.; Temesgen, H.; Salas, C. Simultaneous estimation of above- and below-ground biomass in tropical forests of Viet Nam. For. Ecol. Manag. 2017, 390, 147–156. [Google Scholar] [CrossRef]
- Zapatacuartas, M.; Sierra, C.A.; Alleman, L. Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass. For. Ecol. Manag. 2012, 277, 173–179. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, Y.; Xie, L.; Li, F. Comparison of tree biomass modeling approaches for larch (Larix olgensis Henry) trees in Northeast China. Forests 2020, 11, 202. [Google Scholar] [CrossRef] [Green Version]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593. [Google Scholar]
- Zellner, A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 1962, 57, 348–368. [Google Scholar] [CrossRef]
- Mehtätalo, L.; Lappi, J. Biometry for Forestry and Environmental Data: With Examples in R; Chapman and Hall; CRC Press: New York, NY, USA, 2020; p. 426. [Google Scholar]
- Dong, L.; Zhang, L.; Li, F. Additive biomass equations based on different dendrometric variables for two dominant species (Larix gmelini Rupr. and Betula platyphylla Suk.) in natural forests in the Eastern Daxing’an Mountains, Northeast China. Forests 2018, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Parresol, B.R. Additivity of nonlinear biomass equations. Can. J. For. Res. 2001, 31, 865–878. [Google Scholar] [CrossRef]
- Zellner, A. An Introduction to Bayesian Inference in Econometrics; Wiley: New York, NY, USA, 1971; p. 448. [Google Scholar]
- Lu, L.; Wang, H.; Chhin, S.; Duan, A.; Zhang, J.; Zhang, X. A Bayesian model averaging approach for modelling tree mortality in relation to site, competition and climatic factors for Chinese fir plantations. For. Ecol. Manag. 2019, 440, 169–177. [Google Scholar] [CrossRef]
- Griffiffiths, W.E. Bayesian Inference in the Seemingly Unrelated Regressions Model; Department of Economics, The University of Melbourne: Melbourne, Australia, 2003; p. 520. [Google Scholar]
- Bayes, T. An essay towards solving a problem in the doctrine of chances. M.D. Comput. 1991, 8, 157. [Google Scholar] [CrossRef]
- Li, R.; Stewart, B.; Weiskittel, A.R. A Bayesian approach for modelling non-linear longitudinal/hierarchical data with random effects in forestry. Forestry 2012, 85, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Rossi, P.E.; Allenby, G.M. Bayesian Statistics and Marketing; John Wiley & Sons, Ltd.: Chichester, UK, 2005; p. 368. [Google Scholar]
- Huelsenbeck, J.P.; Ronquist, F.; Nielsen, R.; Bollback, J.P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 2001, 294, 2310–2314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portinale, L.; Raiteri, D.C.; Montani, S. Supporting reliability engineers in exploiting the power of dynamic Bayesian networks. Int. J. Approx. Reason. 2010, 51, 179–195. [Google Scholar] [CrossRef] [Green Version]
- Reich, B.J.; Ghosh, S.K. Bayesian Statistical Methods; CRC Press: Boca Raton, FL, USA, 2019; p. 275. [Google Scholar]
- Berger, J.O. Bayesian analysis: A look at today and thoughts of tomorrow. J. Am. Stat. Assoc. 2000, 95, 1269–1276. [Google Scholar] [CrossRef]
- Samuel, K.; Wu, X. Modern Bayesian Statistics; China Statistics Press: Beijing, China, 2000; p. 244.
- Van Ravenzwaaij, D.; Cassey, P.; Brown, S.D. A simple introduction to Markov Chain Monte–Carlo sampling. Psychon. Bull. Rev. 2018, 25, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Duan, A.; Zhang, J. Tree biomass estimation of Chinese fir (Cunninghamia lanceolata) based on Bayesian method. PLoS ONE 2013, 8, e79868. [Google Scholar] [CrossRef] [Green Version]
- State Forestry and Grassland Administration The Ninth Forest Resource Survey Report (2014–2018); China Forestry Press: Beijing, China, 2018; p. 451.
- Zeng, W.; Duo, H.; Lei, X.; Chen, X.; Wang, X.; Pu, Y.; Zou, W. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. Eur. J. For. Res. 2017, 136, 233–249. [Google Scholar] [CrossRef]
- Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 2011, 92, 1887–1894. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute Inc. SAS/ETS® 14.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2015; p. 4100. [Google Scholar]
- Henningsen, A.; Hamann, J.D. Systemfit: A package for estimating systems of simultaneous equations in R. J. Stat. Softw. 2007, 23, 1–40. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Zellner, A.; Ando, T. A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model. J. Econom. 2010, 159, 33–45. [Google Scholar] [CrossRef]
- Rossi, P. Bayesm: Bayesian Inference for Marketing/Micro-Econometrics; R package version 3.1-4. 2019. Available online: https://CRAN.R-project.org/package=bayesm (accessed on 20 April 2020).
- Heidelberger, P.; Welch, P.D. Simulation run length control in the presence of an initial transient. Oper. Res. 1983, 31, 1109–1144. [Google Scholar] [CrossRef]
- Gewke, J. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics 4; Bernado, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M., Eds.; Clarendon Press: Oxford, UK, 1992; pp. 169–193. [Google Scholar]
- Plummer, M.; Best, N.; Cowles, K.; Vines, K. Coda: Convergence diagnosis and output analysis for MCMC. R News 2006, 6, 7–11. [Google Scholar]
- Fu, L.; Sharma, R.P.; Hao, K.; Tang, S. A generalized interregional nonlinear mixed-effects crown width model for prince rupprecht larch in northern China. For. Ecol. Manag. 2017, 389, 364–373. [Google Scholar] [CrossRef]
- Cawley, G.C.; Talbot, N.L.C. Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers. Pattern Recognit. 2003, 36, 2585–2592. [Google Scholar] [CrossRef]
- Finney, D.J. On the distribution of a variate whose logarithm is normally distributed. J. R. Statist. Soc. B 1941, 7, 155–161. [Google Scholar] [CrossRef]
- Baskerville, G.L. Use of logarithmic regression in the estimation of plant biomass. Can. J. For. Res. 1972, 4, 149. [Google Scholar] [CrossRef]
- Wiant, H.V.; Harner, E.J. Percent bias and standard error in logarithmic regression. For. Sci. 1979, 25, 167–168. [Google Scholar]
- Yandle, D.O.; Wiant, H.V. Estimation of plant biomass based on the allometric equation. Can. J. For. Res. 1981, 11, 833–834. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Wang, C.; Gower, S.T. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Glob. Chang. Biol. 2004, 10, 473–487. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Chang. Biol. 2004, 10, 2052–2077. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, D.; Liu, G.; Yang, C.; Teskey, R.O. Additive tree biomass equations for Betula platyphylla Suk. plantations in Northeast China. Ann. For. Sci. 2018, 75, 60. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Westfall, J.A.; Coulston, J.W.; Lynch, T.B.; Bullock, B.P.; Montes, C.R. Additive biomass equations for slash pine trees: Comparing three modeling approaches. Can. J. For. Res. 2019, 49, 27–40. [Google Scholar] [CrossRef]
- Widagdo, F.R.A.; Li, F.; Zhang, L.; Dong, L. Aggregated biomass model systems and carbon concentration variations for tree carbon quantification of natural Mongolian Oak in Northeast China. Forests 2020, 11, 397. [Google Scholar] [CrossRef] [Green Version]
- Affleck, D.L.R.; Dieguez-Aranda, U. Additive nonlinear biomass equations: A likelihood-based approach. For. Sci. 2016, 62, 129–140. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, L.; Li, F. Developing additive systems of biomass equations for nine hardwood species in Northeast China. Trees-Struct. Funct. 2015, 29, 1149–1163. [Google Scholar] [CrossRef]
- Kusmana, C.; Hidayat, T.; Tiryana, T.; Rusdiana, O. Istomo Allometric models for above- and below-ground biomass of Sonneratia spp. Glob. Ecol. Conserv. 2018, 15, 10. [Google Scholar]
- Ando, T. Bayesian variable selection for the seemingly unrelated regression models with a large number of predictors. J. Jpn. Stat. Soc. 2012, 41, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Tang, S. Bias correction in logarithmic regression and comparison with weighted regression for non-linear models. For. Res. 2011, 24, 137–143. [Google Scholar]
- Mascaro, J.; Litton, C.M.; Hughes, R.F.; Uowolo, A.; Schnitzer, S.A. Is logarithmic transformation necessary in allometry? Ten, one--hundred, one--thousand--times yes. Biol. J. Linn. Soc. 2014, 111, 230–233. [Google Scholar] [CrossRef] [Green Version]
- Madgwick, H.A.I.; Satoo, T. On estimating the aboveground weights of tree stands. Ecology 1975, 56, 1446–1450. [Google Scholar] [CrossRef] [Green Version]
- Zianis, D.; Xanthopoulos, G.; Kalabokidis, K.; Kazakis, G.; Ghosn, D.; Roussou, O. Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. trees growing in North and South Aegean Islands, Greece. Eur. J. For. Res. 2011, 130, 145–160. [Google Scholar] [CrossRef]
Attributes | Mean | Std | Minimum | Maximum |
---|---|---|---|---|
DBH (cm) | 16.3 | 7.0 | 2.0 | 35.7 |
H (m) | 15.4 | 5.5 | 3.8 | 27.0 |
Root biomass (kg) | 31.66 | 33.83 | 0.13 | 203.60 |
Stem biomass (kg) | 106.94 | 107.50 | 0.27 | 510.19 |
Branch biomass (kg) | 11.37 | 9.05 | 0.10 | 42.30 |
Foliage biomass (kg) | 3.56 | 2.08 | 0.11 | 8.73 |
Methods | Stats | βr0 | βr1 | βs0 | βs1 | βb0 | βb1 | βf0 | βf1 |
---|---|---|---|---|---|---|---|---|---|
DMC | Mean | −4.5406 | 2.7194 | −3.3655 | 2.7386 | −3.5304 | 2.065 | −2.9406 | 1.4810 |
Std | 0.0277 | 0.0102 | 0.0253 | 0.0093 | 0.0508 | 0.0187 | 0.0418 | 0.0153 | |
2.50th | −4.5945 | 2.6995 | −3.4146 | 2.7201 | −3.6301 | 2.0291 | −3.0217 | 1.4512 | |
97.50th | −4.4868 | 2.7391 | −3.3157 | 2.7567 | −3.4325 | 2.1018 | −2.8585 | 1.5109 | |
Gs-J | Mean | −4.5404 | 2.7192 | −3.3651 | 2.7384 | −3.5319 | 2.0656 | −2.9424 | 1.4819 |
Std | 0.1079 | 0.0396 | 0.0971 | 0.0356 | 0.1437 | 0.0526 | 0.1192 | 0.0436 | |
2.50th | −4.7519 | 2.642 | −3.5549 | 2.6688 | −3.8137 | 1.96 | −3.1756 | 1.3953 | |
97.50th | −4.3302 | 2.7984 | −3.1728 | 2.8092 | −3.2475 | 2.1692 | −2.7081 | 1.5677 | |
Gs-MN | Mean | −4.5397 | 2.7191 | −3.3662 | 2.739 | −3.5277 | 2.064 | −2.9393 | 1.4806 |
Std | 0.1346 | 0.0493 | 0.1267 | 0.0465 | 0.1627 | 0.0597 | 0.1433 | 0.0525 | |
2.50th | −4.8036 | 2.6217 | −3.6166 | 2.649 | −3.8446 | 1.947 | −3.2192 | 1.3778 | |
97.50th | −4.2763 | 2.8155 | −3.1188 | 2.8302 | −3.2162 | 2.1815 | −2.6585 | 1.5827 | |
Gs-MN1 | Mean | −4.545 | 2.721 | −3.3687 | 2.7397 | −3.5304 | 2.065 | −2.938 | 1.4803 |
Std | 0.0944 | 0.0339 | 0.0779 | 0.0283 | 0.1202 | 0.0433 | 0.1008 | 0.0365 | |
2.50th | −4.7309 | 2.654 | −3.517 | 2.6838 | −3.7696 | 1.9801 | −3.1332 | 1.4079 | |
97.50th | −4.359 | 2.7875 | −3.2142 | 2.7942 | −3.2959 | 2.1517 | −2.7393 | 1.5505 | |
Gs-MN2 | Mean | −4.5209 | 2.7124 | −3.3441 | 2.731 | −3.585 | 2.0848 | −2.9947 | 1.5008 |
Std | 0.1339 | 0.0493 | 0.1238 | 0.0455 | 0.1588 | 0.0582 | 0.1382 | 0.0507 | |
2.50th | −4.7838 | 2.6145 | −3.5829 | 2.6418 | −3.8963 | 1.9705 | −3.2654 | 1.4017 | |
97.50th | −4.2546 | 2.8078 | −3.0999 | 2.8184 | −3.2729 | 2.1992 | −2.7241 | 1.5996 | |
FGLS | Value | −4.5407 | 2.7195 | −3.3655 | 2.7386 | −3.5305 | 2.0650 | −2.9402 | 1.4810 |
SE | 0.1067 | 0.0391 | 0.0961 | 0.0353 | 0.1409 | 0.0517 | 0.1173 | 0.0430 |
Method | Stats | βr0 | βr1 | βr2 | βs0 | βs1 | βs2 | βb0 | βb1 | βb2 | βf0 | βf1 | βf2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DMC | Mean | −5.0773 | 2.1886 | 0.7354 | −4.451 | 1.6653 | 1.4869 | −2.6606 | 2.9253 | −1.1918 | −2.5255 | 1.8912 | −0.5683 |
Std | 0.0329 | 0.0241 | 0.0313 | 0.0079 | 0.0058 | 0.0075 | 0.0522 | 0.0381 | 0.0495 | 0.0501 | 0.0371 | 0.0479 | |
2.50th | −5.1418 | 2.1407 | 0.6747 | −4.4666 | 1.6535 | 1.4717 | −2.764 | 2.8507 | −1.2886 | −2.6239 | 1.8189 | −0.6635 | |
97.50th | −5.0132 | 2.236 | 0.7973 | −4.4353 | 1.6768 | 1.5017 | −2.5594 | 2.9998 | −1.0945 | −2.4265 | 1.9645 | −0.4767 | |
Gs−J | Mean | −5.0756 | 2.1889 | 0.7344 | −4.4504 | 1.6651 | 1.4868 | −2.6622 | 2.924 | −1.1896 | −2.5266 | 1.8901 | −0.5667 |
Std | 0.1382 | 0.1022 | 0.1318 | 0.0628 | 0.0460 | 0.0598 | 0.1772 | 0.1294 | 0.1684 | 0.1600 | 0.1166 | 0.1511 | |
2.50th | −5.3515 | 1.9858 | 0.4751 | −4.573 | 1.5743 | 1.369 | −3.0063 | 2.6692 | −1.5186 | −2.842 | 1.6595 | −0.8624 | |
97.50th | −4.8045 | 2.3888 | 0.9943 | −4.3249 | 1.756 | 1.6041 | −2.31 | 3.1811 | −0.8569 | −2.2116 | 2.1221 | −0.2764 | |
Gs−MN | Mean | −5.075 | 2.1876 | 0.7354 | −4.4496 | 1.6642 | 1.4874 | −2.6599 | 2.9266 | −1.1934 | −2.5245 | 1.8934 | −0.5708 |
Std | 0.1798 | 0.1312 | 0.1694 | 0.1321 | 0.096 | 0.1245 | 0.2062 | 0.1515 | 0.1964 | 0.1925 | 0.1432 | 0.1846 | |
2.50th | −5.4231 | 1.9314 | 0.3979 | −4.7091 | 1.4758 | 1.2382 | −3.0647 | 2.6302 | −1.5807 | −2.9043 | 1.6134 | −0.9359 | |
97.50th | −4.7202 | 2.4472 | 1.0676 | −4.1913 | 1.8536 | 1.7293 | −2.2546 | 3.2223 | −0.8115 | −2.147 | 2.1742 | −0.2104 | |
Gs−MN1 | Mean | −5.0835 | 2.1907 | 0.7353 | −4.4515 | 1.6653 | 1.487 | −2.661 | 2.9246 | −1.1908 | −2.5249 | 1.8902 | −0.5672 |
Std | 0.1148 | 0.0867 | 0.11 | 0.0536 | 0.0395 | 0.0516 | 0.1418 | 0.1088 | 0.1372 | 0.1327 | 0.0986 | 0.1271 | |
2.50th | −5.308 | 2.0222 | 0.517 | −4.5562 | 1.5889 | 1.386 | −2.9347 | 2.7129 | −1.457 | −2.7884 | 1.6964 | −0.8195 | |
97.50th | −4.8589 | 2.3608 | 0.9504 | −4.3455 | 1.742 | 1.5856 | −2.3849 | 3.1356 | −0.924 | −2.2669 | 2.0862 | −0.3151 | |
Gs−MN2 | Mean | −5.081 | 2.1356 | 0.7902 | −4.2369 | 1.869 | 1.2016 | −3.342 | 2.2326 | −0.2395 | −2.9663 | 1.461 | 0.0299 |
Std | 0.1524 | 0.0971 | 0.1190 | 0.1182 | 0.0756 | 0.0941 | 0.2009 | 0.1313 | 0.167 | 0.1898 | 0.1296 | 0.1653 | |
2.50th | −5.3795 | 1.9463 | 0.559 | −4.4704 | 1.7196 | 1.0191 | −3.7383 | 1.9677 | −0.5602 | −3.3426 | 1.2026 | −0.2873 | |
97.50th | −4.7805 | 2.3257 | 1.0196 | −4.0046 | 2.0177 | 1.3876 | −2.952 | 2.4869 | 0.0949 | −2.5913 | 1.7106 | 0.3584 | |
FGLS | Mean | −5.0777 | 2.1885 | 0.7355 | −4.4511 | 1.6652 | 1.4870 | −2.6605 | 2.9251 | −1.1915 | −2.5252 | 1.8913 | −0.5684 |
Se | 0.1370 | 0.1010 | 0.1307 | 0.0620 | 0.0457 | 0.0592 | 0.1722 | 0.1270 | 0.1643 | 0.1575 | 0.1161 | 0.1503 |
Method | R2 | RMSE (kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
Wr | Ws | Wb | Wf | Wr | Ws | Wb | Wf | ||
SURM1 | |||||||||
DMC | −1894.25 | 0.9604 | 0.9385 | 0.8201 | 0.7625 | 6.7588 | 26.6776 | 3.8632 | 1.0172 |
Gs-J | −1890.65 | 0.9604 | 0.9385 | 0.8200 | 0.7619 | 6.7630 | 26.6763 | 3.8655 | 1.0188 |
Gs-MN | −719.567 | 0.9604 | 0.9385 | 0.8204 | 0.7626 | 6.7582 | 26.6846 | 3.8601 | 1.0171 |
Gs-MN1 | −1939.09 | 0.9606 | 0.9384 | 0.8200 | 0.7625 | 6.7453 | 26.6914 | 3.8643 | 1.0175 |
Gs-MN2 | −719.14 | 0.9598 | 0.9389 | 0.8152 | 0.7547 | 6.8180 | 26.5947 | 3.9231 | 1.0353 |
FGLS | - | 0.9605 | 0.9385 | 0.8201 | 0.7625 | 6.7552 | 26.6785 | 3.8636 | 1.0175 |
SURM2 | |||||||||
DMC | −3004.07 | 0.9575 | 0.9840 | 0.8478 | 0.7692 | 6.9882 | 13.6087 | 3.5441 | 1.0022 |
Gs-J | −2993.10 | 0.9575 | 0.9840 | 0.8476 | 0.7691 | 6.9882 | 13.6063 | 3.5481 | 1.0023 |
Gs-MN | −1274.25 | 0.9574 | 0.9840 | 0.8478 | 0.7688 | 7.0005 | 13.6026 | 3.5440 | 1.0030 |
Gs-MN1 | −3046.41 | 0.9577 | 0.9840 | 0.8478 | 0.7689 | 6.9736 | 13.6096 | 3.5448 | 1.0028 |
Gs-MN2 | −1163.85 | 0.9551 | 0.9824 | 0.8368 | 0.7600 | 7.1937 | 14.3112 | 3.6719 | 1.0231 |
FGLS | - | 0.9575 | 0.9840 | 0.8478 | 0.7691 | 6.9885 | 13.6088 | 3.5448 | 1.0023 |
Method | Wr | Ws | Wb | Wf | ||||
---|---|---|---|---|---|---|---|---|
MAE (kg) | MAE% (%) | MAE (kg) | MAE% (%) | MAE (kg) | MAE% (%) | MAE (kg) | MAE% (%) | |
SURM1 | ||||||||
DMC | 4.2952 | 20.2532 | 17.4227 | 19.6344 | 2.5116 | 29.0780 | 0.7296 | 23.5099 |
Gs-J | 4.2864 | 20.2547 | 17.4221 | 19.6383 | 2.5145 | 29.1252 | 0.7299 | 23.5313 |
Gs-MN | 4.0020 | 20.6052 | 17.3580 | 20.1764 | 2.5846 | 30.1746 | 0.7438 | 24.4397 |
Gs-MN1 | 3.9844 | 20.5028 | 17.2887 | 20.0967 | 2.5735 | 30.0245 | 0.7408 | 24.3333 |
Gs-MN2 | 4.0425 | 20.7010 | 17.3555 | 20.1893 | 2.6148 | 30.1029 | 0.7532 | 24.3886 |
FGLS | 4.0163 | 20.5847 | 17.3484 | 20.1571 | 2.5791 | 30.0815 | 0.7425 | 24.3796 |
SUMR2 | ||||||||
DMC | 4.3199 | 18.5282 | 8.0317 | 8.5308 | 2.3198 | 25.2545 | 0.7465 | 23.4813 |
Gs-J | 4.3205 | 18.5531 | 8.0323 | 8.5320 | 2.3232 | 25.3086 | 0.7472 | 23.5177 |
Gs-MN | 4.3194 | 19.2793 | 7.9945 | 8.5978 | 2.3673 | 26.1265 | 0.7555 | 24.3034 |
Gs-MN1 | 4.2878 | 19.1338 | 7.9593 | 8.5451 | 2.3530 | 25.9476 | 0.7511 | 24.1500 |
Gs-MN2 | 4.2764 | 19.2940 | 8.0025 | 8.6385 | 2.4473 | 25.9014 | 0.7967 | 24.3156 |
FGLS | 4.3155 | 19.2164 | 7.9995 | 8.5863 | 2.3615 | 26.0279 | 0.7542 | 24.2290 |
Components | CF1 | B1 | G1 | CF2 | B2 | G2 | CF3 | B3 | G3 | MPD0 | MPD1 | MPD2 | MPD3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SURM1 | |||||||||||||
Wr | 1.0342 | 3.3069 | 18.4932 | 1.0336 | 3.2508 | 18.3303 | 1.0342 | 3.3069 | 18.4932 | 19.9470 | 20.3233 | 20.3114 | 20.3232 |
Ws | 1.0277 | 2.6953 | 16.6433 | 1.0273 | 2.6575 | 16.5227 | 1.0277 | 2.6953 | 16.6433 | 19.3369 | 19.9458 | 19.9364 | 19.9457 |
Wb | 1.0604 | 5.6960 | 24.5764 | 1.0586 | 5.5356 | 24.2074 | 1.0604 | 5.6960 | 24.5764 | 27.4698 | 29.6666 | 29.5909 | 29.6656 |
Wf | 1.0415 | 3.9846 | 20.3715 | 1.0406 | 3.9016 | 20.1494 | 1.0415 | 3.9846 | 20.3715 | 23.0224 | 24.0755 | 24.0451 | 24.0752 |
SURM2 | |||||||||||||
Wr | 1.0289 | 2.8088 | 17.0000 | 1.0285 | 2.7710 | 16.8819 | 1.0289 | 2.8088 | 17.0000 | 18.0167 | 18.8596 | 18.8457 | 18.8595 |
Ws | 1.0059 | 0.5865 | 7.6811 | 1.0058 | 0.5767 | 7.6158 | 1.0059 | 0.5865 | 7.6811 | 8.3797 | 8.4365 | 8.4363 | 8.4365 |
Wb | 1.0461 | 4.4068 | 21.4709 | 1.0451 | 4.3154 | 21.2368 | 1.0461 | 4.4068 | 21.4709 | 24.0403 | 25.5298 | 25.4932 | 25.5293 |
Wf | 1.0384 | 3.6980 | 19.5959 | 1.0377 | 3.6330 | 19.4165 | 1.0384 | 3.6980 | 19.5959 | 22.8702 | 23.7830 | 23.7636 | 23.7827 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, L.; Li, F.; Zhang, L.; Widagdo, F.R.A.; Dong, L. A Bayesian Approach to Estimating Seemingly Unrelated Regression for Tree Biomass Model Systems. Forests 2020, 11, 1302. https://doi.org/10.3390/f11121302
Xie L, Li F, Zhang L, Widagdo FRA, Dong L. A Bayesian Approach to Estimating Seemingly Unrelated Regression for Tree Biomass Model Systems. Forests. 2020; 11(12):1302. https://doi.org/10.3390/f11121302
Chicago/Turabian StyleXie, Longfei, Fengri Li, Lianjun Zhang, Faris Rafi Almay Widagdo, and Lihu Dong. 2020. "A Bayesian Approach to Estimating Seemingly Unrelated Regression for Tree Biomass Model Systems" Forests 11, no. 12: 1302. https://doi.org/10.3390/f11121302
APA StyleXie, L., Li, F., Zhang, L., Widagdo, F. R. A., & Dong, L. (2020). A Bayesian Approach to Estimating Seemingly Unrelated Regression for Tree Biomass Model Systems. Forests, 11(12), 1302. https://doi.org/10.3390/f11121302